×
19.01.2018
218.016.0e53

Вентильный ветрогенератор постоянного тока

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области электротехники, в частности к электромеханическим преобразователям энергии, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных локальных объектах), в электрическую энергию постоянного тока. Техническим результатом является уменьшение осевых и диаметральных размеров ветрогенератора, снижение потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или ветра) в электрическую энергию постоянного тока, повышение чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока), повышение жесткости конструкции. Вентильный ветрогенератор постоянного тока содержит: статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, при этом статор, магнитопровод якоря и ротор выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образована наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закреплен на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря установлен передний подшипниковый узел, при этом боковая поверхность ротора выполнена с лопатками изогнутой формы, передняя часть ротора выполнена с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закреплены на внутренней поверхности ротора, при этом ротор жестко закреплен на вращающейся оси, установленной в переднем и заднем подшипниковых узлах, задний подшипниковый узел установлен в неподвижной платформе и закреплен от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закреплен на неподвижной платформе. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к электротехнике, в частности к электромеханическим преобразователям энергии, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных локальных объектах), в электрическую энергию постоянного тока.

Известен генератор постоянного тока радиальной конструкции (Авиационное оборудование самолетов. Часть 1: учебное пособие для курсантов, обучающихся по специальности «Эксплуатация воздушных судов и организация воздушного движения» / Я.М. Кашин, Г.А. Кириллов, А.В. Ракло; КВВАУЛ им. А.К. Серова. Под общей редакцией Я.М. Кашина. - Краснодар: изд-во КВВАУЛ, 2006 г. - с. 31-37), содержащий корпус, в котором установлены неподвижный статор и вращающийся ротор, закрепленный на валу, установленном в подшипниковых узлах. На статоре размещены постоянные магниты индуктора, создающие магнитное поле. На роторе размещен магнитопровод якоря, в пазы которого уложена обмотка якоря. Индуктируемая в обмотке якоря электродвижущая сила (ЭДС) подается в сеть через щеточно-коллекторный узел. Постоянные магниты индуктора и магнитопровод якоря выполнены радиальными.

Однако технология изготовления такого генератора сложна из-за необходимости штамповки листов магнитопроводов ротора, а стоимость такого генератора велика из-за большого расхода электротехнической стали, связанного с высоким процентом ее отходов при штамповке.

Кроме того, в связи с наличием в такой машине щеточно-коллекторного узла она обладает рядом недостатков, свойственных контактным электрическим машинам: искрение щеток, переходящее в круговой огонь из-за неравномерного их износа, вибрация щеток, их заклинивание и др. Более 40% отказов вращающихся контактных машин приходится на щеточно-коллекторный узел.

Известен также запасной генератор ЛУН-2117.02 типа ГСР-3000 (Самолет Л-39. Часть 2. Авиационное и радиоэлектронное оборудование самолета. М.: «Военное издательство», 1990. - С.6-7), представляющий собой ветрогенератор традиционной (радиальной) конструкции, содержащий электрогенератор постоянного тока и напорную (воздушную) турбину В-910, закрепленную на его валу. Вращение якоря генератора осуществляется напорной турбиной В-910. При отказе основного генератора автоматически открывается люк, напорная турбина с генератором выдвигаются во встречный поток воздуха и генератор вступает в работу. Напорная турбина содержит ступицу, к которой крепятся лопасти.

Недостатком такого генератора являются низкие массогабаритные показатели, а именно: большой осевой размер, который складывается из осевого размера генератора и осевого размера напорной турбины. Кроме того, лопасти напорной турбины при этом должны иметь размах, больший, чем диаметр электрогенератора, иначе воздушный поток, упираясь в торцевую поверхность цилиндрического корпуса генератора, не будет вращать турбину с максимальной скоростью. Следовательно, диаметр ветрогенератора в целом будет равен размаху лопастей, что также ухудшает массогабаритные показатели ветрогенератора в целом.

