×
20.01.2018
218.016.0f7a

Результат интеллектуальной деятельности: ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ НА ПОТЕНЦИАЛЕ ВЫСОКОГО НАПРЯЖЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002633292
Дата охранного документа
11.10.2017
Аннотация: Изобретение относится к области термометрии и может быть использовано для измерения температуры оптического преобразователя тока. Предлагается система для измерения температуры на потенциале высокого напряжения. Энергия для измерения температуры оптического преобразователя тока предоставляется в распоряжение ровно одним фотодиодом. Фотодиод питается светом от источника света, причем свет источника света направляется к фотодиоду через световод. Технический результат - повышение надежности работы устройства, а также снижение потребления энергии при работе устройства. 6 з.п. ф-лы, 1 ил.

Изобретение относится к системе для измерения температуры на потенциале высокого напряжения, включающей в себя электронный датчик температуры, который измеряет температуру оптического преобразователя тока, и который снабжается электрической энергией от источника света.

Оптические преобразователи тока известны в течение длительного времени. Как правило, под преобразователем тока понимается измерительный преобразователь, который имеет сенсорную головку для беспотенциального измерения переменных токов. Оптические преобразователи тока используются для измерения эффекта Фарадея. Эффект Фарадея описывает вращение плоскости поляризации линейно поляризованной электромагнитной волны при прохождении через прозрачную среду, к которой временно постоянное магнитное поле приложено параллельно к направлению распространения волны.

В возрастающей степени оптические преобразователи тока также используются на потенциале высокого напряжения. Такой оптический преобразователь тока известен, например, из DE 198 02 191 B4.

Как правило, эффект Фарадея зависит от температуры, так как вращение поляризованной волны зависит от свойств материала прозрачной среды, и эти свойства изменяются с изменением температуры. Если при оценке измерения не учитывается температурная зависимость, то это может приводить к ошибкам измерения при установленных измеряемых значениях для переменного тока. Для того чтобы компенсировать такие ошибки измерения, согласно уровню техники проводится дополнительное измерение температуры на потенциале высокого напряжения. При этом измерение температуры может осуществляться как при помощи электроники, так и при помощи оптики.

Оптическими датчиками температуры являются, например, датчики на основе волоконных решеток Брэгга. Также известны датчики с полупроводниковыми элементами, которые действуют в качестве зависимых от температуры оптических фильтров границы энергетической зоны, или датчики, которые используют зависящее от температуры время затухания флуоресценции кристаллов. Недостаток оптических датчиков температуры заключается в их более высокой по сравнению с электронными датчиками сложности.

Электронными датчиками температуры являются согласно уровню техники цифровые датчики, которые выполнены на основе микропроцессоров. Такие основывающиеся на цифровой обработке сигнала датчики температуры нуждаются в высоком рабочем напряжении, которое находится в диапазоне нескольких вольт. Кроме того, они должны постоянно снабжаться достаточным количеством электрической энергии.

Для того чтобы покрывать потребность в электрической энергии, известны для цифрового измерения температуры на потенциале высокого напряжения датчики, которые для выполнения задачи по измерению снабжаются энергией при помощи световода. При этом свет высокопроизводительного лазера направляется из наземной станции при помощи световода к оптическому преобразователю тока. Обычно используются высокопроизводительные лазеры с мощностью в диапазоне от 100 мВт до 500 мВт, для того чтобы предоставлять достаточное количество энергии для цифрового измерения температуры. Внутри преобразователя тока или датчика температуры находится блок, состоящий из множества фотоприемников, которые преобразовывают свет лазера в электрическую энергию для работы цифрового датчика температуры. После выполнения задачи по измерению сигнал измерения направляется при помощи дальнейшего световода обратно к наземной станции. Ввиду большой оптической мощности используемых лазеров должна постоянно обеспечиваться достаточная эксплуатационная надежность.

В основе данного изобретения лежит задача по созданию системы для оптического преобразователя тока на потенциале высокого напряжения с электронным измерением температуры, у которой датчик температуры имеет простую конструкцию и надежно работает и у которой электронное измерение температуры обладает низким потреблением энергии.

