×
20.01.2018
218.016.118c

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ

Вид РИД

Изобретение

№ охранного документа
0002634090
Дата охранного документа
23.10.2017
Аннотация: Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок, при этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены колебания типа H, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Технический результат: обеспечение возможности повышения точности измерения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для контроля потоков неоднородных диэлектрических веществ, у которых компоненты могут занимать произвольное положение при движении в трубопроводах, для высокоточного определения различных физических свойств (плотности, концентрации смеси веществ, влагосодержания и др.) неоднородных диэлектрических веществ (жидкостей, газов), перемещаемых по трубопроводам. Высокоточная информация о физических свойствах (плотности сыпучего вещества, сплошности газо-жидкостного потока) неоднородного диэлектрического вещества в потоке важна не только для контроля и регулирования технологических процессов, но и для определения массового расхода вещества, связанного с этими свойствами.

Известны различные устройства для определения физических свойств диэлектрических веществ в потоке, в частности перемещаемого по трубопроводу, основанные на измерении их электрофизических параметров с применением радиочастотных датчиков в виде полых волноводов, антенн, отрезков длинных линий и др. (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука, 1989. С. 168-177). При неоднородном или переменном характере распределения вещества имеет место существенная погрешность измерения, поскольку электромагнитное поле в таких датчиках неоднородно на их измерительных участках, что приводит к погрешности измерения при изменения распределения такого вещества.

Известно также техническое решение (US 4104585 A, 01.08.1978), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. Это устройство-прототип содержит волноводный объемный резонатор, через сквозные отверстия в противоположных торцах которого пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом. К резонатору подсоединены с помощью элементов связи генератор электромагнитных колебаний и электронный блок. Недостатком данного устройства является его невысокая точность при проведении измерений в реальных условиях, когда контролируемое диэлектрическое вещество изменяет характер своего распределения при его движении. При этом это вещество (его размеры, форма и расположение) смещается относительно картины неоднородного распределения электрического поля стоячей волны в резонаторе и, как следствие, изменяется значение информативного параметра - резонансной частоты электромагнитных колебаний резонатора, приводя к снижению точности измерения.

Техническим результатом изобретения является повышение точности измерения.

Технический результат достигается тем, что предлагаемое устройство для измерения физических свойств вещества в потоке, содержащее на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок. При этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены электромагнитные колебания типа H10n, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Волноводный прямоугольный резонатор может быть скручен вдоль его продольной оси, по меньшей мере, на 90°.

Предлагаемое устройство поясняется чертежами на фиг. 1, фиг. 2 и фиг. 3.

На фиг. 1 изображено поперечное сечение прямоугольного волновода с двумя диэлектрическими вставками и диэлектрической трубой, распределение в нем электрического поля.

На фиг. 2 изображен прямоугольный волноводный резонатор, скрученный вдоль продольной оси на 90°.

На фиг. 3 приведена функциональная схема устройства.

На фигурах показаны прямоугольный волновод 1, диэлектрические вставки 2 и 3, диэлектрическая труба 4, скрученный прямоугольный волноводный резонатор 5, участки трубопровода 6 и 7, прямоугольный волноводный резонатор 8, запредельные волноводы 9 и 10, элементы связи 11 и 12, генератор электромагнитных колебаний 13, электронный блок 14.

Устройство работает следующим образом.

Применение датчика на основе проточного волноводного резонатора с пропущенной вдоль его продольной оси диэлектрической трубой позволяет, при обеспечении равномерного характера распределения электрического поля в объеме резонатора, достигаемого в предлагаемом устройстве, обеспечивает измерение параметров физических свойств неоднородного диэлектрического вещества независимо от конфигурации потока, распределения в нем имеющихся неоднородностей.

Для этой цели необходимо иметь однородное распределение энергии электромагнитного поля в поперечном сечении волноводного резонатора. Такое приблизительно однородное распределение обеспечивается в волноводном резонаторе на основе прямоугольного волновода 1 (фиг. 1). На фиг. 1 показано распределение амплитуды напряженности электрического поля E в поперечном сечении прямоугольного волновода и волноводного резонатора на его основе. У противоположных широких сторон поперечного сечения прямоугольного волновода 1 вдоль его длины размещены диэлектрические вставки 2 и 3 с толщиной d и диэлектрической проницаемостью ε. В центральной свободной части поперечного сечения волновода с исходным типом волн H10 существует поле поперечные волны типа TEM (VanKoughnett A.L., Wyslouzil W.A waveguide TEM mode exposure chamber // Journal of Microwave Power. 1972, vol. 7, N 4, pp. 381-283). Эти волны являются поперечными (TEM), если выполнено следующее условие:

где λ - длина волны в свободном пространстве на используемой рабочей частоте.

Волноводный прямоугольный резонатор, выполненный на основе такого прямоугольного волновода 1, вдоль продольной оси которого пропущена диэлектрическая труба 4 с контролируемым веществом, может служить в качестве датчика для измерений физических свойств движущихся диэлектрических веществ, как однородных, так и содержащих различные неоднородности. При этом данные неоднородности могут изменять свое распределение в объеме резонатора в процессе измерения.