Из известных технических решений наиболее близким к заявляемому изобретению по технической сущности и принятым авторами за прототип является ветрогенератор (патент РФ №2168062, опубл. 27.05.2001 г.), содержащий ветроколесо и магнитоэлектрический генератор, ротор которого имеет постоянные магниты индуктора и связан с ветроколесом, а статор выполнен из шихтованного магнитопровода с обмотками якоря, при этом генератор имеет два идентичных статора, магнитопроводы которых выполнены в виде плоских колец с установленными на их торцевой части и обращенными друг к другу плоскими обмотками, а ротор выполнен в виде немагнитного диска с вмонтированными в него постоянными магнитами, при этом диск ротора расположен между обмотками якоря, подключенными к трехфазным двухполупериодным выпрямителям. Известный ветрогенератор содержит коммутирующее устройство с возможностью переключения обмоток статоров последовательно или параллельно в зависимости от скорости ветра.

Недостатком такого ветрогенератора также являются низкие массогабаритные показатели, а именно: большой осевой размер, который складывается из осевого размера магнитоэлектрического генератора и осевого размера ветроколеса. Кроме того, размах лопастей ветроколеса известного ветрогенератора существенно превышает диаметр магнитоэлектрического генератора, так как иначе воздушный поток, упираясь в торцевую поверхность корпуса магнитоэлектрического генератора, не будет вращать его ротор с максимальной скоростью. Таким образом, диаметр ветрогенератора в целом равен размаху лопастей, что также ухудшает массогабаритные показатели ветрогенератора в целом.

Кроме того, конструкция ротора известного ветрогенератора вследствие сравнительно большого диаметра лопастей не обеспечивает минимального лобового сопротивления воздушному потоку, а следовательно, потери механической энергии при преобразовании ее в электрическую велики. Вследствие этого чувствительность ветрогенератора к скорости набегающего воздушного потока низка, то есть минимальная скорость набегающего воздушного потока, необходимая для преобразования энергии ветра в механическую энергию вращения ротора, должна быть большой. При низкой скорости набегающего воздушного потока КПД такого ветрогенератора будет низок. В целях устранения этого недостатка в известном ветрогенераторе используется два статора и установлено коммутирующее устройство с возможностью переключения обмоток статора (якоря) последовательно или параллельно в зависимости от скорости ветра. Использование двух статоров и коммутирующего устройства ухудшает массогабаритные показатели и усложняет конструкцию ветрогенератора.

Задачей предлагаемого изобретения является улучшение массогабаритных показателей при одновременном повышении КПД и упрощении конструкции ветрогенератора.

Техническим результатом заявленного изобретения является уменьшение осевых и диаметральных размеров ветрогенератора, снижение потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или ветра) в электрическую энергию постоянного тока, повышение чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока), повышение жесткости конструкции.

Технический результат достигается тем, что в вентильном ветрогенераторе постоянного тока, содержащем статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, статор, магнитопровод якоря и ротор выполняются в форме усеченного конуса, при этом основание статора выполняется в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образуется наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закрепляется на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря устанавливается передний подшипниковый узел, при этом боковая поверхность ротора выполняется с лопатками изогнутой формы, передняя часть ротора выполняется с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закрепляются на внутренней поверхности ротора, при этом ротор жестко закрепляется на вращающейся оси, устанавливаемой в переднем и заднем подшипниковых узлах, задний подшипниковый узел устанавливается в неподвижной платформе и закрепляется от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закрепляется на неподвижной платформе.

Улучшение массогабаритных показателей достигается путем уменьшения осевых и диаметральных размеров ветрогенератора за счет выполнения статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнением боковой поверхности ротора с лопатками изогнутой формы, жестким закреплением постоянных магнитов индуктора на внутренней поверхности ротора.

Выполнение статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнение боковой поверхности ротора с лопатками изогнутой формы позволяет не устанавливать ветроколесо (или напорную турбину) для приведения ротора во вращение. В связи с этим осевые и диаметральные размеры всего ветрогенератора в целом уменьшаются, что приводит к улучшению массогабаритных показателей, а именно к уменьшению габаритных размеров, а соответственно, уменьшению расхода электротехнических материалов на изготовление ветрогенератора, а соответственно, и массы всего ветрогенератора.

