×
20.01.2018
218.016.102a

Результат интеллектуальной деятельности: Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред. Заявленное устройство содержит лазерный источник зондирующего излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося уголкового отражателя и двухлинзовой оптической системы. Исследуемая форсунка, расположенная между линзами оптической системы, закреплена на подвижной каретке с возможностью ее перемещения вдоль оси симметрии факела распыла. Приемник излучения размещен в светонепроницаемом цилиндрическом корпусе с точечной диаграммой на его торце, расположенной на расстоянии от оси симметрии форсунки. В корпусе размещена дополнительная линза на расстоянии от диаграммы, а перед приемником излучения установлен матовый рассеиватель. Скорость перемещения каретки соответствует неравенству а расстояние между выходным сечением форсунки и осью оптической системы в процессе перемещения форсунки изменяется в пределах z=0÷h, где - фокусное расстояние линз оптической системы, мм; l - расстояние между линзами оптической системы, мм; u - скорость перемещения каретки, мм/с; d - диаметр лазерного луча, мм; n - угловая скорость вращения отражателя, об/с; R - радиус поперечного сечения факела распыла, мм; z - расстояние между выходным сечением форсунки и осью оптической системы, мм; h - длина факела распыла форсунки, мм. Технический результат – повышение информативности и снижение погрешности измерений характеристик факела распыла форсунки. 6 ил.

Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред, и может быть использовано при разработке и оптимизации распыливающих устройств в различных отраслях техники и технологии (ракетно-космическая и авиационная техника, порошковая металлургия, химическая технология, теплоэнергетика и т.д.).

В настоящее время для распыливания жидкостей широко применяются разные типы форсунок - струйные центробежные, эжекционные и др. [1]. Одной из основных характеристик форсунки является структура факела распыла - пространственное распределение концентрации капель по радиусу и по длине факела (плотность орошения). Эта характеристика определяет равномерность распределения капель в факеле распыла и «дальнобойность» факела, играющих важную роль, в частности при расчете топливных форсунок воздушно-реактивных и жидкостных ракетных двигателей [2].

Известен способ определения структуры факела распыла путем визуализации с использованием искровой фотографии [2] и теневых приборов [3]. Однако методы визуализации имеют ограниченную информативность - возможность определять только корневой угол распыла и форму факела.

Известна модификация метода визуализации структуры течения внутри факела форсунки с использованием лазерного «ножа» [4]. Оптическая схема установки, включающая аргоновый лазер, электромеханический модулятор, подвижное звено поворотных зеркал и цилиндрический объектив, формирует световую плоскость в объеме факела. Синхронный поворот цилиндрических линз объектива обеспечивает визуализацию с помощью фоторегистрации структуры течения в поперечной и продольной плоскостях факела. Данный метод позволяет определять только качественную картину распределения капель в исследуемом сечении.

Известны способ и устройство для определения объемной концентрации капель и их среднего диаметра [5], в котором формируется лазерная (световая) плоскость в объеме факела распыленного топлива, содержащего флуоресцирующие добавки. Регистрируют ортогонально лазерной плоскости цветное изображение сечения факела, разделяют это изображение на характерные цвета, по которым определяют путем специального алгоритма средние размеры и концентрацию капель в точках изображения сечения факела лазерной плоскостью.

Недостатком данного технического решения являются сложность и трудоемкость юстировки устройства.

Известен способ определения радиального распределения концентрации капель в осесимметричном факеле распыла форсунки [6], основанный на измерении оптической плотности факела при лазерном сканировании по хордам в заданном сечении, с последующим решением соответствующей обратной задачи оптики аэрозолей (обращение интегрального уравнения Абеля). Для реализации этого метода необходимо обеспечить сканирование лазерного луча с его параллельным перемещением в измерительном объеме [7, 8].

