×
20.01.2018
218.016.1005

Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области тепловизионной техники и касается способа обработки термовидеоинформации. Способ включает в себя видеозапись теплового излучения исследуемого объекта, транспонирование полученного видеоизображения в видимый диапазон и генерацию видеосигнала, в котором разной температуре наблюдаемого объекта соответствует разный цвет изображения. Видеозапись теплового излучения осуществляется на борту космического аппарата одновременно двумя камерами инфракрасного и ультрафиолетового диапазона с последующим определением температуры в i,j-й точке поля изображения, локализацией участков изображения с температурой, превышающей пороговое значение, и передачей видеоизображения по радиоканалу на наземные пункты приема данных для анализа. Транспонирование видеоизображения в видимый диапазон (λ) осуществляется по зависимости типа λ=f(λ, λ, Δλ), где λ - текущее значение длины волны, λ - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλ - рассматриваемый поддиапазон длин волн. Технический результат заключается в повышении достоверности контроля температуры исследуемого объекта. 2 н. и 2 з.п. ф-лы, 3 ил., 3 табл.
Реферат Свернуть Развернуть

Изобретение относится к области тепловизионной техники, а именно к способам обработки и отображения измеренной яркостной температуры объекта.

Любой объект излучает электромагнитные волны в инфракрасном (ИК), видимом (ВД) и ультрафиолетовом (УФ) диапазонах частот. Интенсивность теплового излучения напрямую зависит от температуры объекта и лишь в очень малой степени зависит от условий освещенности в видимом диапазоне. Таким образом, при помощи тепловизионного прибора о любом наблюдаемом объекте может быть собрана и визуализирована дополнительная информация, недоступная человеческому глазу и приборам. Это открывает ряд уникальных возможностей для различных сфер деятельности, в том числе для контроля технологических процессов, например обеспечения безопасности объектов, таких как космические аппараты и ракеты-носители, имеющих термонагруженные элементы (ракетные двигатели, насосы подачи топлива и окислителя, либо элементы ядерного реактора).

Принцип действия современных тепловизоров основан на способности материалов фиксировать излучение в различных диапазонах длин волн. Посредством оптического прибора, в состав которого входят линзы, изготовленные с применением материалов, прозрачных для определенного типа излучения (таких как германий), тепловое излучение объектов проецируется на матрицу датчиков, информация с этих датчиков считывается и генерируется видеосигнал, где разной температуре наблюдаемого объекта соответствует разный цвет изображения. Шкала соответствия цвета точки на изображении к абсолютной температуре наблюдаемого объекта может быть выведена поверх кадра. Также возможно указание температур наиболее горячей и наиболее холодной точки на изображении. Многие тепловизионные приборы также оснащены устройствами памяти для записи полученного видеоизображения картины теплового излучения, производительными микропроцессорами, позволяющими осуществлять в режиме реального времени минимальную аналитику полученного в результате сканирования изображения источника излучения.

Известно совместное использование тепловизора и видеокамеры, что позволяет в общем случае получить изображение объекта в «расширенном» диапазоне объединенных ИК и видимого спектров, а в неблагоприятных условиях, например при отсутствии освещения объекта, наблюдать объект хотя бы в одном из диапазонов. Например, ИК или видимый диапазон могут как накладываться друг на друга, так и транслироваться отдельно. Примером такой конфигурации может являться тепловизионная система TI3000 компании ULIRVISION (КНР) (www.ulirvision.com).

Также, из уровня техники известен способ визуального спектрального анализа телевизионного изображения дальнего ИК-спектра (патент на изобретение RU 2233559), который может быть принят в качестве прототипа. В RU 2233559 используют транспонирование ИК-изображения объекта в видимый диапазон спектра. Привычные объекты (например, лицо человека, снег, трава и т.д.) передаются привычными цветами (телесный, белый, зеленый и т.д.), что обеспечивает оценку и анализ спектральных и яркостных характеристик объектов оператором по их телевизионным изображениям в дальнем ИК-диапазоне. В результате, обеспечивается психологически привычное восприятие телевизионного изображения объектов. Недостатком данного метода является достаточно узкий диапазон частот регистрируемых сигналов, что ограничивает возможности оператора по анализу изображения и принятию решения в нештатной ситуации. Также, невозможно осуществлять зонный анализ температур в автоматизированном режиме.

