×
20.01.2018
218.016.1166

Результат интеллектуальной деятельности: СПОСОБ ПЕРИСТАЛЬТИЧЕСКОГО НАГНЕТАНИЯ ТЕКУЧИХ СРЕД НА ОСНОВЕ ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. В способе нагнетания текучих сред используют бегущую волну деформаций замкнутого объема за счет волнообразного движения, образуемого от сжатия и растяжения пьезоэлементов. При этом подают переменное трехфазное возбуждающее напряжение. Вытеснение текучей среды производят за счет изменения общего объема пакета пьезоэлементов, состоящего из трех модулей, выполненных из шайб. Повышается напор насоса, а также увеличивается КПД. 4 з.п. ф-лы, 6 ил.

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред.

Известен способ нагнетания текучих сред на основе пьезоэлектрических элементов, описанный в патенте RU 2452872 С1, 10.06.2012.

Нагнетание перекачиваемой среды производят за счет изменения габаритных размеров вытеснителя, выполненного на основе пьезоэлементов, расположенных во внутреннем канале, при подаче на них электрических сигналов.

Недостаток известного технического решения заключается в низкой эффективности нагнетателя, выполненного по данному способу. Кроме того, пьезоэлементы нагнетателя быстро нагреваются, что вынуждает останавливать процесс нагнетания на время остывания элементов.

Ближайшим аналогом заявленного технического решения является способ перистальтического нагнетания текучих сред, описанный в статье: А.Н. Виноградов, Т.Е. Духовенский «Исследование пьезэлектрических микронасосов для медицинской и космической техники» (см. интернет http://nuclphys.sinp.msu.ru/school/s11/11_16.pdf.)

В известном перистальтическом нагнетателе текучих сред используют бегущую волну деформаций замкнутого объема. Волнообразное движение образуют за счет сжатия и растяжения пьезоэлементов. Для создания такой волны на пьезоэлементы подают переменное трехфазное возбуждающее напряжение по принципу, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущую волну перемещения силового поля, генерируемого обмотками.

Достоинства известного способа нагнетания текучих сред заключаются в простоте исполнения, высокой надежности и отсутствии обратных клапанов.

Недостатком известного способа является то обстоятельство, что он предназначен для перемещения малых объемов текучей среды и может быть применен в лишь микроаналитических системах.

Задача, на решение которой направлено настоящее техническое решение, состоит в создании эффективного и надежного нагнетателя, способного проталкивать текучую среду через внутренние и внешние каналы пьезоэлементов.

Технический результат, достигаемый при реализации изобретения, заключается в повышении напора насоса, а также в увеличении его КПД.

Для решения поставленной задачи с достижением технического результата в известном способе нагнетания текучих сред, в котором используют бегущую волну деформаций замкнутого объема за счет волнообразного движения, образуемого от сжатия и растяжения пьезоэлементов путем подачи переменного трехфазного возбуждающего напряжения, согласно изобретению вытеснение текучей среды производят за счет изменения общего объема пакета пьезоэлементов, состоящего из трех модулей, выполненных из шайб.

Вытеснение текучей среды могут производить через внутренние полости пакета, проходящие сквозь шайбы.

Вытеснение текучей среды могут производить через внешние полости, проходящие между пакетом шайб и внутренним каналом, в котором расположены пьезоэлементы.

Скорость бегущей волны деформации могут изменять путем регулирования частоты бегучей волны.

Давление нагнетаемой среды могут изменять путем регулирования переменного напряжения.

Вытеснение текучей среды через внутренние полости пакета, проходящие сквозь шайбы, дает возможность получать внутреннюю струю текучей среды.

Вытеснение текучей среды через внешние полости, проходящие между пакетом из шайб и внутренним каналом, дает возможность получить дополнительную струю на выходе, что также способствует повышению производительности нагнетателя.

Скорость бегущей волны деформации могут изменять путем регулирования частоты бегучей волны.

Давление нагнетаемой среды могут изменять путем регулирования переменного напряжения.

Вытеснение текучей среды за счет изменения объема пакета пьезоэлементов, выполненных в виде шайб, позволяет значительно повысить производительность нагнетателя, увеличить напор насоса, а также поднять его КПД благодаря непрерывной работе пьезоэлементов.

Изменение скорости бегущей волны деформации путем регулирования частоты бегучей волны позволяет регулировать скорость потока в широком диапазоне.

Изменение давления нагнетаемой среды путем регулирования переменного напряжения дает возможность независимо от других параметров менять напор потока.

Указанные преимущества изобретения, а также его особенности поясняются лучшими вариантами выполнения со ссылками на чертежи.

Фиг. 1 - Силовой блок нагнетателя, выполненный из пьезоэлементов в виде шайб.

Фиг. 2 - Разрез одного пьезоэлектрического нагнетателя в сборе (провода не изображены).