Известно устройство для оптического измерения параметров частиц конденсированной фазы в двухфазном потоке, основанное на сканировании потока по хордам [9]. Исследуемый объект (сопло с истекающей двухфазной струей) монтировался на специальном столике, при помощи которого объект можно было перемещать перпендикулярно направлению зондирующего излучения. Одновременно с объектом синхронно перемещался фотоэлектронный умножитель (ФЭУ) с помощью автоматической системы сканирования. Регистрация сигнала ФЭУ проводилась на светолучевом осциллографе.

Наиболее близким по техническому решению к заявляемому изобретению является устройство для исследования структуры факела распыла центробежной форсунки [10]. Сканирующее устройство (сканер) представляет собой плотно насаженный на вал электродвигателя вращающийся отражатель, выполненный в виде цилиндра со срезанным под углом 45° торцом. На торце наклеено зеркало с наружным напылением. Зондирующий гелий-неоновый лазер и электродвигатель установлены соосно на оптической скамье. При вращении отражателя осуществляется круговое сканирование радиальным лучом плоскости, перпендикулярной оси вращения. Для создания параллельного перемещения луча в зоне измерений используется оптическая система, состоящая из двух линз. Отражатель и фотоэлектрический приемник излучения расположены в фокальных плоскостях входной и выходной линз соответственно.

Недостатком данного устройства является возможность проведения измерений только в одном сечении исследуемого факела распыла для каждого эксперимента.

Техническим результатом настоящего изобретения является повышение информативности и снижение погрешности измерений характеристик факела распыла форсунки.

Технический результат достигается тем, что разработано устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки, включающее лазерный источник зондирующего лазерного излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося уголкового отражателя и оптической системы из двух соосных одинаковых линз, между которыми симметрично расположена форсунка. Форсунка закреплена на подвижной каретке с возможностью ее перемещения вдоль оси симметрии факела распыла. Приемник излучения размещен в светонепроницаемом цилиндрическом корпусе с точечной диафрагмой на его торце, расположенной на расстоянии от оси симметрии форсунки. В корпусе размещена дополнительная линза на расстоянии от диафрагмы, а перед приемником излучения установлен матовый рассеиватель.

Скорость перемещения каретки соответствует неравенству

а расстояние между выходным сечением форсунки и осью оптической системы в процессе перемещения форсунки изменяется в пределах

z=0÷h,

где - фокусное расстояние линз оптической системы, мм;

l - расстояние между линзами оптической системы, мм;

- фокусное расстояние дополнительной линзы, мм;

u - скорость перемещения каретки, мм/с;

d - диаметр лазерного луча, мм;

n - угловая скорость вращения отражателя, об/с;

R - радиус поперечного сечения факела распыла, мм;

z - расстояние между выходным сечением форсунки и осью оптической системы, мм;

h - длина факела распыла форсунки, мм.

Сущность изобретения поясняется чертежами.

Фиг. 1 - Схема устройства для определения пространственного распределения концентрации капель в факеле распыла форсунки.

Фиг. 2 - Схема приемного устройства.

Фиг. 3 - Схема сканирования поперечного сечения факела распыла.

Фиг. 4 - Схема движения сканирующего луча в измерительном объеме.

Фиг. 5 - Фотография устройства (пример реализации изобретения).

Фиг. 6 - Радиальные распределения концентрации капель в разных сечениях факела распыла форсунки (пример реализации изобретения).

Схема устройства

Устройство состоит (Фиг. 1) из лазерного источника зондирующего излучения 1, электродвигателя 2 с насаженным на его оси уголковым отражателем 3, оптической системы, состоящей из двух одинаковых линз 4, приемного устройства 5, осциллографа 6 и компьютера 7.

Исследуемая форсунка 8 закреплена на подвижной каретке 9, которая может перемещаться с помощью червячного механизма с электроприводом в направлении оси симметрии форсунки 8 по штанге 10. Система подачи рабочей жидкости в форсунку 8 состоит из емкости с жидкостью 11, баллона со сжатым воздухом 12, запорных вентилей 13, редуктора 14 и контрольных манометров 15. Факел распыла 16 локализован в измерительном объеме между линзами 4.