В свою очередь предлагаемая группа изобретений позволит учесть существующие технические проблемы, перечисленные выше, и, в итоге, повысить достоверность контроля температуры термонагруженных узлов космических аппаратов и ракет-носителей.

Способ обработки термовидеоинформации предусматривает видеозапись теплового излучения исследуемого объекта и транспонирование полученного видеоизображения в видимый диапазон, генерацию видеосигнала, где разной температуре наблюдаемого объекта соответствует разный цвет изображения с последующим анализом оператором полученного изображения. В предложенном способе видеозапись теплового излучения осуществляется на борту, по преимуществу на борту космического аппарата, одновременно двумя камерами инфракрасного и ультрафиолетового диапазона посредством приборов с зарядовой связью (ПЗС) и объективов двух типов. Первый из двух типов приборов - ПЗС с «виртуальной» фазой (ВФПЗС) и объектив для диапазона длин волн 0,3…1,0 мкм, например объектив из кварцевого стекла, а второй - инфракрасный ПЗС (ИК ПЗС) с объективом для диапазона длин волн 1,1…5,3 мкм, например объективом из оптического кремния. Для записанного теплового излучения измеряют температуру в i,j-й точке поля изображения, локализуют участки изображения с температурой, превышающей пороговое значение, и передают видеоизображения по радиоканалу на наземные пункты приема данных для анализа. Транспонирование полученного видеоизображения в видимый диапазон (λвд) осуществляется по зависимости типа λвд=f(λ, λmin, Δλпд), например, путем вычисления по формуле где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн.

Для обработки термовидеоинформации используют решающее устройство, обеспечивающее вычисление значение температуры в рассматриваемой точке поля изображения. Решающее устройство системы обработки термовидеоинформации состоит из совокупности функциональных блоков обработки сигнала «холодного» изображения и яркостных сигналов i,j-й точке поля изображения в соответствии с планковским распределением в диапазоне длин волн. Решающее устройство включает последовательно связанные первую и вторую схемы, относящиеся к «холодному» изображению и выдающие значения энергии светового излучения и интегрального коэффициента излучения заданного типа материала по единственному значению яркости; последовательно связанные третью и четвертую схемы, параллельные первой и второй схемам и относящиеся к текущему значению яркости в i,j-й точке поля изображения, по которому выдается значение энергии светового излучения и значение интегрального коэффициента излучения заданного типа материала. Решающее устройство системы обработки термовидеоинформации включает четыре схемы сравнения, пять схем деления, четыре схемы умножения, два блока вычисления длины волны, блок логарифмирования, блок возведения в пятую степень, блок возведения в минус первую степень, блок возведение величины е в заданную степень, блок вычитания.

Первый вход решающего устройства является входом яркостного сигнала «холодного изображения» и входом первой схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в нормальных условиях. Выход первой схемы сравнения соединен со входом первого блока вычисления длины волны, выход которого соединен со входом второй схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в нормальных условиях, первым входом первой схемы умножения и вторым входом второй схемы деления. Второй вход решающего устройства является входом яркостного сигнала в i,j-точке поля изображения и входом третьей схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в i,j-точке поля изображения в текущий момент времени. Выход третьей схемы сравнения соединен с входом второго блока вычисления длины волны. Выход второго блока вычисления длины волны соединен с входом четвертой схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в в i,j-точке поля изображения в текущий момент времени, первым входом второй схемы деления и первым входом третьей схемы деления.