Повышение КПД ветрогенератора достигается путем снижения потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или энергии ветра) в электрическую энергию постоянного тока за счет выполнения статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнения боковой поверхности ротора с лопатками изогнутой формы, выполнения передней части ротора с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора. Вследствие выполнения ротора в форме усеченного конуса, а передней части ротора - с обтекателем и вентиляционными отверстиями лобовое сопротивление ротора набегающему воздушному потоку уменьшается. Вентиляционные отверстия препятствуют перегреву ветрогенератора, что также повышает его КПД.

Повышение КПД ветрогенератора достигается также путем повышения чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока) за счет выполнения ротора и магнитопровода якоря в форме усеченного конуса, выполнения внешней поверхности ротора с лопатками изогнутой формы, а передней части ротора - с обтекателем и вентиляционными отверстиями. Выполнение ротора в форме усеченного конуса с лопатками изогнутой формы на его боковой поверхности при выборе оптимального угла раствора конуса позволяет обеспечить со-направление продольной составляющей отраженного потока с набегающим потоком воздуха, а это в свою очередь позволяет снизить минимально необходимую для производства электроэнергии скорость воздушного потока.

Упрощение конструкции ветрогенератора достигается за счет выполнения основания статора в форме неподвижной платформы, жестко закрепленной на штанге-держателе, жестким закреплением на неподвижной платформе трехфазного двухполупериодного выпрямителя и магнитопровода якоря, в пазы которого уложена трехфазная обмотка якоря, закреплением магнитопровода якоря одной торцевой стороной на неподвижной платформе, выполнением ротора в форме усеченного конуса, выполнением боковой поверхности ротора с лопатками изогнутой формы. Выполнение боковой поверхности ротора с лопатками изогнутой формы позволяет избежать дополнительного изготовления ветроколеса или напорной турбины. Описанная конструкция обеспечивает возможность жесткого закрепления всех элементов ротора на оси вне корпуса (статора). Собранный таким образом вне корпуса (статора) ротор целиком устанавливается в корпус (статор) и закрепляется в нем, при этом исключается необходимость сборки ротора (закрепления на нем постоянных магнитов индуктора) внутри корпуса (статора), что существенно упрощает процесс сборки ветрогенератора, упрощая технологию его изготовления.

Повышение надежности конструкции достигается за счет повышения ее жесткости путем выполнения ротора, ступицы и лопаток напорной турбины единым агрегатом: выполнением боковой поверхности ротора с лопатками изогнутой формы, а передней части ротора - с обтекателем, жестким закреплением ротора на вращающейся оси, устанавливаемой в переднем и заднем подшипниковых узлах. Кроме того, повышение жесткости конструкции достигается за счет выполнения механического соединения всех элементов ротора (постоянных магнитов индуктора, корпуса ротора с лопатками и обтекателем) между собой.

Повышение надежности достигается также закреплением заднего подшипникового узла, установленного в платформе, от перемещения в осевом направлении упорной шайбой.

На фиг. 1 представлен общий вид предлагаемого вентильного ветрогенератора постоянного тока в разрезе; на фиг. 2 - электрическая схема предлагаемого вентильного ветрогенератора постоянного тока.

Вентильный ветрогенератор постоянного тока содержит статор с магнитопроводом 4 якоря, в пазы которого уложена трехфазная обмотка 5 якоря, подключенная к трехфазному двухполупериодному выпрямителю 14, и ротор 1 с постоянными магнитами 2 индуктора. Статор, магнитопровод 4 якоря и ротор 1 выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы 12, жестко закреплено на штанге-держателе 13, а боковая поверхность статора образована наружной стороной магнитопровода 4 якоря с пазами, в которые уложена трехфазная обмотка 5 якоря, при этом магнитопровод 4 якоря одной торцевой стороной жестко закреплен на неподвижной платформе 12, а на противоположной торцевой стороне магнитопровода 4 якоря установлен передний подшипниковый узел 9, при этом боковая поверхность ротора 1 выполнена с лопатками 3 изогнутой формы, передняя часть ротора 1 выполнена с обтекателем 6 и вентиляционными отверстиями 7, расположенными вокруг обтекателя 6 по окружности с центром на оси симметрии ротора 1, а постоянные магниты 2 индуктора жестко закреплены на внутренней поверхности ротора 1, при этом ротор 1 жестко закреплен на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, задний подшипниковый узел 10 установлен в неподвижной платформе 12 и закреплен от перемещения в осевом направлении упорной шайбой 11, а трехфазный двухполупериодный выпрямитель 14 жестко закреплен на неподвижной платформе 12.