Приемное устройство 5 (Фиг. 2), распложенное вдоль оптической оси линз 4, состоит из фотоэлектрического приемника излучения 17, размещенного в светонепроницаемом цилиндрическом корпусе 18. На торце корпуса 18 выполнена точечная диафрагма 19. В корпусе размещена дополнительная линза 20 на расстоянии от диафрагмы 19, равном фокусному расстоянию линзы . Непосредственно перед приемником излучения 17 установлен матовый рассеиватель 21. Приемное устройство 5 расположено таким образом, что расстояние от диафрагмы 19 до оси симметрии форсунки 8 составляет , где - фокусное расстояние линз 4; l - расстояние между линзами 4.

Юстировка устройства

Устройство работает следующим образом (Фиг. 1). После запуска лазерного источника излучения 1 включается электродвигатель 2. Вращающийся отражатель 3, установленный соосно с лучом лазера 1, осуществляет радиальное сканирование лазерным лучом плоскости перпендикулярно оси симметрии форсунки. С помощью оптической двухлинзовой системы 4 осуществляется параллельное сканирование плоскости сечения факела распыла 16 и поступление лазерного луча в приемное устройство 5.

Прошедший через точечную диафрагму 19 (Фиг. 2) лазерный луч с помощью дополнительной линзы 20 преобразуется в параллельный пучок и поступает через матовый рассеиватель 21 на вход приемника излучения 17. С помощью осциллографа 6 и компьютера 7 регистрируется распределение интенсивности лазерного излучения Jo(y) по сечению измерительного объема (без факела распыла).

Проведение измерений

Перед проведением измерений форсунку 8 (Фиг. 1) устанавливают таким образом, чтобы выходное сечение сопла располагалось вблизи оптической оси оптической системы 4. С помощью редуктора 14 устанавливают заданный режим работы форсунки (давление на входе и связанный с ней расход жидкости). После открытия вентилей 13 жидкость с помощью вытеснительной системы (11, 12) подается на форсунку 8. Образующийся при этом факел распыла 16 локализуется в измерительном объеме устройства между линзами 4.

После установления стационарного режима распыливания, контролируемого показаниями манометров 15, включаются лазер 1, электродвигатель 2 и электропривод каретки 9. При движении каретки 9 форсунка 8 перемещается в сторону от оси оптической системы, что обеспечивает сканирование поперечного сечения факела распыла 16 по всей его длине от z=0 до z=h (где z - расстояние от среза сопла форсунки до оптической оси оптической системы). При этом с помощью осциллографа 6 и компьютера 7 регистрируется распределение интенсивности ослабленного в факеле распыла 16 зондирующего излучения J(y, z) по хордам каждого из поперечных сечений, расположенных на расстоянии z от среза сопла форсунки.

Обработка результатов

Схема сканирования поперечного сечения факела распыла для заданного расстояния z этого сечения от среза сопла форсунки приведена на Фиг. 3. На Фиг. 3: x - координата вдоль зондирующего луча; y - расстояние между линией зондирующего луча и центром факела; r - радиальная координата; R - радиус границы факела распыла в исследуемом сечении.

Обработка результатов проводится в автоматическом режиме отдельно для каждого сечения факела распыла и сводится к расчету распределения по хордам оптической плотности факела

где - коэффициент пропускания факела распыла.

Экспериментальная зависимость (1) является исходной информацией для определения радиального распределения массовой концентрации капель Cm(r) в данном сечении факела распыла. Зависимость оптической плотности τ от координаты y применительно к осесимметричному неоднородному факелу распыла имеет вид [6]

где ρ - плотность жидкости;

Q - усредненный фактор эффективности ослабления;

D32 - средний объемно-поверхностный диаметр.

Уравнение (2), переходя к радиальной системе координат [6], можно представить в виде

Алгоритм расчета распределения концентрации Cm(r) сводится к обращению интегрального уравнения Абеля (3).