Первый вход первой схемы деления соединен с первым входом устройства. Второй вход первой схемы деления соединен со вторым входом устройства, где вычисляется отношение интенсивностей излучения в текущих и нормальных условиях. Выход первой схемы деления соединен с первым входом второй схемы умножения. Выходы второй и четвертой схемы сравнения соединены соответственно с первым и вторым входом четвертой схемы деления, где вычисляется отношение интегральных коэффициентов теплового излучения объекта в текущих и нормальных условиях. Выход четвертой схемы деления соединен соответственно со вторым входом втором схемы умножения. Выход второй схемы деления соединен с входом блока возведения в пятую степень, выход которого соединен с третьим входом втором схемы умножения. Выход второй схемы деления, где вычисляется отношение длин волн излучения объекта в текущих и нормальных условиях, соединен с входом блока возведения в пятую степень. Выход блока возведения в пятую степень соединен с третьим входом второй схемы умножения.

Выход первой схемы умножения соединен с первым входом пятой схемы деления. Выход блока памяти, где хранится информация о константах h, с и k, а также о значении температуры «холодного изображения», соединен со вторыми входами третьей и пятой схемы деления. Выход второй схемы умножения соединен с первым входом третьей схемы умножения. Вход блока возведения константы е в заданную степень соединен с выходом пятой схемы деления, а выход - с входом блока вычитания. Второй вход третьей схемы умножения соединен с выходом блока вычитания, а выход - с входом блока логарифмирования, выход которого соединен с входом блока возведения в минус первую степень, выход которого соединен с первым входом четвертой схемы умножения, второй вход которого соединен с выходом третьей схемы деления. Выход четвертой схемы умножения является выходом решающего устройства, где вычисляется значение температуры в i,j-точке поля изображения.

Заявленный технический результат достигается за счет того, что контроль и измерение температуры термонагруженного объекта осуществляется одновременно двумя цифровыми камерами, работающими в инфракрасном и ультрафиолетовом диапазонах. Обработка данных с этих камер выполняется частично на борту космического аппарата или иного летающего объекта, а частично - в процессе наземной обработки. Для анализа оператором температурной ситуации на объекте данные с видеокамер транспонируются из инфракрасного и ультрафиолетового диапазонов в видимый диапазон, каждой температуре из рабочего диапазона соответствует свой цвет на экране дисплея на рабочем месте оператора. Разделение обработки температурной информации на бортовую и наземную позволяет осуществлять на борту локализацию отдельных участков (или точек) поля изображения объекта с температурой, превышающей допустимую. Допустимый порог температуры либо вводится на Земле оператором при непосредственном отслеживании термообстановки объекта, либо однократно программируется при разработке программы функционирования бортового процессора. Полученные на борту данные передаются вместе с телеметрической информацией на Землю. В результате, данный подход позволяет существенно сократить информационный поток, предназначенный для видеоинформации, передаваемой на Землю.

Человеческому глазу доступен только видимый диапазон длин волн 0,38…0,74 мкм, однако изменение температуры в изображении исследуемой области должно быть видимо при любом диапазоне длин волн. Для этого в разработанном способе обработки термовидеоинформации предложен следующий алгоритм пересчета длин волн из инфракрасного и ультрафиолетового диапазонов в видимый диапазон длин волн, который заключается в следующем.

Если воспользоваться законом смещения Вина:

где b - постоянная Вина, равная 2896 мкм*K,

λ - длина волны,

можно получить выражение для температуры:

Полный диапазон длин волн для отслеживания температурных параметров наблюдаемого объекта разбивается на поддиапазоны ИК1 - средний ИК-поддиапазон, ИК2 - ближний ИК-поддиапазон, ВД - видимый поддиапазон длин волн, УФ - ближний ультрафиолет и в соответствии с (2) вычислим температурные диапазоны для каждого из них, результаты вычислений приведены в табл. 1.

Столь высокие температуры взяты по причине возникновения туннельного эффекта - резкого выброса энергии в данном случае за счет резкого повышения температуры. Так, в силу специфики материалов, из которых изготовлены элементы космического аппарата, их разрушение происходит при Т >(1500…2000) K. Следовательно, области, подвергшиеся резкому повышению температуры, требуют особого внимания к их рассмотрению и анализу.

Для отображения на дисплее монитора все значения температур должны попадать в видимый диапазон длин волн от 0,38 мкм до 0,74 мкм.