Фиг. 3 - Общий вид нагнетателя текучей среды.

Фиг. 4 - Блок электропитания одного пьезоэлектрического нагнетателя.

Фиг. 5 - Графики ЭДС трех пьезоэлементов.

Фиг. 6 - Структурная система управления блоков нагнетателя.

Перистальтический пьезоэлектрический нагнетатель 1 (фиг. 1) содержит блок шайб 2, изготовленных из пьезоэлементов, плотно прилегающих друг к другу и расположенных в виде столба с внутренней полостью 3. Поверхности всех шайб снабжены электродами (на фиг. 1 не показаны). Электроды получают питание от цепи переменного тока через трансформатор и преобразователь. Внутренняя и внешняя поверхности столба из шайб залиты внешним слоем из термостойкой резины (не показан).

С одной стороны от блока шайб расположена наружная шайба 4 с отверстием по середине с выходным штуцером 5. С другой стороны имеется такая же шайба 6 с отверстием по середине и штуцером 7. Шшайба 4 и шайба 6 вместе с блоком из пьезоэлементов залиты внешним слоем терморезины. Блок шайб помещают внутри трубчатого корпуса 8 (фиг. 2), выполненного из плотной пластмассы или металла. С двух сторона корпус 8 снабжен крышками 9 и 10. Сквозь крышки через сальники 11 и 12 проходят штуцеры в следующей последовательности: через сальник 11 проходит штуцер 5; сквозь сальник 12 проходит штуцер 7. Между крышкой 9 и наружной шайбой 4 установлена кольцевая прокладка 13, выполненная из пружинистого материала, например синтетической резины. Аналогичная прокладка 14 установлена между крышкой 10 и шайбой 6. Указанные прокладки делят внутреннее пространство трубчатого корпуса 8 на внутреннюю полость 3 и внешний канал 15, проходящий между внутренней поверхностью трубчатого корпуса 8 и внешней поверхностью 1 шайб 2. Оба канала оказываются изолированными друг от друга. Трубчатый корпус 8 с двух сторон снабжен отверстиями 16 и 17, расположенными диаметрально по отношению друг к другу. В эти отверстия вставлены трубки соответственно 18 и 19. В свою очередь, штуцеры 5 и 7 снабжены трубками соответственно 20 и 21. Трубчатый корпус 8 изнутри заполнен воздухом.

Вся конструкция, представленная на фиг. 2, вместе с трубчатым корпусом 8 представляет собой нагнетательный модуль. Три таких модуля А, В. С располагают последовательно (фиг. 3) и их внутренние каналы также последовательно соединяют между собой. При этом входная трубка внутреннего канала объединенного трехзвенного модуля обозначена на фиг. 3 индексом 20А, а выходная трубка объединенного внутреннего модуля обозначена индексом 21С. В свою очередь, внешние каналы трехзвенного модуля соединены по стрелкам: 19А-18В, 19В-18С. Входная трубка трехзвенного внешнего канала обозначена индексом 18А, а выходная трубка трехзвенного внешнего канала обозначена индексом 19С.

Электрическая схема питания каждого пьезоэлектрического модуляя содержит понижающий трансформатор 22 (фиг. 4), в котором имеется обмотка высокого напряжения с проводами 23 и 24 и набор обмоток низкого напряжения. Провода низкого напряжения обозначены на схеме цифрами: 25, 26, подающие питание к первой пьезоэлектрической шайбе; провода 27, 28 для питания второй пьезоэлектрической шайбы, провода 29, 30 для питания третьей пьезоэлектрической шайбы и т.д. В схеме показан также регулятор напряжения 31. Частота питания трансформатора определяет производительность нагнетателя.

Каждый трансформатор модуля получает питание от своей фазы переменного трехфазного тока. В частности, трансформатор модуля А получает питание от фазы А, трансформатор модуля В получает питание от фазы В, а трансформатор модуля С питается от фазы С. Поскольку фазы А, В и С сдвинуты по отношению друг к другу на 120° электрических градуса (фиг. 5), то в результате получаем бегущую волну напряжений питания трансформаторов и, соответственно, модулей. Структурная система управления модулей нагнетателя состоит из блока выпрямления 32 (фиг. 6), промежуточного блока управления 33 и инвертора 34. Последний преобразует постоянный ток в переменный трехфазный ток требуемой частоты. Напряжение, подаваемое на систему питания модулей, регулируется для всех трех фаз одновременно с помощью системы управления 35

Способ перистальтического нагнетания текучих сред на основе пьезоэлектрических элементов действует следующим образом.