Полученный положительный эффект изобретения (повышение информативности и снижение погрешности измерений) обусловлен следующими факторами.

1. Закрепление форсунки на подвижной каретке с возможностью ее перемещения вдоль оси симметрии форсунки обеспечивает повышение информативности измерений за счет получения информации о структуре факела распыла по всей его длине h (от среза сопла форсунки до конца факела). При этом снижается трудоемкость и погрешность измерения оптической плотности факела, поскольку диагностика всего факела распыла осуществляется при одном пуске форсунки.

При использовании неподвижной форсунки (прототип) измерения проводятся для каждого сечения факела отдельно путем ступенчатого изменения положения форсунки и проведения отдельного ее пуска. Подобный порядок измерений не обеспечивает идентичности формы и структуры факела распыла из-за возможного разброса режима работы форсунки в каждом отдельном пуске.

2. Размещение форсунки таким образом, что ее ось симметрии пересекает оптическую ось оптической системы и перпендикулярна этой оси, обеспечивает симметрию положения факела распыла в измерительном объеме и сканирование поперечных сечений факела строго перпендикулярных оси симметрии. Это обеспечивает корректность полученных исходных данных по оптической плотности факела при решении обратной задачи оптики аэрозолей (обращение интегрального уравнения Абеля), поскольку обратная задача сформулирована для строго осесимметричных объектов.

3. Размещение фотоэлектрического приемника излучения в светонепроницаемом цилиндрическом корпусе с точечной диафрагмой на его торце обеспечивает исключение влияния внешней посторонней засветки (возможных бликов от элементов оптической системы) на показания приемника излучения. В частности, это позволяет проводить измерения без затемнения лабораторного помещения.

4. Размещение торца приемного устройства с точечной диафрагмой на расстоянии от оси симметрии форсунки обеспечивает поступление на приемник излучения зондирующего луча в точке его «пережима» без потери измерительной информации.

5. Установка дополнительной линзы в корпус, размещенной на расстоянии от точечной диафрагмы и матового рассеивателя, обеспечивает получение параллельного луча излучения, поступающего на приемник, и диффузию рассеянного излучения, поступающего на приемник. Это позволяет снизить погрешность измерения интенсивности зондирующего излучения за счет исключения влияния возможной неоднородности световой характеристики приемника излучения по площади его чувствительного элемента [11].

6. Для выбора скорости перемещения каретки с расположенной на ней исследуемой форсункой рассмотрим схему движения лазерного луча в измерительном объеме (Фиг. 4). (Для наглядности отражатель 3 на Фиг. 4 повернут на угол 90°).

Скорость перемещения луча по окружности С радиусом (тангенциальная скорость) определяется формулой

где n - угловая скорость вращения отражателя, об/с;

- радиус окружности С, равный фокусному расстоянию линзы 4.

Время прохождения луча от точки Л до точки Б (Фиг. 4) равно

где R - радиус сечения факела распыла 16.

Подставляя (4) в (5), получим:

Для проведения измерений в строго контролируемом сечении факела распыла необходимо, чтобы за время сканирования τ факел распыла сместился в направлении его оси симметрии на расстояние Δh, не превышающее половины диаметра лазерного луча

где d - диаметр лазерного луча.

Из (7) с учетом (6) следует условие для скорости перемещения каретки

Пример реализации изобретения

Пример реализации заявляемого устройства приведен на схеме (Фиг. 1) и фотографии (Фиг. 5). В качестве источника зондирующего излучения 1 использовался гелий-неоновый лазер ЛГ-78 (длина волны излучения λ=0.6328 мкм, мощность W=5 мВт, диаметр луча d=1.5 мм), установленный соосно с синхронным электродвигателем 2 типа СД-54 (угловая скорость вращения n=96 об/мин). В качестве вращающегося уголкового отражателя использовалось плоское зеркало с наружным напылением, наклеенное на торец цилиндра, срезанный под углом 45°, и жестко закрепленного на валу электродвигателя.