В этом случае имеет место почти равномерное распределение электромагнитной энергии в свободном пространстве волновода, а также в рассматриваемом резонаторе на его основе, содержащем диэлектрическую трубу с контролируемым диэлектрическим веществом вдоль продольной оси волновода. В качестве диэлектрических вставок могут применяться различные материалы: плексиглас (ε=2.59), корунд (ε=10.07) и др. Так, требуемый режим работы с электромагнитном полем TEM-типа в центральной части волновода обеспечивается на частоте 2450 МГц (λ=12,45 см) при следующих параметрах: размеры поперечного сечения 7×3,5 см2; ε=7; d=1,3 см. Можно считать, что такое же равномерное распределение поля в этой области имеет место и при малых изменениях частоты генератора или при введении диэлектрической трубы с контролируемым диэлектрическим веществом в рассматриваемое свободное пространство, незначительно изменяя электрическое поле стоячей волны в резонаторе.

В данном резонаторе возбуждают колебания типа H10n, n=1, 2, …, низшим из которых является H101 и которому соответствует наименьшее значение резонансной частоты ƒp электромагнитных колебаний данного резонатора. При этом первые два индекса (1 и 0) соответствуют числу полуволн поля стоячей электромагнитной волны в волноводном резонаторе в его поперечном сечении (фиг. 1), а третий индекс n=1, 2, … - числу полуволн поля стоячей волны вдоль продольной оси данного прямоугольного резонатора (т.е. вдоль диэлектрической трубы с контролируемым диэлектрическим веществом). Однородное распределение энергии электромагнитного поля в таком волноводе и резонаторе на его основе приводит к независимости результатов измерений от конфигурации потока, распределения в нем имеющихся неоднородностей.

В прямоугольном резонаторе, в отличие от прямоугольного волновода, имеет место картина стоячей волны с наличием максимумов и минимумов электрического и магнитного полей по объему резонатора. При этом вдоль длины L резонатора в продольной плоскости умещается полуволн, т.е. , n=1, 2, …. С учетом этого соотношение (1) для рассматриваемого резонатора записывается так:

откуда находим

Для основного типа колебаний H101 при n=1 формула (3) принимает вид

Таким образом, в данном прямоугольном волноводном резонаторе конфигурация потока неоднородного диэлектрического вещества, перемещаемого на измерительном участке трубопровода по диэлектрической трубе внутри рассматриваемого резонатора, а также распределение по объему этой трубы присущих веществу в потоке неоднородностей не оказывают влияния на значение информативного параметра - резонансной частоты электромагнитных колебаний резонатора. Эта частота зависит от измеряемого физического свойства вещества - плотности, концентрации смеси веществ, влагосодержания неоднородных диэлектрических веществ (жидкостей, газов) и т.п.

В показанном на фиг. 1 поперечном сечении волноводного прямоугольного резонатора с диэлектрической трубой 4, располагаемой вдоль продольной оси этого резонатора, в обеих частях полости резонатора, как в указанном выше прямоугольном волноводе 1, имеются диэлектрические вставки 2 и 3 с тем же поперечным размером, что и у резонатора, а продольный размер каждой вставки имеет величину , n=1, 2, …, где в данном случае L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Волноводный резонатор может быть снабжен запредельным волноводом с каждого его торца. Роль такого волновода может играть участок самого металлического трубопровода, по которому перемещается поток вещества. Внутренние диаметры этих запредельных волноводов соответствует диаметру диэлектрической трубы внутри резонатора для предотвращения движения потока контролируемого вещества. Наличие запредельного волновода препятствует излучению электромагнитных волн за пределы полости резонатора и, тем самым, обеспечивает высокое значение добротности резонатора. Измеряя текущее значение ƒp резонансной частоты электромагнитных колебаний резонатора, можно определить диэлектрическую проницаемость εм контролируемого вещества и связанные с ней функционально значения измеряемого физического свойства вещества.

Возможно дополнительное повышение точности измерения путем скручивания данного прямоугольного волноводного резонатора вдоль его продольной оси, по меньшей мере, на угол φ=90°. На фиг. 2 приведен такой скрученный прямоугольный волноводный резонатор 5. Вдоль его продольной оси расположена диэлектрическая труба 4, по которой перемещается контролируемое вещество. У каждого из торцов данного резонатора к концам этой диэлектрической трубы 4 подсоединен соответствующий участок трубопровода 6 и 7, имеющий тот же внутренний диаметр, что и у диэлектрической трубы 4. При выполнении этих участков 6 и 7 (как и самого трубопровода) из металла, они выполняют роль запредельных волноводов.

В этом случае картина силовых линий однородного электрического поля стоячей волны скрученного прямоугольного волноводного резонатора 5 идентична во всех сечениях измерительного участка, но отличается по ориентации по угловой координате. Если угол φ=90°, то на противоположных торцах резонатора силовые линии электрического поля взаимно-перпендикулярны. Если φ=180°, то направление силовых линий электрического поля на торцах резонатора противоположно. В датчике на основе такого резонатора производится пространственное усреднение результатов измерения физических свойств неоднородного веществе в потоке, причем степень усреднения и, следовательно, точность измерения, можно регулировать величиной угла φ.

