×
19.01.2018
218.016.0a8b

Результат интеллектуальной деятельности: Гетероструктурный фотоэлектрический преобразователь на основе кристаллического кремния

Вид РИД

Изобретение

Аннотация: Изобретение относится к области полупроводниковых приборов, а именно к изготовлению активных слоев солнечных модулей на основе монокристаллического или поликристаллического кремния. Солнечный модуль на основе кристаллического кремния включает пластину поликристаллического или монокристаллического кремния; пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния; р-слой в виде аморфного гидрогенизированного кремния, нанесенный на верхнюю сторону пассивирующего слоя; n-слой, нанесенный на нижнюю сторону пассивирующего слоя; токосъемные слои, нанесенные на р-слой и n-слой. В качестве n-слоя применяют металлические оксиды n-типа, полученного методом магнетронного распыления или методом атомного наслаивания, или методом газофазного осаждения при пониженном давлении. В качестве металлического оксида n-типа используют оксид цинка (ZnO) или SnО, FеО, TiΟ, VO, МnO, CdO и другие металлические оксиды n-типа. Изобретение позволяет повысить производительность процесса производства фотопреобразователей. 1 з.п. ф-лы, 1 ил.

Область техники, к которой относится изобретение

Изобретение относится к области полупроводниковых приборов, а именно к изготовлению активных слоев солнечных модулей на основе монокристаллического или поликристаллического кремния.

Уровень техники

Среди возобновляемых источников энергии фотоэлектрическое преобразование солнечной энергии в настоящее время признано самым перспективным. Дальнейшее развитие солнечной энергетики требует постоянного совершенствования характеристик фотопреобразовательных устройств (солнечных элементов). Наиболее успешным направлением развития технологий повышения КПД солнечных элементов представляется использование гетеропереходов между аморфным гидрогенизированным и кристаллическим кремнием (a-Si:H/c-Si), которые обладают всеми преимуществами солнечных элементов на основе кристаллического кремния, но могут быть изготовлены при низких температурах, что позволяет существенно снизить стоимость изготовления солнечных элементов на основе гетеропереходов.

Из уровня техники известен солнечный элемент, описанный в заявке РСТ (см. [1] WO 2014148443 (А1), МПК H01L 31/0236, опубликованная 25.09.2014), содержащий монокристаллическую подложку кремния, текстурированную с двух сторон, на которые нанесен слой аморфного кремния толщиной 2-3 нм, на одном из слоев аморфного кремния нанесен слой легированного аморфного кремния р-типа толщиной 10-30 нм, а на другом слое аморфного кремния нанесен слой легированного аморфного кремния n-типа толщиной 10-30 нм.

В качестве наиболее близкого аналога принят солнечный элемент, описанный в заявке США (см. [2] US 2015090317, МПК H01L 27/142, H01L 31/0224, опубликованная 02.04.2015), содержащий фотоэлектрический преобразователь в виде пластины кристаллического кремния, покрытый проводящими слоями в виде аморфного кремния. В общем, заявка описывает HIT технологию с получением слоев p-i-n- и n-i-p-типа, при этом слои n- и р-типа получают PECVD методом.

Недостатком прототипа является ограниченный спектр материалов, который возможно получить PECVD технологией нанесения n-слоя.

Сущность изобретения

Задачей заявленного изобретения является применение металлических оксидов в качестве n-слоя солнечного модуля на основе кристаллического кремния.

Техническим результатом является повышение производительности процесса производства фотопреобразователей, вызванное возможностью применение таких методов формирования n-слоя структуры, как магнетронное напыление, атомное наслаивание (ALD), газофазное осаждение при пониженном давлении (LPCVD).

Технический результат достигается за счет солнечного модуля, включающего пластину поликристаллического или монокристаллического кремния; пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния; р-слой в виде аморфного гидрогенизированного кремния, нанесенный на верхнюю сторону пассивирующего слоя; n-слой, нанесенный на нижнюю сторону пассивирующего слоя; токосъемные слои, нанесенные на р-слой и n-слой. В качестве n-слоя применяют металлические оксиды n-типа, полученного методом магнетронного распыления или методом атомного наслаивания (ALD), или методом газофазного осаждения при пониженном давлении (LPCVD). В качестве металлического оксида n-типа используют оксид цинка (ZnO) или SnO2, Fе2О3, ТiO2, V2О7, МnО2, CdO и другие металлические оксиды n-типа.