Ротор 1, боковая поверхность которого выполнена с лопатками 3 изогнутой формы, образует воздушную турбину. Жестко закрепленный на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, ротор 1 может свободно вращаться.

Обтекатель 6 ротора 1 служит для направления набегающего воздушного потока через вентиляционные отверстия 7 во внутреннюю полость ветрогенератора для его охлаждения. Штанга-держатель 13 предназначена для закрепления ветрогенератора, например, на подвижном локальном объекте.

Вентильный ветрогенератор постоянного тока (ВВГПТ) работает следующим образом. Механическая энергия вращения поступает в ВВГПТ от набегающего воздушного потока. При движении подвижного локального объекта набегающий воздушный поток разделяется на два контура. Воздушный поток первого воздушного контура, который обтекает внешнюю поверхность ротора 1, жестко закрепленного на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, воздействует на лопатки 3 изогнутой формы и приводит ротор 1 во вращение. Воздушный поток второго воздушного контура, направленный обтекателем 6 ротора 1 через вентиляционные отверстия 7 во внутреннюю полость ветрогенератора, охлаждает расположенные во внутренней полости ветрогенератора узлы (передний 9 и задний 10 подшипниковые узлы, постоянные магниты 2 индуктора, магнитопровод 4 с трехфазной обмоткой 5 якоря, трехфазный двухполупериодный выпрямитель 14).

При вращении ротора 1 с жестко закрепленными на его внутренней поверхности постоянными магнитами 2 индуктора магнитный поток постоянных магнитов 2 индуктора взаимодействует с трехфазной обмоткой 5 якоря, уложенной в пазы магнитопровода 4 якоря, жестко закрепленного одной торцевой стороной на неподвижной платформе 12, которая жестко закреплена на штанге-держателе 13.

В результате этого взаимодействия в трехфазной обмотке 5 якоря генератора наводится трехфазная система ЭДС, которая выпрямляется трехфазным двухполупериодным выпрямителем 14 и подается в сеть.

Упорная шайба 11 удерживает подшипниковый узел 10 от перемещения в осевом направлении.

Вентильный ветрогенератор постоянного тока, содержащий статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, отличающийся тем, что статор, магнитопровод якоря и ротор выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образована наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закреплен на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря установлен передний подшипниковый узел, при этом боковая поверхность ротора выполнена с лопатками изогнутой формы, передняя часть ротора выполнена с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закреплены на внутренней поверхности ротора, при этом ротор жестко закреплен на вращающейся оси, установленной в переднем и заднем подшипниковых узлах, задний подшипниковый узел установлен в неподвижной платформе и закреплен от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закреплен на неподвижной платформе.
Вентильный ветрогенератор постоянного тока
Вентильный ветрогенератор постоянного тока
Вентильный ветрогенератор постоянного тока
Источник поступления информации: Роспатент

Showing 1-10 of 495 items.
10.01.2013
№216.012.19fe

Способ определения свободного глиоксаля в глиоксальсодержащих карбамидоформальдегидных смолах

Изобретение относится к аналитической химии, а именно к способам определения содержания свободных альдегидов в альдегидсодержащих смолах и полимерах. Способ включает получение спиртового раствора глиоксаля путем смешения пробы карбамидоформальдегидной смолы с этиловым спиртом, выдерживанием в...
Тип: Изобретение
Номер охранного документа: 0002472146
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.28a4

Способ изготовления магнитопроводов аксиальных электрических машин

Изобретение относится к области электротехники, а именно к технологии изготовления электрических машин, и может быть использовано при изготовлении магнитопроводов пакетов статора и ротора для аксиальных электрических машин, например, пакетов статора и ротора аксиальных синхронных и асинхронных...
Тип: Изобретение
Номер охранного документа: 0002475924
Дата охранного документа: 20.02.2013
20.05.2013
№216.012.410d