На фиг. 3 показана схема устройства с датчиком на основе волноводного прямоугольного резонатора 8 с диэлектрической трубой 4 внутри этого резонатора вдоль его продольной оси, содержащей движущееся диэлектрическое вещество. Диэлектрические вставки 2 и 3 расположены в соответствующих частях полости резонатора. Наличие запредельных волноводов 9 и 10 с обоих торцов волноводного резонатора, диаметр которых соответствует диаметру диэлектрической трубы 4 внутри резонатора, препятствует излучению электромагнитных волн за пределы полости резонатора. Элементы связи 11 и 12, расположенные в центре широких стенок волноводного резонатора, служат для возбуждения электромагнитных колебаний в полости резонатора с помощью генератора электромагнитных колебаний 13 и его подсоединения к электронному блоку 14 для измерения резонансной частоты ƒp данного резонатор, по значению которой судят об измеряемом физическом свойстве вещества в потоке.

Таким образом, предлагаемое устройство обеспечивает более высокую точность измерений физических свойств диэлектрического вещества в потоке при возможности изменения его конфигурации в процессе движения. Данное устройство обеспечивает независимость результатов измерений от распределения возможных неоднородностей вещества в его потоке на измерительном участке устройства.


УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ
Источник поступления информации: Роспатент

Showing 171-180 of 304 items.
26.08.2017
№217.015.e42c

Радиоволновый способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002626411
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e447

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002626303
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e46b

Способ ранней и дифференциальной электромиографической диагностики основных симптомов болезни паркинсона

Изобретение относится к области медицины, в частности к неврологии. Осуществляют одновременную запись сигналов электрической активности мышц (ЭМГ) верхних и нижних конечностей при неизменном поддержании позы суставного угла. Из спектра ЭМГ выделяют частотный диапазон сигнала, создающий...
Тип: Изобретение
Номер охранного документа: 0002626557
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e7a5

Инвертирующий масштабный усилитель с компенсацией частотной погрешности

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования. Масштабный усилитель с компенсацией частотной погрешности характеризуется тем, что состоит из...
Тип: Изобретение
Номер охранного документа: 0002627123
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.eb2b

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки с объектов, подключенных к источникам электрического напряжения. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной...
Тип: Изобретение
Номер охранного документа: 0002628306
Дата охранного документа: 15.08.2017
20.11.2017
№217.015.ef6c

Универсальная система дозирования жидкостей на базе мембранного насоса

Изобретение относится к области дозирования жидкостей и представляет собой пневмоэлектронную универсальную (по отношению к операциям порционного и непрерывного дозирования) систему, которая может быть использована для автоматизации целого ряда технологических процессов, включающих операции...
Тип: Изобретение
Номер охранного документа: 0002628984
Дата охранного документа: 23.08.2017
29.12.2017
№217.015.f37a

Способ определения состояния поверхности дороги

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности...
Тип: Изобретение
Номер охранного документа: 0002637797
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f863

Способ определения концентрации компонента в двухкомпонентной газовой смеси

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в...
Тип: Изобретение
Номер охранного документа: 0002639740
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
Showing 171-180 of 228 items.
26.08.2017
№217.015.e42c

Радиоволновый способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002626411
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e447

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002626303
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e46b

Способ ранней и дифференциальной электромиографической диагностики основных симптомов болезни паркинсона

Изобретение относится к области медицины, в частности к неврологии. Осуществляют одновременную запись сигналов электрической активности мышц (ЭМГ) верхних и нижних конечностей при неизменном поддержании позы суставного угла. Из спектра ЭМГ выделяют частотный диапазон сигнала, создающий...
Тип: Изобретение
Номер охранного документа: 0002626557
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e7a5

Инвертирующий масштабный усилитель с компенсацией частотной погрешности

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования. Масштабный усилитель с компенсацией частотной погрешности характеризуется тем, что состоит из...
Тип: Изобретение
Номер охранного документа: 0002627123
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.eb2b

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки с объектов, подключенных к источникам электрического напряжения. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной...
Тип: Изобретение
Номер охранного документа: 0002628306
Дата охранного документа: 15.08.2017
20.11.2017
№217.015.ef6c

Универсальная система дозирования жидкостей на базе мембранного насоса

Изобретение относится к области дозирования жидкостей и представляет собой пневмоэлектронную универсальную (по отношению к операциям порционного и непрерывного дозирования) систему, которая может быть использована для автоматизации целого ряда технологических процессов, включающих операции...
Тип: Изобретение
Номер охранного документа: 0002628984
Дата охранного документа: 23.08.2017
29.12.2017
№217.015.f37a

Способ определения состояния поверхности дороги

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности...
Тип: Изобретение
Номер охранного документа: 0002637797
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f863

Способ определения концентрации компонента в двухкомпонентной газовой смеси

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в...
Тип: Изобретение
Номер охранного документа: 0002639740
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
+ добавить свой РИД