Оптическая система состояла их двух одинаковых плоско-выпуклых линз 4 диаметром 200 мм с фокусным расстоянием , установленных соосно на расстоянии l=600 мм друг от друга.

В качестве приемника излучения использовался кремниевый фотодиод ФД-7К с диаметром чувствительной поверхности 5 мм (рабочее напряжение 27 В, постоянная времени 10-7 с). В светонепроницаемом корпусе с точечной диафрагмой диаметром 3 мм установлены дополнительная плоско-выпуклая линза с фокусом расстоянием и матовый рассеиватель.

Исследуемая форсунка 8 установлена на подвижной каретке 9 с червячным электроприводом (шаг перемещения 0.2 мм на один оборот). В соответствии с формулой (8) проведена оценка скорости перемещения каретки (n=1.6 об/с; d=1.5 мм; R=30 мм; )

u≤75 мм/с.

В экспериментах каретку перемещали со скоростью u=10 мм/с.

Регистрирующая система включала цифровой осциллограф 6 типа GDS-2064 и персональный компьютер 7.

В качестве примера реализации изобретения на Фиг. 6 приведены измеренные радиальные распределения безразмерной массовой концентрации капель (отнесенной к ее максимальному значению в данном сечении) для трех значений расстояния от среза сопла форсунки z. Измерения проводились при распыливании воды центробежной форсункой с геометрической характеристикой A=1.63 при значении перепада давления на форсунке Δp=0.5 МПа.

Таким образом, заявляемое устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки обеспечивает достижение технического результата изобретения - повышение информативности и снижение погрешности измерений характеристик факела распыла форсунки. Повышение информативности измерений обеспечивается измерением оптической плотности факела распыла по всей его длине в течение одного пуска форсунки. Снижение погрешности измерений обеспечивается исключением влияния внешней засветки на показания фотоэлектрического приемника излучения.

ЛИТЕРАТУРА

1. Витман Л.А., Кацнельсон Б.Д., Палеев И.И. Распыливание жидкости форсунками. - М.: - Л.: Госэнергоиздат, 1962. - 264 с.

2. Раушенбах Б.В., Белый С.А., Беспалов И.В. и др. Физические основы рабочего процесса в камерах сгорания воздушно-реактивных двигателей. –М.: Машиностроение, 1964. - 526 с.

3. Васильев А.А. Теневые методы. - М.: Наука, 1968, 400 с.

4. Шорин В.П., Журавлев О.А., Мединская Л.Н., Токарев В.В. Визуализация гидродинамической структуры течения в факеле центробежной форсунки // Изв. вузов. Авиационная техника. - 1988, №2. - С.108-109.

5. Патент РФ №2240536, МПК G01N 21/00. Способ и устройство для определения характеристик топливного факела / Ягодкин В.И., Голубев А.Г., Свириденков А.А., Васильев А.Ю.; опубл. 20.11.2004.

6. Архипов В.А., Бондарчук С.С. Оптические методы диагностики гетерогенной плазмы продуктов сгорания. - Томск: Изд-во Том. ун-та, 2012. 265 с.

7. Катыс Г.П. Информационные сканирующие системы. - М.: Машиностроение, 1965.-448 с.

8. Голубев B.C., Снопко В.Н. Сканирование луча с параллельным перемещением // Журн. прикл. спектроскопии. - 1976. Т.25, Вып.6. - С.1008-1010.

9. Зимин Э.П., Иноземцев О.В., Кругерский A.M., Михневич З.Г. Оптические измерения параметров диспергированной конденсированной фазы двухфазных потоков // Теплофизика высоких температур. - 1973. Т. 11, №5. - С.1037-1043.

10. Архипов В.А., Березиков А.П., Жуков АС, Ахмадеев И.Р., Бондарчук С.С. Лазерная диагностика структуры факела распыла центробежной форсунки // Изв. вузов. Авиационная техника. - 2009, №1. - С.75-77.

11. Гвоздева Н.П., Коркина К.И. Прикладная оптика и оптические измерения. - М.: Машиностроение, 1976. - 383 с.


Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки
Источник поступления информации: Роспатент

Showing 51-60 of 60 items.
20.01.2018
№218.016.1040

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе,...
Тип: Изобретение
Номер охранного документа: 0002633730
Дата охранного документа: 17.10.2017
13.02.2018
№218.016.2133

Способ получения керамических изделий сложной объемной формы

Изобретение относится к технологии получения керамических изделий марок ВК-95 и ВК-94 и может быть использовано в медицине, в нефтегазовом комплексе и машиностроении для изготовления керамических изделий, работающих при повышенных температурах, под нагрузкой или в агрессивных средах. Способ...
Тип: Изобретение
Номер охранного документа: 0002641683
Дата охранного документа: 19.01.2018
29.05.2018
№218.016.54ac

Способ изготовления керамической мембраны

Изобретение относится к технологии получения керамической мембраны на пористом носителе, в частности на подложках из оксида алюминия или оксида циркония. Способ изготовления керамической мембраны, включающий получение пористой керамической подложки, нанесение на ее поверхность слоев суспензии...
Тип: Изобретение
Номер охранного документа: 0002654042
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.56d9

Устройство для определения натяжения шнура

Изобретение относится к измерительной технике и может быть использовано для измерения вантовых конструкций. Сущность изобретения сводится к тому, что предварительно натянутый шнур защемляют между двумя зажимами из материала с высоким коэффициентом трения, например резины. Используя систему...
Тип: Изобретение
Номер охранного документа: 0002655032
Дата охранного документа: 23.05.2018
29.03.2019
№219.016.ee14

Гидробаллистический стенд

Изобретение относится к технике высокоскоростного метания в лабораторных условиях. В гидробаллистическом стенде соосно и последовательно по траектории движения метаемой модели смонтирован вакуумируемый ствол баллистической установки, электромагнитный датчик дульной скорости, вакуумный глушитель...
Тип: Изобретение
Номер охранного документа: 0002683148
Дата охранного документа: 26.03.2019
05.07.2019
№219.017.a618

Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов

Изобретение относится к области космической техники, а более конкретно к защите космических аппаратов. Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов включает обнаружение стороннего космического объекта и защиты от него экраном. Экран выполнен...
Тип: Изобретение
Номер охранного документа: 0002693481
Дата охранного документа: 03.07.2019
06.12.2019
№219.017.ea22

Способ идентификации космических аппаратов и их обломков в космическом пространстве

Изобретение относится к ракетно-космической технике и может быть использовано для идентификации космических аппаратов и их обломков в космическом пространстве с помощью средств космического мониторинга. Способ идентификации космических аппаратов и их обломков в космическом пространстве с...
Тип: Изобретение
Номер охранного документа: 0002707982
Дата охранного документа: 03.12.2019
27.03.2020
№220.018.1054

Способ аддитивного формования изделий из порошковых материалов

Изобретение относится к аддитивному формованию изделий из порошковых материалов. Способ включает экструзионную подачу смеси, содержащей порошок металлов или керамики и полимерное связующее, в зону построения изделия с одновременным локальным тепловым разогревом смеси и последующую...
Тип: Изобретение
Номер охранного документа: 0002717768
Дата охранного документа: 25.03.2020
03.06.2020
№220.018.235d

Способ получения пористого керамического материала с трехуровневой поровой структурой

Изобретение относится к технологии получения пористых керамических материалов и может быть использовано при изготовлении деталей, работающих в условиях трения, носителей катализаторов, фильтров, в медицине при изготовлении остеоимплантов. Способ получения пористого керамического материала с...
Тип: Изобретение
Номер охранного документа: 0002722480
Дата охранного документа: 01.06.2020
04.07.2020
№220.018.2efa