Задача решается с помощью системы с признаками независимого пункта формулы изобретения. В зависимых от него пунктах формулы изобретения указаны предпочтительные варианты осуществления и усовершенствования изобретения.

Соответствующая изобретению система для измерения температуры на потенциале высокого напряжения включает в себя оптический преобразователь тока на потенциале высокого напряжения, электронный датчик температуры для измерения температуры преобразователя тока, ровно один фотодиод, первый световод для направления света от первого источника света к фотодиоду и второй световод для передачи сигнала измерения на наземную станцию.

Согласно изобретению энергия, которая необходима для работы электронного датчика температуры, предоставляется в распоряжение одним фотодиодом. Для энергоснабжения предпочтительно используется свет, который через первый световод направляется от первого источника света к фотодиоду. Благодаря использованию ровно одного фотодиода может создаваться простая конструкция, так как уменьшается количество конструктивных элементов.

В предпочтительном варианте осуществления электронный датчик температуры является резонансным контуром с термочувствительным резистором. Собственная/резонансная частота резонансного контура зависит от его затухания, над которым преобладает термочувствительное сопротивление. Как правило, собственная частота резонансного контура уменьшается с увеличивающимся затуханием. Если величина термочувствительного сопротивления изменяется посредством температуры преобразователя тока, то собственная частота сдвигается. Таким образом, собственная частота является критерием для температуры.

Наиболее предпочтительным в указанном аналоговом варианте осуществления является то, что в данном случае необходима незначительная по сравнению с цифровыми измерениями потребность в энергии. Таким образом, потребность в электрической энергии может покрываться одним фотодиодом.

В наиболее предпочтительном варианте осуществления внутри электрической цепи резонансного контура установлен второй источник света, в частности светодиод. Вследствие этого второй источник света периодически светится с частотой, которая соответствует собственной частоте резонансного контура. Собственная частота резонансного контура зависит от температуры, так что частота второго источника света представляет собой аналоговый критерий для измеренной температуры. В этом случае аналоговый оптический сигнал второго источника света может передаваться через второй световод на наземную станцию.

Предпочтительно электронный датчик температуры имеет накопитель энергии для накопления электрической энергии. Свет первого источника света направляется от источника света к фотодиоду, который использует этот свет, для того чтобы производить электрическую энергию. Произведенная фотодиодом электрическая энергия предпочтительно накапливается в накопителе энергии. Вследствие этого первый источник света может быть выполнен в виде источника света незначительной мощности. В предпочтительном варианте осуществления накопитель энергии является конденсатором или аккумулятором, причем наиболее предпочтительно конденсатором. Наибольшим преимуществом является то, что конденсатор делает возможным измерение температуры на временных интервалах. Вследствие этого сокращается потребление электрической энергии, так как для измерения температуры является достаточным, например, одно измерение в минуту.

В предпочтительном усовершенствовании световая мощность первого источника света менее или равна 5 мВт. Наиболее предпочтительно мощность менее или равна 1 мВт. Вследствие этого датчик температуры может снабжаться низким уровнем мощности. Если незначительной мощности не достаточно для выполнения задачи по измерению, то может предпочтительно осуществляться накопление в накопителе энергии, пока достаточное количество энергии не будет находиться в распоряжении. Является целесообразным использовать лазер в видимой области спектра от 400 нм до 700 нм в качестве первого источника света. Если мощность используемого лазера находится ниже 1 мВт, то этому соответствует лазер второго класса защиты лазера. Следовательно, особые меры предосторожности не должны предприниматься. Вследствие этого может существенно упрощаться как конструкция, так и эксплуатация.

В предпочтительном варианте осуществления первый источник света выполнен в виде светодиода. Наиболее предпочтительным является то, что светодиоды требуют меньших затрат и тем не менее предоставляют в распоряжение достаточное количество энергии для снабжения датчика температуры или для зарядки накопителя энергии.

Датчик температуры может быть встроен внутри оптического преобразователя тока. Предпочтительно в непосредственной близости от сенсорной головки преобразователя тока. Вследствие этого температурная зависимость эффекта Фарадея может компенсироваться значительно лучше.

В наиболее предпочтительном усовершенствовании датчик температуры использует уже имеющийся световод оптического преобразователя тока.