Краткое описание чертежей

Фиг. 1 - структура солнечного модуля с использованием n-слоя, выполненного на основе металлического оксида.

Позиции, указанные на фигуре:

1 - пластина кристаллического кремния;

2 - пассивирующий слой;

3 - р-слой;

4 - n-слой металлического оксида, выполненный путем магнетронного распыления или методом атомного наслаивания, или методом газофазного осаждения при пониженном давлении;

5 - токосъемные слои.

Осуществление изобретения

Данное изобретение представляет собой солнечный модуль на основе кристаллического кремния, состоящий из пластины кремния (1), пассивирующих слоев (2), р-слоя (3), n-слоя на основе металлического оксида (4), токосъемных слоев (5).

Пластина кремния (1) может быть поликристаллической или монокристаллической с базовой областью n- или р-типа проводимости.

Пассивирующие слои (2) выполняют на основе аморфного гидрогенизированного кремния, карбида кремния, оксидных или прочих слоев, выполняющих функцию стабилизации поверхности кремниевой пластины и снижения поверхностной рекомбинации. В качестве р-слоя (3) применяют аморфный гидрогенизированный кремний р-типа ((р) a-Si:H), карбид кремния р-типа ((р) a-Si:Cl), оксид молибдена р-типа или другие материалы р-типа. В качестве токосъемных слоев (5) используют прозрачные проводящие оксиды (например, слой ITO). В качестве других элементов токосъема могут выступать дополнительные слои металлов, выполняющие так же функцию заднего отражателя (на пример серебряные или алюминиевые), медные или иные проводящие структуры, функцией которых является снижение последовательного сопротивления структуры. Под последовательным сопротивлением в данном случае подразумевается характеристика солнечного модуля, зависящая в том числе от элементов токосъема и способа их монтажа. Проводящие слои металлов, как правило, наносятся методом магнетронного распыления. Возможно также применение метода электролизного осаждения из раствора. Контактная сетка наносится методами трафаретной печати.

Основным отличием данного изобретения от аналогов является применение в качестве n-слоя металлического оксида (например, n-ZnO, или n-SnO2, n-Fе2О3, n-ТiO2, n-V2O7, n-МnО2, n-CdO и другие металлические оксиды n-типа), полученного методом магнетронного распыления, атомным наслаиванием (ALD), газофазного осаждения при пониженном давлении (LPCVD) или иным способом.

Результатом данного технического решения является отказ от применение в качестве n-слоя аморфного кремния n-типа, что ограничивает диапазон возможных способов нанесения слов n-типа при изготовлении солнечного модуля на основе кремния.

Примером данного технического решения может служить нанесение оксида цинка n-типа методом магнетронного распыления.

1. Для этого пластина (1) проходит предварительную подготовку, включающую очистку. Так же возможно применение текстурированных пластин кремния.

2. Далее, на обе стороны пластины, наносятся пассивационный слои (2), которые могут быть представлены в виде слоев аморфного гидрогенизированного кремния, полученного методом PECVD (данный пример не ограничивает способы получения пассивирующих слоев).

3. Далее, на одну из сторон наносится р-слой (3), который может быть выполнен в виде аморфного гидрогенизированного кремния р-типа, полученного методом PECVD осаждения (данный пример не ограничивает способы нанесения р-слоев).

4. Далее, на сторону, противоположную стороне нанесения р-слоя, наносится слой металлического оксида n-типа, например оксида цинка, полученного методом магнетронного распыления или методом атомного наслаивания (ALD), или методом газофазного осаждения при пониженном давлении (LPCVD).

5. После этого наносятся токосъемные слои, например слои ITO, методом магнетронного распыления. Далее производится нанесение дополнительных токосъемов, включая тыльный отражатель и другие элементы токосъема (например, металлические шины). Пример такой структуры представлен на Фиг. 1.