Δλвд=0,74-0,38=0,36 мкм

В силу того, что в данном способе идет цифровая обработка сигнала, сначала вычисляется цена кванта для каждого из поддиапазонов длин волн, приведенных в табл. 1, взяв шаг по температуре равным средней погрешности измерения температуры у цветовых пирометров ΔТ=2K

где - рассматриваемый в соответствии с табл. 1 поддиапазон длин волн,

- максимальная температура рассматриваемого поддиапазона,

- минимальная температура рассматриваемого поддиапазона,

ΔT - погрешность измерения температуры.

Из табл. 2 видно, что

Теперь в соответствии с (3) можно найти цену кванта для каждого из поддиапазонов.

Полученные результаты расчетов цены кванта поддиапазонов длин волн приведены в табл. 3.

Пересчет длин волн в видимый спектр иллюстрируется фиг. 1.

Пусть λ - текущее значение длины волны, а у - вспомогательная промежуточная величина для пересчета, которая определяется выражением

где - минимальное значение величины длины волны в выбранном диапазоне, - цена кванта выбранного поддиапазона.

Тогда пересчитанное в видимый спектр значение длины волны будет

где - ширина видимого диапазона волн, - минимальное значение длины волны видимого диапазона.

Так как Δλвд=0,36 мкм, а то, подставив данные значения в формулу (5), получим формулу пересчета длин волн в видимый спектр:

Следующий пример иллюстрирует предложенный способ транспонирования, например диапазона ИК2 в видимый диапазон.

Возьмем крайнее значение длины волны Таким образом, при пересчете в соответствии с (6) должно быть Δλвд=0,74 мкм. Если проверить это, получим

Следовательно, соотношение (15) адекватно для пересчета длин волн в видимый спектр из любого диапазона.

Блок-схема алгоритма предложенного способа обработки термовидеоинформации, содержащая следующие блоки, представлена на фиг. 2: блок видеозаписи изображений ИК- и УФ-видеокамерами 1; блок измерения температуры объекта в i,j-точке видеокадра 2; блок локализации участков изображения с температурой, превышающей пороговое значение 3; блок передачи видеоизображения на на земную станцию обработки информации 4; блок транспонирования видеоизображения из ИК- и УФ-диапазонов в видимый 5; блок запись видеоинформации в память ЭВМ 6; блок анализа видеоизображений оператором 7.

Процесс обработки термовидеоинформации складывается из формирования на борту космического аппарата с помощью видеокамер ИК- и УФ-диапазонов видеосигналов изображения исследуемого объекта в блоке видеозаписи 1, определения решающим устройством температуры объекта в i,j-точке поля изображения 2, локализации участков изображения, с температурой превышающей пороговое значение 3, и последующей передачей видеоизображения по радиоканалу на наземные пункты приема данных 4. В процессе наземной обработки данных, поступивших от бортовой аппаратуры космического аппарата, осуществляется транспонирование сигналов видеоизображения из ИК- и УФ-диапазонов в видимый 5, запись транспонированного видеосигнала в память ЭВМ 6 и анализ видеоизображения оператором 7.

Для наземной обработки оператор получает информацию о номере зоны обзора, координатах наиболее термонагруженных областей (точек), относящихся к данной зоне обзора, их температуру и уровень превышения допустимого температурного порога. Пакеты видеоинформации, поступающие от наземной станции в реальном времени, идут на персональный компьютер оператора, где на мониторе отображается видеоинформация, которая так же автоматически записывается на жесткий диск в формате МР4. Оператор может выводить картинку, получаемую от любой из камер, выбрав интересующую его из заданного списка и рассматривая картинку с нужным ему разрешением. Просмотр видеоизображения в реальном времени позволяет определять температуру в интересующей оператора области космического аппарата.

В процессе видеоконтроля оператор выбирает зону обзора согласно эксплуатационным данным, спектральный поддиапазона до появления цветной картинки в поле видимого излучения, интересующую область зоны обзора для измерения температуры, масштаба для изменения размеров в пределах зоны обзора видеокамеры (увеличение/уменьшение), координаты точки в пределах зоны обзора, где определяется температура. Расположение зон обзора термонагруженных элементов космических аппаратов и ракет-носителей задается в эксплуатационной документации. Размеры зон обзора видеокамер определяются с учетом характеристик видеорегистрирующей системы при проектировании и наземных испытаниях конкретного космического аппарата или ракеты-носителя.