Средство для удаления ржавчины, накипи и других минеральных отложений на основе глиоксаля и его производных

Изобретение относится к химическим средствам удаления ржавчины, накипи и минеральных отложений с металлических поверхностей и может быть использовано для очистки поверхностей теплообменных аппаратов, нагревательных элементов, трубопроводов, котлов, бойлеров, отопительных систем, а также...
Тип: Изобретение
Номер охранного документа: 0002482223
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.5067

Способ получения 2-метилимидазола

Настоящее изобретение относится к способу получения 2-метилимидазола, включающий смешение 40% водного глиоксаля, ацетальдегида и водного аммиака с последующим выделением целевого продукта посредством дистилляции, отличающийся тем, что используют 25% раствор аммиака, смешение ацетальдегида с...
Тип: Изобретение
Номер охранного документа: 0002486176
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5068

Способ получения 2 -метил-4(5)-нитроимидазола

Изобретение относится к способу получения 2-метил-4(5)-нитроимидазола, заключающийся в том, что нитрование осуществляют нитрующей смесью, содержащей HSO и HNO, при этом мольное соотношение компонентов 2-метилимидазол:HSO:HNO составляет 1:4,28:3,83, причем серную кислоту с концентрацией 95%...
Тип: Изобретение
Номер охранного документа: 0002486177
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.5413

Способ получения 1,4-диоксан-2,3-диола

Изобретение относится к способу получения 1,4-диоксан-2,3-диола, который является реагентом для получения гетероциклических азотсодержащих соединений (в частности, пиразинов), а также используется в фотографии. Способ включает конденсацию глиоксаля с этиленгликолем при нагревании с удалением...
Тип: Изобретение
Номер охранного документа: 0002487126
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.59cc

Клеевая композиция

Изобретение относится к клеям на основе водной дисперсии винилацетатного полимера и может быть использовано в строительной, мебельной, текстильной, полиграфической промышленности, а также в других отраслях промышленности. Клеевая композиция включает водную дисперсию винилацетатного полимера,...
Тип: Изобретение
Номер охранного документа: 0002488609
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.5f6e

Катализатор для очистки отходящих газов, содержащих летучие органические соединения, способ его получения и способ очистки отходящих газов, содержащих летучие органические соединения

Изобретение относится к области гетерогенного катализа, а именно к катализатору для очистки отходящих производственных газов от летучих органических соединений, и может быть использовано в химической промышленности, например, для полного окисления отходящих газов производства глиоксаля от...
Тип: Изобретение
Номер охранного документа: 0002490062
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6f30

Способ получения поливинилацетатной дисперсии

Изобретение относится к способу получения поливинилацетатной дисперсии и может быть использовано в химической промышленности. Способ получения поливинилацетатной дисперсии (ПВАД) включает эмульсионную полимеризацию винилацетата, полимеризацию проводят в присутствии водорастворимого радикального...
Тип: Изобретение
Номер охранного документа: 0002494115
Дата охранного документа: 27.09.2013
20.10.2013
№216.012.7757

Способ согласования магнитопроводов ротора и якоря в двухмерных электрических машинах-генераторах

Изобретение относится к области электротехники и электромашиностроения, в частности к способам согласования магнитопроводов ротора и статора в двухмерных электрических машинах, и может быть использовано для технико-экономической и конструктивной совместимости концентрически расположенных...
Тип: Изобретение
Номер охранного документа: 0002496211
Дата охранного документа: 20.10.2013
Showing 1-10 of 270 items.
10.01.2013
№216.012.19fe

Способ определения свободного глиоксаля в глиоксальсодержащих карбамидоформальдегидных смолах

Изобретение относится к аналитической химии, а именно к способам определения содержания свободных альдегидов в альдегидсодержащих смолах и полимерах. Способ включает получение спиртового раствора глиоксаля путем смешения пробы карбамидоформальдегидной смолы с этиловым спиртом, выдерживанием в...
Тип: Изобретение
Номер охранного документа: 0002472146
Дата охранного документа: 10.01.2013
20.05.2013
№216.012.410d