Первый и второй световоды датчика температуры могут быть стандартными многомодовыми световодами. В частности, могут использоваться световоды, чей диаметр сердечника находится в диапазоне от 50 мкм до 62 мкм. Даже при таких незначительных диаметрах сердечника может предоставляться все еще достаточное количество энергии для работы соответствующего изобретению датчика температуры.

Далее изобретение описывается при помощи предпочтительного примера осуществления, ссылаясь на приложенный чертеж. На чертеже показано:

фиг. 1 - система для аналогового измерения температуры оптического преобразователя тока на потенциале высокого напряжения.

Фиг. 1 показывает систему 1 для измерения температуры на потенциале высокого напряжения, которая включает в себя оптический преобразователь 2 тока, электронный датчик 4 температуры, первый и второй световоды 6, 8 и первый светодиод 10, который находится внутри наземной станции 24. Далее датчик 4 температуры включает в себя ровно один фотодиод 12, конденсатор 14, блок 16 управления и резонансный контур 18. Кроме того, внутри электрической цепи резонансного контура 18 находятся второй светодиод 20 и термочувствительный резистор 22. При этом резистор 22 может быть, например, термистором, элементом PT100, термочувствительным элементом или же полупроводниковым датчиком.

Свет первого светодиода 10 направляется через первый световод 6 к фотодиоду 12 внутри электронного датчика 4 температуры. Световоды 6, 8 предпочтительно могут быть стандартными многомодовыми световодами или световодами 200/220 мкм с твердым защитным покрытием. Наиболее предпочтительны стандартные многомодовые световоды с диаметром сердечника от 50 мкм до 62 мкм. Первый светодиод 10 обладает незначительной мощностью, меньшей или равной 5 мВт. Наиболее предпочтительна мощность, меньшая или равная 1 мВт. Этой незначительной мощности обычно не достаточно для измерения температуры оптического преобразователя 2 тока, так что произведенная фотодиодом 12 электрическая энергия накапливается в конденсаторе 14 для заданного блоком 16 управления промежутка времени. Во время зарядки конденсатора 14 первый светодиод 10 постоянно эксплуатируется. Блок 16 управления устанавливает, когда накопленной электрической энергии достаточно для выполнения задачи по измерению и в этом случае предоставляет резонансному контуру 18 накопленную в конденсаторе 14 электрическую энергию для измерения температуры. Например, разрядка конденсатора 14 один раз в минуту является достаточной.

Наиболее предпочтительно аналоговое и таким образом экономящее энергию использование измерения температуры при помощи резонансного контура 18. Собственная частота резонансного контура 18 зависит от термочувствительного резистора 22. Второй светодиод 20 приводится в действие напряжением резонансного контура 18. Вследствие этого он периодически светится с зависящей от температуры собственной частотой резонансного контура 18. Следовательно, частота второго светодиода 20 является критерием для температуры преобразователя 2 тока. Затем периодический свет второго светодиода 20 передается при помощи второго световода 8 на наземную станцию 24.

Если измерение температуры реализуется цифровыми средствами посредством использования микропроцессоров, то напряжения фотодиода 12 обычно не хватает для выполнения задачи по измерению. Поэтому является целесообразным использовать повышающий преобразователь для повышения напряжения.

В принципе сигнал измерения температуры может направляться при помощи второго световода 8 на наземную станцию 24 также в виде оптического сигнала широтно-импульсной модуляции.


ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ НА ПОТЕНЦИАЛЕ ВЫСОКОГО НАПРЯЖЕНИЯ
ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ НА ПОТЕНЦИАЛЕ ВЫСОКОГО НАПРЯЖЕНИЯ
Источник поступления информации: Роспатент

Showing 771-780 of 1,428 items.
26.08.2017
№217.015.dd1b

Рельсовое транспортное средство, снабженное защищенным от замерзания водосливным трубопроводом

Изобретение относится к железнодорожному транспорту. Рельсовое транспортное средство снабжено водосливным трубопроводом (1), концевая часть (2) которого примыкает к проему (4) в панели (5) пола рельсового транспортного средства. На концевой части (2) предусмотрена обогреваемая панель (7),...
Тип: Изобретение
Номер охранного документа: 0002624485
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.dd2e