Каждому спектральному диапазону соответствует своя градуировочная шкала температур. Пурпурный цвет соответствует менее нагретой области зоны обзора выбранного спектрального поддиапазона, темно-фиолетовый цвет - наиболее нагретой области. Видеоизображение отображается всегда в видимом спектре, при этом текущее изображение отображается путем наложения его на «холодное» изображение - изображение, снятое видеокамерой в рассматриваемой зоне обзора при нормальных условиях в соответствии с СП 2.2.4.548-96 и ГОСТ 12.1.005-88 (Тср=20°С, р=747 мм рт.ст., относительная влажность воздуха δ=(40-60)%). Оператор заранее знает цветовую градацию в соответствии с температурой. Видеоизображения сразу после окончания полета космического аппарата или ракеты-носителя должны автоматически сохраняться в указанную в папку, предусмотренную программой для каждого из спектральных поддиапазонов каждой зоны обзора. При просмотре сохраненных видеофайлов оператор может узнавать информацию о температуре и координатах выбранной точки, что позволяет производить детальный анализ термообстановки наблюдаемых узлов космических аппаратов или ракет-носителей.

Вычисление значения температуры в рассматриваемой точке поля изображения выполняет решающее устройство системы обработки термовидеоинформации, функционирующее на принципе определения температуры по величине отношения интенсивностей излучения в двух длинах волн. За λ1 берется текущее значение длины волны (яркости, энергии) в рассматриваемой точке поля изображения, а за λ2 - «холодное» изображение. Т.о. λ2хол. «Холодное» изображение - это изображение, снятое видеокамерой в рассматриваемой зоне обзора при нормальных условиях в соответствии с СП 2.2.4.548-96 и ГОСТ 12.1.005-88 (Тср=20°С, р=747 мм рт.ст., относительная влажность воздуха δ=(40-60)%).

Информация о яркости в ij-й точке k-го кадра Yijk поступает на суммирующее по числу кадров устройство

а далее усредняется по общему числу кадров за секунду L:

Таким образом, получается усредненное по общему числу кадров в секунду значение яркости в рассматриваемой точке Yij.

Алгоритм работы решающего устройства основан на планковском распределении в диапазоне длин волн, а именно:

где k=1,38*10-23 Дж/К - постоянная Больцмана, h=6,63*10-34 Дж*с - постоянная Планка, с=3*108 м/с - скорость света, Т - температура, K, λ - длина волны, м, ελ - интегральный коэффициент теплового излучения.

Отношение интенсивностей текущего изображения в рассматриваемой точке и «холодного» изображения можно выразить в виде следующего выражения:

Зная Tхолср=20°С, найдем Tij из (11):

Пусть , тогда из (13) найдем значение температуры в рассматриваемой точке поля изображения:

Структурная схема решающего устройства обработки термовидеоинформации, реализующего вычисление значение температуры в рассматриваемой точке поля изображения в соответствии с предложенным алгоритмом (14), представлена на фиг. 3.

Решающее устройство системы обработки термовидеоинформации, включает: четыре схемы сравнения 8, 9, 10, 11; пять схем деления 16, 17, 18, 19, 20; четыре схемы умножения 12, 13, 14, 15; два блока вычисления длины волны 21, 22; блок логарифмирования 23; блок возведения в пятую степень 24; блок возведения в минус первую степень 25; блок возведение величины е в заданную степень 26; блок вычитания 27; блок памяти 28.

Первый вход решающего устройства является входом яркостного сигнала «холодного изображения» и входом первой схемы сравнения 8, на выходе которой формируется информация об энергии излучения объекта в нормальных условиях. Выход первой схемы сравнения соединен со входом первого блока вычисления длины волны 21, выход которого соединен со входом второй схемы сравнения 10, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в нормальных условиях, первым входом первой схемы умножения 12 и вторым входом второй схемы деления 17.