Средство для удаления ржавчины, накипи и других минеральных отложений на основе глиоксаля и его производных

Изобретение относится к химическим средствам удаления ржавчины, накипи и минеральных отложений с металлических поверхностей и может быть использовано для очистки поверхностей теплообменных аппаратов, нагревательных элементов, трубопроводов, котлов, бойлеров, отопительных систем, а также...
Тип: Изобретение
Номер охранного документа: 0002482223
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.5067

Способ получения 2-метилимидазола

Настоящее изобретение относится к способу получения 2-метилимидазола, включающий смешение 40% водного глиоксаля, ацетальдегида и водного аммиака с последующим выделением целевого продукта посредством дистилляции, отличающийся тем, что используют 25% раствор аммиака, смешение ацетальдегида с...
Тип: Изобретение
Номер охранного документа: 0002486176
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5068

Способ получения 2 -метил-4(5)-нитроимидазола

Изобретение относится к способу получения 2-метил-4(5)-нитроимидазола, заключающийся в том, что нитрование осуществляют нитрующей смесью, содержащей HSO и HNO, при этом мольное соотношение компонентов 2-метилимидазол:HSO:HNO составляет 1:4,28:3,83, причем серную кислоту с концентрацией 95%...
Тип: Изобретение
Номер охранного документа: 0002486177
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.5413

Способ получения 1,4-диоксан-2,3-диола

Изобретение относится к способу получения 1,4-диоксан-2,3-диола, который является реагентом для получения гетероциклических азотсодержащих соединений (в частности, пиразинов), а также используется в фотографии. Способ включает конденсацию глиоксаля с этиленгликолем при нагревании с удалением...
Тип: Изобретение
Номер охранного документа: 0002487126
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.59cc

Клеевая композиция

Изобретение относится к клеям на основе водной дисперсии винилацетатного полимера и может быть использовано в строительной, мебельной, текстильной, полиграфической промышленности, а также в других отраслях промышленности. Клеевая композиция включает водную дисперсию винилацетатного полимера,...
Тип: Изобретение
Номер охранного документа: 0002488609
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.5f6e

Катализатор для очистки отходящих газов, содержащих летучие органические соединения, способ его получения и способ очистки отходящих газов, содержащих летучие органические соединения

Изобретение относится к области гетерогенного катализа, а именно к катализатору для очистки отходящих производственных газов от летучих органических соединений, и может быть использовано в химической промышленности, например, для полного окисления отходящих газов производства глиоксаля от...
Тип: Изобретение
Номер охранного документа: 0002490062
Дата охранного документа: 20.08.2013
10.04.2014
№216.012.afa9

Способ получения брикета для получения титан- и цирконийсодержащего чугуна

Изобретение относится к металлургическому, литейному производству, в частности к изготовлению чугунов, работающих в условиях абразивного износа. Способ включает приготовление смеси исходного материала с последующим формованием. В качестве исходного материала используют измельченную...
Тип: Изобретение
Номер охранного документа: 0002510684
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.df34

Способ получения компактированного модификатора чугуна на основе нанодисперсных порошковых материалов

Изобретение относится к металлургическому и литейному производству, в частности к модификаторам для изготовления чугунов, работающих в условиях абразивного износа. Способ включает смешение криолита и смеси нанодисперсных порошков оксидов ниобия, титана, циркония, тантала со смешивающим...
Тип: Изобретение
Номер охранного документа: 0002522926
Дата охранного документа: 20.07.2014
27.09.2014
№216.012.f78d

Аксиальный бесконтактный двигатель-генератор

Изобретение относится к электротехнике, в частности к электрическим машинам постоянного тока. Предлагаемый аксиальный бесконтактный двигатель-генератор содержит корпус и ротор, на котором установлены постоянный аксиальный многополюсный магнит индуктора подвозбудителя и аксиальные вращающиеся...
Тип: Изобретение
Номер охранного документа: 0002529210
Дата охранного документа: 27.09.2014
+ добавить свой РИД