Пример

Структура состоит из пластины монокристаллического кремния n- или р-типа (фигура 1, поз. 1). Пластина проходит химическую очистку, в ходе которой с поверхности удаляется загрязнения и слой естественного оксида. Далее производится химическая пассивация поверхности водородом. После этого на пластину с каждой из сторон методом PECVD осаждения наносится слой аморфного гидрогенизированного кремния, толщиной порядка 3-5 нм (фигура 1, поз. 2), который стабилизирует и пассивирует поверхность пластины. Метод нанесения пассивирующего слоя может варьироваться. Например, для пассивации может использоваться метод ALD (при этом не используется слой аморфного кремния - Duttagupta S. et al. Excellent boron emitter passivation for high-efficiency Si wafer solar cells using AlOx/SiNx dielectric stacks deposited in an industrial inline plasma reactor //Progress in Photovoltaics: Research and Applications. - 2013. - T. 21. - №. 4. - C. 760-764.) или магнетронное распыление. Метод пассивации может зависеть от типа проводимости использованной пластины.

На следующем этапе с помощью магнетронного напыления на одну из сторон производится осаждение оксида молибдена, служащего р-слоем фотопреобразующей структуры (фигура 1, поз. 3). После нанесение р-слоя на противоположную сторону пластины наносится n-слой. В качестве n-слоя используется оксид цинка, легированный бором (фигура 1, поз. 4). Слой наносят методом магнетронного распыления. Для контактирования к полученной структуре наносятся слои токосъема, выполненные из индий-оловянного оксида (фигура 1, поз. 5). Для получения дополнительного просветляющего эффекта слои индий-оловянного оксида выполняются толщиной порядка 120 нм.

Отказ от применения в качестве n-слоя аморфного кремния n-типа в пользу металлических оксидов n-типа позволяет расширить диапазон возможных способов нанесения слоев n-типа при изготовлении солнечных модулей на основе кремния. Замена материала n-слоя с кремния на металлический оксид позволяет управлять напряжением на получаемой структуре путем изменения ширины запрещенной зоны n-слоя (ширина запрещенной зоны различна у различных оксидов).

Применение магнетрона позволяет применить конвейер и в случае применения двухстороннего магнетрона исключить необходимость переворота пластин. Уменьшение габаритов также является следствием применения магнетронов вместо PECVD реакторов (при применении PECVD реактора невозможно применение конвейера и в процессе необходимо переворачивать пластины (т.к. PECVD реакторы устроены таким образом, что пластины подложек должны быть расположены на одном из электродов)).


Гетероструктурный фотоэлектрический преобразователь на основе кристаллического кремния
Источник поступления информации: Роспатент

Showing 1-10 of 14 items.
10.05.2013
№216.012.3e97

Способ изготовления коллоидного зондового датчика для атомно-силового микроскопа

Изобретение относится к области приборостроения, преимущественно к измерительной технике. Сущность изобретения заключается в способе изготовления коллоидного зондового датчика, в котором используется атомно-силовой микроскоп (АСМ), и его собственном работоспособном зондовом датчике. Сначала с...
Тип: Изобретение
Номер охранного документа: 0002481590
Дата охранного документа: 10.05.2013
27.11.2013
№216.012.857c

Способ получения металлсодержащего углеродного наноматериала

Изобретение относится к способу получения пленочного металлсодержащего углеродного наноматериала, который может быть использован в различных элементах электроники, в частности при разработке фоторезисторов, фотоприемников, фотодиодов и элементов фотовольтаики. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002499850
Дата охранного документа: 27.11.2013
27.01.2014
№216.012.9cf6

Способ получения слоя прозрачного проводящего оксида на стеклянной подложке

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим...
Тип: Изобретение
Номер охранного документа: 0002505888
Дата охранного документа: 27.01.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
20.04.2015
№216.013.42cf

Способ рентгеноспектрального определения размеров наночастиц в образце

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002548601
Дата охранного документа: 20.04.2015
27.08.2015
№216.013.7491

Способ модификации поверхности пористого кремния

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в...
Тип: Изобретение
Номер охранного документа: 0002561416
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.86b1

Содопированное оксидами гадолиния и самария алюмоборосиликатное стекло с повышенной радиационной стойкостью

Изобретение относится к области иммобилизации и хранения ядерных отходов. Предложена композиция содопированного оксидами самария и гадолиния алюмоборосиликатного стекла с повышенной радиационной стойкостью для иммобилизации и хранения радиоактивных отходов, состоящая из (молярные проценты): SiO...
Тип: Изобретение
Номер охранного документа: 0002566084
Дата охранного документа: 20.10.2015
12.01.2017
№217.015.5f1a