Второй вход решающего устройства является входом яркостного сигнала в i,j-й точке поля изображения и входом третьей схемы сравнения 9, на выходе которого формируется информация об энергии излучения объекта в i,j-точке поля изображения в текущий момент времени. Выход третьей схемы сравнения соединен с входом второго блока вычисления длины волны 22, выход которого соединен с входом четвертой схемы сравнения 11, откуда вытекает информация об интегральном коэффициенте теплового излучения объекта в i,j-й точке поля изображения в текущий момент времени, первым входом второй схемы деления 17 и первым входом третьей схемы деления 18.

Первый вход первой схемы деления 16, где вычисляется отношение интенсивностей излучения в текущих и нормальных условиях, соединен с первым входом решающего устройства, второй вход первой схемы деления 16 соединен со вторым входом решающего устройства. Выход первого устройства деления 16 соединен с первым входом второй схемы умножения 13, при этом выходы второй 10 и четвертой схемы сравнения 11 соединены соответственно с первым и вторым входом четвертой схемы деления 19, где вычисляется отношение интегральных коэффициентов теплового излучения объекта в текущих и нормальных условиях. Выход схемы деления 19 соединен соответственно со вторым входом второй схемы умножения 13.

Выход второй схемы деления 17, где вычисляется отношение длин волн излучения объекта в текущих и нормальных условиях, соединен с входом блока возведения в пятую степень 24, выход которого соединен с третьим входом второй схемы умножения 13. Выход первой схемы умножения 12 соединен с первым входом пятой схемы деления 20, а выход блока памяти 28, где хранится информация о константах h, с и k, а также о значении температуры «холодного изображения» (20°С), соединен со вторыми входами третьего 18 и пятой схемы деления 20. Выход второй схемы умножения 13 соединен с первым входом третьей схемы умножения 14, при этом вход блока возведения константы е в заданную степень 26 соединен с выходом пятой схемы деления 20, а выход с входом блока вычитания 27.

Второй вход третьей схемы умножения соединен с выходом блока вычитания 27, а выход - со входом блока логарифмирования 23, выход которого соединен со входом блока возведения в минус первую степень 25, выход которого соединен с первым входом четвертой схемы умножения 15, второй вход которого соединен с выходом третьей схемы деления 18. Выход четвертой схемы умножения 15 является выходом решающего устройства, где вычисляется значение температуры в i,j-й точке поля изображения.

Как видно из фиг. 3, имеют место четыре схемы сравнения:

- I 8 и II 10 относятся к «холодному» изображению и по единственному значению яркости выдается соответствующее значение энергии светового излучения Wхол, по которой, в соответствии с законом Планка, вычисляется длина волны: а также значение интегрального коэффициента излучения заданного типа металла (или графита) при Тхол=20°С;

- III 9 и IV 11 относятся к текущему значению яркости Yij в рассматриваемой точке поля изображения, по которому выдается соответствующее значение энергии светового излучения Wij, по которой, в соответствии с законом Планка, вычисляется длина волны:

а также значения интегрального коэффициента излучения ελij заданного типа металла (или графита) при соответствующем значении λij.

В итоге, достоверность контроля температуры термонагруженных узлов космических аппаратов и ракет-носителей достигается за счет:

анализа термообстановки одновременно в ИК- и УФ-диапазонах длин волн посредством использования двух типов приборов с зарядовой связью (ПЗС) и объективов: ПЗС с «виртуальной» фазой (ВФПЗС) и объектив для диапазона длин волн 0,3…1,0 мкм (из кварцевого стекла) и инфракрасный ПЗС (ИК ПЗС) с объективом для диапазона длин волн 1,1…5,3 мкм (из оптического кремния);

применения предложенного способа обработки полученного видеосигнала для его транспонирования в видимый диапазон, что обеспечивает эффективный анализ оператором термообстановки исследуемого объекта в расширенном диапазоне длин волн (от ИК до УФ);

использования предложенного решающего устройства для обработки термовидеоинформации, обеспечивающего вычисление значения температуры в рассматриваемой точке поля изображения.


Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа
Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа
Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа
Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа
Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа
Источник поступления информации: Роспатент

Showing 1-10 of 100 items.
13.01.2017
№217.015.6d15

Способ дистанционного зондирования земли

Способ дистанционного зондирования Земли включает в себя получение потока светового излучения Солнца, отраженного от зондируемого участка земной поверхности. Далее поток разделяют на два пучка равной интенсивности, по одному из которых осуществляют преддетекторную адаптивную компенсацию...
Тип: Изобретение
Номер охранного документа: 0002597144
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.721d

Способ радиоподавления несанкционированных каналов космической радиолинии "космический аппарат - земля" и система для его реализации

Группа изобретений относится к области радиотехники и может быть использована для избирательного радиоподавления N несанкционированных каналов космических радиолиний «космический аппарат (КА) - Земля», в частности для радиоподавления несанкционированных каналов радиолиний «КА - Земля»...
Тип: Изобретение
Номер охранного документа: 0002597999
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8240

Прибор приема-передачи информационных массивов

Изобретение относится к области передачи информации и может быть использовано при построении бортовых информационных систем космических аппаратов. Технический результат заключается в согласовании бортовой информационно-вычислительной сети с информационными потоками бортовой...
Тип: Изобретение
Номер охранного документа: 0002601833
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.901a

Наземный комплекс управления спутниковой навигационной системой

Изобретение относится к спутниковым навигационным системам, а именно к оборудованию наземного комплекса управления данных систем. Достигаемый технический результат - повышение надежности взаимодействия средств, обеспечивающих управление и измерение на пунктах эксплуатации и в центре управления....
Тип: Изобретение
Номер охранного документа: 0002604053
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9639

Делитель мощности для бортовой аппаратуры космического аппарата

Изобретение относится к СВЧ радиотехнике. Делитель мощности содержит четыре направленных ответвителя на связанных линиях. Смежные направленные ответвители расположены перпендикулярно один к другому, так что проводники связанных линий данных направленных ответвителей образуют стороны двух...
Тип: Изобретение
Номер охранного документа: 0002608978
Дата охранного документа: 30.01.2017
25.08.2017
№217.015.aef4

Устройство для измерения электрических параметров операционных усилителей и компараторов напряжения

Изобретение относится к измерительной технике и может использоваться при входном контроле аналоговых микросхем при производстве радиоэлектронной аппаратуры. Сущность: устройство содержит испытываемый операционный усилитель или компаратор напряжения, неинвертирующий вход которого через...
Тип: Изобретение
Номер охранного документа: 0002612872
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bdae

Наземная система контроля и управления бортовой аппаратурой межспутниковых измерений навигационной системы, например для системы глонасс

Изобретение относится к спутниковым навигационным системам, а именно к оборудованию наземного комплекса управления данных систем. Технический результат состоит в повышении качества контроля навигационных систем. Для этого наземная система контроля и управления бортовой аппаратурой...
Тип: Изобретение
Номер охранного документа: 0002616278
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.ca22

Способ получения заполненных переходных металлизированных сквозных отверстий печатной платы

Изобретение предназначено для конструирования и изготовления многослойных печатных плат (ПП) для высокоплотного монтажа поверхностно-монтируемых компонентов (ПМК) с матричным расположением выводов в корпусах типа BGA, CGA. Технический результат - обеспечение надежности ПП при увеличении...
Тип: Изобретение
Номер охранного документа: 0002619913
Дата охранного документа: 19.05.2017
25.08.2017
№217.015.d1ac

Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона

Изобретение относится к области дистанционного зондирования Земли. Способ радиометрической коррекции изображения от многоэлементного фотоприемника инфракрасного диапазона предусматривает выбор на фотоприёмнике не чувствительных к излучению от объекта съёмки элементов, сравнение сигналов от...
Тип: Изобретение
Номер охранного документа: 0002621877
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d24c

Двунаправленный тепловой микромеханический актюатор и способ его изготовления

Использование: для изготовления микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы. Сущность изобретения заключается в том, что микромеханический актюатор выполнен в виде сформированной в меза-структуре упруго-шарнирной консольной балки, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002621612
Дата охранного документа: 06.06.2017
Showing 1-10 of 32 items.
13.01.2017
№217.015.6d15