Система переключающих устройств

Изобретение относится к электротехнике. Система переключающих устройств имеет блок (2) прерывателя, снабженный первым и вторым переключающими контактными элементами (7, 8, 9, 10), которые могут двигаться относительно друг друга. На участке переключения, на котором может гореть электрическая...
Тип: Изобретение
Номер охранного документа: 0002624424
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dd46

Способ и устройство для пакетирования пучка заряженных частиц

В способе пакетирования пучка заряженных частиц частицы проходят через электрическое поле в устройстве. Устройство содержит кольцевой электрод, который расположен в направлении пучка между первым внешним электродом и вторым внешним электродом. К центральному электроду прикладывается зависимый...
Тип: Изобретение
Номер охранного документа: 0002624450
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e055

Высоковольтный электростатический генератор

Изобретение относится к области высоковольтных электростатических ускорителей частиц. Высоковольтный электростатический генератор содержит узел концентрических электропроводящих полуоболочек (10), разделенных экваториальным зазором (14), по существу с цилиндрической симметрией относительно оси...
Тип: Изобретение
Номер охранного документа: 0002625335
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e0ac

Способ проверки стержневой обмотки ротора вращающейся электрической машины

Изобретение относится к электротехнике, а именно к способу проверки стержневой обмотки ротора вращающейся электрической машины, который заключается в измерении температуры отдельных стержней (22) стержневой обмотки ротора (20) с помощью датчика (34) теплового излучения, расположенного в статоре...
Тип: Изобретение
Номер охранного документа: 0002625337
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ad

Приводное устройство

Изобретение касается приводного устройства (1), имеющего ведущий узел (3) и ведомый узел (19). Ведомый узел (19) включает в себя первый узел (15) линейных перемещений, имеющий первое ведомое звено (7), и соединенный по текучей среде через систему (27) трубопроводов с первым узлом (15) линейных...
Тип: Изобретение
Номер охранного документа: 0002625888
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e1c5

Предсварочная термообработка суперсплава на основе никеля

Изобретение относится к области металлургии, а именно к предсварочной термообработке компонента турбины. Способ предварительной термообработки перед сваркой компонента турбины из никелевого сплава Inconel 939 включает нагрев компонента турбины до первой температуры в диапазоне от температуры на...
Тип: Изобретение
Номер охранного документа: 0002625921
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e1e5

Вч устройство и ускоритель с таким вч устройством

Изобретение относится к высокочастотному (ВЧ) устройству с ограниченным внешней стенкой ВЧ резонатором и с размещенным на внешней стенке устройством ввода, имеющим ВЧ генератор и экран. ВЧ устройство (100) содержит ВЧ резонансное устройство (110) с электрически проводящей внешней стенкой...
Тип: Изобретение
Номер охранного документа: 0002625808
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e25e

Компоновка устройства переключения

Изобретение относится к компоновке устройства переключения и предназначено для обеспечения безопасного относительного движения контактной группы. Устройство переключения включает в себя первую контактную группу (11), а также вторую контактную группу (12). Первая контактная группа (11) имеет...
Тип: Изобретение
Номер охранного документа: 0002625809
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e262

Электрическая машина с улучшенным охлаждением лобовой части обмотки

Изобретение относится к электротехнике, а именно к охлаждению электрической машины, содержащей ориентированный вдоль роторной оси (1) ротор (2), расположенный концентрично роторной оси (1) статор (3) и по меньшей мере одну расположенную концентрично роторной оси (1) лобовую часть (4) обмотки,...
Тип: Изобретение
Номер охранного документа: 0002625727
Дата охранного документа: 18.07.2017
Showing 771-780 of 945 items.
25.08.2017
№217.015.c8f8

Струйно-дефлекторное охлаждение рабочих или направляющих лопаток турбины

Данное изобретение относится к турбинному узлу (10, 10а), содержащему в основном полую лопатку (12) и по меньшей мере одно дефлекторное устройство (14, 14а, 14d), при этом полая лопатка (12) имеет по меньшей мере первую боковую стенку (16, 18), проходящую от входной кромки (20) к выходной...
Тип: Изобретение
Номер охранного документа: 0002619324
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c8fd