При подаче питания на провода 25, 26, 27, 28 и т.д. (фиг. 5) подключенные к шайбам из пьезоэлементов (фиг. 1, 2) все элементы каждого модуля начинают одновременно изменять свои габаритные размеры. При определенной полярности сигнала внутренний и внешний размеры пьезоэлементов увеличиваются, при противоположной полярности эти размеры уменьшаются. В процессе увеличения внутреннего размера текучая среда будет стремиться заполнить образующийся вакуум, а при сжатии текучая среда будет вытолкнута во внешнее пространство. При наличии кольцевых прокладок 13 и 14 текучая среда поступает во внутреннее пространство 3 при его расширении и выдавливается наружу по трубкам 20 и 21 (фиг. 2). В то же время внешний канал 15 при расширении пьезоэлементов 2 будет выжимать из себя текучую среду и наоборот втягивать ее внутрь при сжатии указанных элементов. На модули А, В и С подается переменное трехфазное возбуждающее напряжение (фиг. 5). Если ЭДС одной фазы (например, фазы А) принять за исходную и считать ее начальную фазу равной нулю, то выражения мгновенных значений ЭДС можно записать в виде еА = Em sin t, еВ = Em sin (ωt-120°), еС = Emsin (ωt - 240°) = Em sin (ωt + 120°).

Поэтому модули пьезоэлементов будут последовательно, поочередно изменять свой объем. В результате создается перистальтическая бегущая волна деформаций замкнутых объемов модулей. Особенность этой волны заключается в том, что в такой системе нет необходимости в обратных клапанах, В то же время такую волну легко повернуть вспять. Для этого достаточно изменить чередование любых двух фаз.

Скорость бегущей волны деформации V изменяют путем регулирования частоты бегучей волны (фиг. 6) согласно уравнению V=2fτ, где f - частота, τ=V/2f - полюсное деление, т.е. расстояние между поперечным центром первого модуля и точкой сочленения между вторым и третьим модулями (фиг. 3). С помощью той же системы управления меняют и давление нагнетаемой среды путем регулирования переменного напряжения.

Оба образованных таким образом потока, один из которых выходит из трубки 21С, а другой из трубки 19С, соединяют на выходе в общей выходной трубе (не показана) в суммарный.

Способ перистальтического нагнетания текучих сред на основе пьезоэлектрических элементов может быть использован и на транспорте, и в промышленности, и в сельском хозяйстве, и в быту при перекачивании жидкостей с высоким напором и относительно небольшой подачей, где по массогабаритным показателям и показателям эффективности использование насосов других типов затруднено.


СПОСОБ ПЕРИСТАЛЬТИЧЕСКОГО НАГНЕТАНИЯ ТЕКУЧИХ СРЕД НА ОСНОВЕ ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ
СПОСОБ ПЕРИСТАЛЬТИЧЕСКОГО НАГНЕТАНИЯ ТЕКУЧИХ СРЕД НА ОСНОВЕ ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ
СПОСОБ ПЕРИСТАЛЬТИЧЕСКОГО НАГНЕТАНИЯ ТЕКУЧИХ СРЕД НА ОСНОВЕ ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ
Источник поступления информации: Роспатент

Showing 71-80 of 281 items.
20.05.2015
№216.013.4d22

Бесконтактный радиоволновый способ определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается способ измерения уровня жидкости, при...
Тип: Изобретение
Номер охранного документа: 0002551260
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d92

Устройство для измерения физических параметров диэлектрического листового материала

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство...
Тип: Изобретение
Номер охранного документа: 0002551372
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4dac

Способ определения толщины льда

Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1)...
Тип: Изобретение
Номер охранного документа: 0002551398
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4eb9

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). В...
Тип: Изобретение
Номер охранного документа: 0002551671
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa9

Способ преобразования механической энергии движения текучей среды в электрическую энергию

Способ преобразования относится к области энергетики и может быть использован для преобразования механической энергии движения текучей среды в электрическую энергию. В способе поступательно движущуюся текучую среду подают в струйный генератор, преобразуют в нем поступательно движущуюся текучую...
Тип: Изобретение
Номер охранного документа: 0002551914
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
Showing 71-80 of 202 items.
20.05.2015
№216.013.4d22

Бесконтактный радиоволновый способ определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается способ измерения уровня жидкости, при...
Тип: Изобретение
Номер охранного документа: 0002551260
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d92

Устройство для измерения физических параметров диэлектрического листового материала

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство...
Тип: Изобретение
Номер охранного документа: 0002551372
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4dac

Способ определения толщины льда

Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1)...
Тип: Изобретение
Номер охранного документа: 0002551398
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4eb9

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). В...
Тип: Изобретение
Номер охранного документа: 0002551671
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa9

Способ преобразования механической энергии движения текучей среды в электрическую энергию

Способ преобразования относится к области энергетики и может быть использован для преобразования механической энергии движения текучей среды в электрическую энергию. В способе поступательно движущуюся текучую среду подают в струйный генератор, преобразуют в нем поступательно движущуюся текучую...
Тип: Изобретение
Номер охранного документа: 0002551914
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
+ добавить свой РИД