Способ дистанционного зондирования земли

Способ дистанционного зондирования Земли включает в себя получение потока светового излучения Солнца, отраженного от зондируемого участка земной поверхности. Далее поток разделяют на два пучка равной интенсивности, по одному из которых осуществляют преддетекторную адаптивную компенсацию...
Тип: Изобретение
Номер охранного документа: 0002597144
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.721d

Способ радиоподавления несанкционированных каналов космической радиолинии "космический аппарат - земля" и система для его реализации

Группа изобретений относится к области радиотехники и может быть использована для избирательного радиоподавления N несанкционированных каналов космических радиолиний «космический аппарат (КА) - Земля», в частности для радиоподавления несанкционированных каналов радиолиний «КА - Земля»...
Тип: Изобретение
Номер охранного документа: 0002597999
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8240

Прибор приема-передачи информационных массивов

Изобретение относится к области передачи информации и может быть использовано при построении бортовых информационных систем космических аппаратов. Технический результат заключается в согласовании бортовой информационно-вычислительной сети с информационными потоками бортовой...
Тип: Изобретение
Номер охранного документа: 0002601833
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.901a

Наземный комплекс управления спутниковой навигационной системой

Изобретение относится к спутниковым навигационным системам, а именно к оборудованию наземного комплекса управления данных систем. Достигаемый технический результат - повышение надежности взаимодействия средств, обеспечивающих управление и измерение на пунктах эксплуатации и в центре управления....
Тип: Изобретение
Номер охранного документа: 0002604053
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9639

Делитель мощности для бортовой аппаратуры космического аппарата

Изобретение относится к СВЧ радиотехнике. Делитель мощности содержит четыре направленных ответвителя на связанных линиях. Смежные направленные ответвители расположены перпендикулярно один к другому, так что проводники связанных линий данных направленных ответвителей образуют стороны двух...
Тип: Изобретение
Номер охранного документа: 0002608978
Дата охранного документа: 30.01.2017
25.08.2017
№217.015.aef4

Устройство для измерения электрических параметров операционных усилителей и компараторов напряжения

Изобретение относится к измерительной технике и может использоваться при входном контроле аналоговых микросхем при производстве радиоэлектронной аппаратуры. Сущность: устройство содержит испытываемый операционный усилитель или компаратор напряжения, неинвертирующий вход которого через...
Тип: Изобретение
Номер охранного документа: 0002612872
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bdae

Наземная система контроля и управления бортовой аппаратурой межспутниковых измерений навигационной системы, например для системы глонасс

Изобретение относится к спутниковым навигационным системам, а именно к оборудованию наземного комплекса управления данных систем. Технический результат состоит в повышении качества контроля навигационных систем. Для этого наземная система контроля и управления бортовой аппаратурой...
Тип: Изобретение
Номер охранного документа: 0002616278
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.ca22

Способ получения заполненных переходных металлизированных сквозных отверстий печатной платы

Изобретение предназначено для конструирования и изготовления многослойных печатных плат (ПП) для высокоплотного монтажа поверхностно-монтируемых компонентов (ПМК) с матричным расположением выводов в корпусах типа BGA, CGA. Технический результат - обеспечение надежности ПП при увеличении...
Тип: Изобретение
Номер охранного документа: 0002619913
Дата охранного документа: 19.05.2017
25.08.2017
№217.015.d1ac

Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона

Изобретение относится к области дистанционного зондирования Земли. Способ радиометрической коррекции изображения от многоэлементного фотоприемника инфракрасного диапазона предусматривает выбор на фотоприёмнике не чувствительных к излучению от объекта съёмки элементов, сравнение сигналов от...
Тип: Изобретение
Номер охранного документа: 0002621877
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d24c

Двунаправленный тепловой микромеханический актюатор и способ его изготовления

Использование: для изготовления микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы. Сущность изобретения заключается в том, что микромеханический актюатор выполнен в виде сформированной в меза-структуре упруго-шарнирной консольной балки, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002621612
Дата охранного документа: 06.06.2017
+ добавить свой РИД