Узел турбомашины

Узел турбомашины содержит лопатку для направления горячего газа во время работы турбомашины, кольцо статора для крепления лопатки, теплозащитный экран для защиты кольца статора от потока горячего газа. Теплозащитный экран располагается в направлении движения потока горячего газа перед кольцом...
Тип: Изобретение
Номер охранного документа: 0002619327
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c9c2

Рельсовое транспортное средство с каналом для кондиционированного воздуха в крышевой зоне и способ монтажа крышевой зоны рельсового транспортного средства

Изобретение относится к железнодорожному транспорту. В продольном направлении крышевой зоны рельсового транспортного средства проложен канал для кондиционированного воздуха. Крышевая зона посредством внутреннего потолка отделена от пассажирского салона. Канал для кондиционированного воздуха в...
Тип: Изобретение
Номер охранного документа: 0002619498
Дата охранного документа: 16.05.2017
25.08.2017
№217.015.c9d5

Способ и устройство для управления подачей топлива для газовой турбины

Изобретения относятся к способу и устройству для управления подачей топлива в камеру сгорания газовой турбины, содержащей компрессор выше по потоку относительно камеры сгорания, при этом способ содержит подачу топлива в камеру сгорания; получение значения свойства для по меньшей мере одного...
Тип: Изобретение
Номер охранного документа: 0002619390
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cb74

Способ изготовления узла турбины

Изобретение относится к изготовлению узлов турбины, работающей в условиях высоких температур. Способ изготовления узла (10, 10а) турбины в виде расположенных между двумя платформами (46, 46΄) по меньшей мере двух аэродинамических профилей (12, 14), который формируют монолитным, включает...
Тип: Изобретение
Номер охранного документа: 0002620220
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cc40

Способ для балансировки конструктивного элемента

Группа изобретений относится к балансировке ротора электрической машины. Способ балансировки конструктивного элемента (1), в частности ротора электрической машины, заключатся в том, что штифты (11, 11') вводят в предварительно изготовленные отверстия (5, 7, 9) в роторе (1). Причем ротор (1)...
Тип: Изобретение
Номер охранного документа: 0002620459
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.ccb2

Лопатка ротора газовой турбины, ротор газовой турбины и способ сборки ротора

Лопатка ротора газовой турбины, включающая в себя корневую часть, платформу и перьевую часть. Платформа содержит входную и выходную стороны, боковые стороны, проходящие от входной к выходной стороне, а также осевую и радиальную канавки в каждой боковой стороне платформы. Радиальная канавка...
Тип: Изобретение
Номер охранного документа: 0002620472
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.ccca

Композиционный материал для термического накопителя энергии и способ получения композиционного материала для термического накопителя энергии

Изобретение относится к композиционному материалу для термического накопителя энергии с термопластичным материалом, а также к способу получения такого композиционного материала. Композиционный материал содержит термопластичный материал с изменяемым фазовым состоянием, в который с заданным...
Тип: Изобретение
Номер охранного документа: 0002620843
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.cd39

Выдвижная рама для электрического выдвижного коммутационного аппарата, а также блок из выдвижной рамы и электрического выдвижного коммутационного аппарата

Изобретение относится к электротехнике, к электрическим коммутационным аппаратам. Технический результат состоит в упрощении блокирования выдвижной рамы. Выдвижная рама для электрического выдвижного коммутационного аппарата, в частности выдвижного силового выключателя, имеет переходной цоколь...
Тип: Изобретение
Номер охранного документа: 0002619763
Дата охранного документа: 18.05.2017
25.08.2017
№217.015.cd6c

Охлаждаемые составные листы для газовой турбины

Слоистый лист для детали газовой турбины содержит первый и второй покрывающие слои и первый промежуточный слой. Первый покрывающий слой, второй покрывающий слой и первый промежуточный слой сложены вместе один на другой. Первый промежуточный слой расположен между первым покрывающим слоем и...
Тип: Изобретение
Номер охранного документа: 0002619664
Дата охранного документа: 17.05.2017
+ добавить свой РИД