Солнечный элемент

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др. Солнечный элемент согласно...
Тип: Изобретение
Номер охранного документа: 0002590284
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.b4ce

Пассивация поверхности кремниевых пластин методом магнетронного распыления

Изобретение относится к пассивации поверхности пластин кремния. Пассивация поверхности кремниевых пластин включает очистку пластин кристаллического кремния, распыление кремния магнетроном с кремниевой мишенью. Процесс распыления кремниевой мишени выполняют в атмосфере аргона (Ar) с добавлением...
Тип: Изобретение
Номер охранного документа: 0002614080
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.cc25

Способ и устройство переворота подложек в процессе производства фотопреобразователей

Изобретение относится к технологическому оборудованию, используемому в процессах обработки пластин полупроводников. Способ переворота подложек включает установку первого подложкодержателя с посадочными местами, в которых расположены подложки, на поворотный стол при помощи механизма загрузки,...
Тип: Изобретение
Номер охранного документа: 0002620452
Дата охранного документа: 25.05.2017
Showing 1-10 of 21 items.
10.05.2013
№216.012.3e97

Способ изготовления коллоидного зондового датчика для атомно-силового микроскопа

Изобретение относится к области приборостроения, преимущественно к измерительной технике. Сущность изобретения заключается в способе изготовления коллоидного зондового датчика, в котором используется атомно-силовой микроскоп (АСМ), и его собственном работоспособном зондовом датчике. Сначала с...
Тип: Изобретение
Номер охранного документа: 0002481590
Дата охранного документа: 10.05.2013
27.11.2013
№216.012.857c

Способ получения металлсодержащего углеродного наноматериала

Изобретение относится к способу получения пленочного металлсодержащего углеродного наноматериала, который может быть использован в различных элементах электроники, в частности при разработке фоторезисторов, фотоприемников, фотодиодов и элементов фотовольтаики. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002499850
Дата охранного документа: 27.11.2013
27.01.2014
№216.012.9cf6

Способ получения слоя прозрачного проводящего оксида на стеклянной подложке

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим...
Тип: Изобретение
Номер охранного документа: 0002505888
Дата охранного документа: 27.01.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
20.04.2015
№216.013.42cf

Способ рентгеноспектрального определения размеров наночастиц в образце

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002548601
Дата охранного документа: 20.04.2015
27.08.2015
№216.013.7491

Способ модификации поверхности пористого кремния

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в...
Тип: Изобретение
Номер охранного документа: 0002561416
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.86b1

Содопированное оксидами гадолиния и самария алюмоборосиликатное стекло с повышенной радиационной стойкостью

Изобретение относится к области иммобилизации и хранения ядерных отходов. Предложена композиция содопированного оксидами самария и гадолиния алюмоборосиликатного стекла с повышенной радиационной стойкостью для иммобилизации и хранения радиоактивных отходов, состоящая из (молярные проценты): SiO...
Тип: Изобретение
Номер охранного документа: 0002566084
Дата охранного документа: 20.10.2015
12.01.2017
№217.015.5f1a

Солнечный элемент

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др. Солнечный элемент согласно...
Тип: Изобретение
Номер охранного документа: 0002590284
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.b4ce

Пассивация поверхности кремниевых пластин методом магнетронного распыления

Изобретение относится к пассивации поверхности пластин кремния. Пассивация поверхности кремниевых пластин включает очистку пластин кристаллического кремния, распыление кремния магнетроном с кремниевой мишенью. Процесс распыления кремниевой мишени выполняют в атмосфере аргона (Ar) с добавлением...
Тип: Изобретение
Номер охранного документа: 0002614080
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.cc25

Способ и устройство переворота подложек в процессе производства фотопреобразователей

Изобретение относится к технологическому оборудованию, используемому в процессах обработки пластин полупроводников. Способ переворота подложек включает установку первого подложкодержателя с посадочными местами, в которых расположены подложки, на поворотный стол при помощи механизма загрузки,...
Тип: Изобретение
Номер охранного документа: 0002620452
Дата охранного документа: 25.05.2017
+ добавить свой РИД