Гетеромодульный керамический композиционный материал и способ его получения

Изобретение относится к области получения высокопрочных, износостойких керамических материалов (композитов) на основе тугоплавких соединений и может быть использовано для изготовления деталей трибоузлов, в том числе работающих в условиях повышенных экстремальных температур. Технический...
Тип: Изобретение
Номер охранного документа: 0002725329
Дата охранного документа: 02.07.2020
Showing 71-80 of 91 items.
20.06.2019
№219.017.8ccc

Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния

Изобретение относится к области металлургии легких сплавов, в частности к способам получения литьем сплавов на основе алюминия и магния. Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния включает предварительный нагрев герметичной цилиндрической камеры, на...
Тип: Изобретение
Номер охранного документа: 0002691826
Дата охранного документа: 18.06.2019
05.07.2019
№219.017.a618

Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов

Изобретение относится к области космической техники, а более конкретно к защите космических аппаратов. Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов включает обнаружение стороннего космического объекта и защиты от него экраном. Экран выполнен...
Тип: Изобретение
Номер охранного документа: 0002693481
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.afb9

Способ определения смачиваемости порошковых материалов

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Способ определения смачиваемости порошковых материалов заключается в нахождении краевого угла капли, помещенной на брикет спрессованного порошка. Причем порошок прессуют под давлением...
Тип: Изобретение
Номер охранного документа: 0002457464
Дата охранного документа: 27.07.2012
11.07.2019
№219.017.b28e

Устройство для управления процессом сканирования лазерным лучом

Изобретение относится к области управления перемещением лазерного луча в пространстве, способам сканирования и слежения и может быть использовано для навигации космических аппаратов. Устройство содержит платформу с зеркалом и поворотным механизмом и дополнительно для увеличения угла...
Тип: Изобретение
Номер охранного документа: 0002694129
Дата охранного документа: 09.07.2019
19.07.2019
№219.017.b678

Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения твердых частиц в жидкости. Способ включает введение частиц в кювету с вязкой жидкостью, выполненную в виде правильной призмы...
Тип: Изобретение
Номер охранного документа: 0002694793
Дата охранного документа: 16.07.2019
25.07.2019
№219.017.b8e8

Панель солнечной батареи

Панель солнечной батареи содержащая каркас, выполненный из упругих элементов и фотопреобразователей, при этом согласно изобретению фотопреобразователи имеют форму трапеций, а каркас выполнен в виде упругих колец различного диаметра, расположенных концентрично и равномерно, каждый...
Тип: Изобретение
Номер охранного документа: 0002695272
Дата охранного документа: 22.07.2019
25.07.2019
№219.017.b90c

Устройство для управления лазерным лучом

Изобретение относится к области управления перемещением лазерного луча в пространстве, способам сканирования и слежения, и может быть использовано для навигации космических аппаратов (КА). Заявленное устройство содержит платформу с зеркалом и поворотным механизмом, проводник электрического...
Тип: Изобретение
Номер охранного документа: 0002695280
Дата охранного документа: 22.07.2019
02.10.2019
№219.017.d13f

Способ определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности

Использование: для определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности. Сущность изобретения заключается в том, что осуществляют измерение силы сопротивления частицы при воздействии на нее газового потока, при этом полую сферическую частицу с пористой...
Тип: Изобретение
Номер охранного документа: 0002700728
Дата охранного документа: 19.09.2019
24.10.2019
№219.017.d96d

Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения облака твердых частиц в вязкой жидкости. Способ исследования осаждения сферического облака полидисперсных твердых частиц в...
Тип: Изобретение
Номер охранного документа: 0002703935
Дата охранного документа: 22.10.2019
15.11.2019
№219.017.e288

Установка для исследования динамики разрушения сферического макрообъема жидкости при свободном падении в воздухе

Изобретение относится к установке для исследования физических процессов, в частности для исследования динамики разрушения сферического макрообъема жидкости при свободном падении в воздухе. Установка включает тонкостенную эластичную оболочку, наполненную жидкостью, устройство для прокалывания...
Тип: Изобретение
Номер охранного документа: 0002705965
Дата охранного документа: 12.11.2019
+ добавить свой РИД