×
19.01.2018
218.016.09ab

Результат интеллектуальной деятельности: Вакуумная центрифуга

Вид РИД

Изобретение

Аннотация: Изобретение относится к центробежным устройствам для разделения суспензий, содержащих в качестве твердой фазы компоненты, чувствительные к механическим воздействиям, и может быть использовано, например, при утилизации боеприпасов методом вымывания заряда в процессах отделения вымываемых из каморы/корпуса боеприпаса взрывчатых или иных составляющих заряд веществ от рабочей жидкости, а также в микробиологических производствах при отделении мицелиальных культур от культуральных жидкостей. Центрифуга содержит внешний корпус, внутри которого на приводном валу размещен перфорированный барабан и встроенный турбомолекулярный насос. Роторные ступени турбомолекулярного насоса закреплены на обечайке барабана вблизи его загрузочного отверстия, а статорные выполнены разъемными и установлены минимум на двух отдельных фрагментах обечайки внешнего корпуса. Фрагменты обечайки выполнены с возможностью герметичной стыковки между собой и внешним корпусом с образованием замкнутой поверхности вращения и снабжены приводами плоскопараллельного перемещения относительно оси вращения барабана. Контуры радиальных сечений загрузочного отверстия барабана и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки внешнего корпуса, выполнены по профилю кольцевого сопла Лаваля. В приемной полости центрифуги между внешним корпусом и барабаном перед роторными ступенями турбомолекулярного насоса дополнительно установлены каплеотбойные устройства, закрепленные на внешнем корпусе. Техническим результатом является предотвращение удаления фильтрата через турбинный аппарат турбомолекулярного насоса, а также повышение степени разделения и осушки твердой составляющей суспензии за счет межполостного перепада воздушного давления. 4 ил.

Изобретение относится к центробежным устройствам для разделения суспензий, содержащих в качестве твердой фазы компоненты, чувствительные к механическим воздействиям, и может быть использовано, например, при утилизации боеприпасов методом вымывания заряда, - в процессах отделения вымываемых из каморы/корпуса боеприпаса взрывчатых или иных составляющих заряд веществ, от рабочей жидкости, а также в микробиологических производствах, - при отделении мицелиальных культур от культуральных жидкостей.

Известен ряд конструкций центрифуг, работающих в разреженной газовой среде, использующих для вакуумирования полостей непосредственно энергию вращения барабана/ротора центрифуги. Так, например, в устройстве /1/ вакуумирование полостей достигается посредством струйного насоса, работа которого осуществляется за счет перераспределения потоков и движения жидкости по встроенной отдельной гидравлической системе.

Недостатком данного устройства, в первую очередь, является сложность гидравлической схемы, реализующей работу струйного насоса, а относительно к предлагаемой области применения - пригодность в использовании только для непрерывных процессов, причем полное вакуумирование как приемной, так и выходной полостей делает невозможным использования для разделения и осушки твердой составляющей суспензии межполостного перепада воздушного/газового давления.

Наиболее близкой к предлагаемому изобретению по технической сущности и достигаемому результату является конструкция вакуумной центрифуги /2/, содержащая внешний корпус, размещенный внутри него на приводном валу барабан и встроенный турбомолекулярный насос, роторные ступени которого закреплены на приводном валу со стороны придонной части барабана, а статорные - на внешнем корпусе. Также в конструкции предусмотрено наличие насоса предварительного разряжения (форвакуумного), необходимого для обеспечения на выходе из последней ступени турбомолекулярного насоса молекулярного режима течения газа, соединенного отдельным патрубком с полостью внешнего корпуса.

Таким образом, в данной конструкции центрифуги вакуумирование ее полости осуществляется посредством турбинного аппарата встроенного турбомолекулярного насоса, привод которого совмещен с приводом барабана центрифуги.

Однако данная конструкция также не лишена отдельных недостатков:

- в случае использования ее в качестве фильтрующей, не предусмотрен (судя по описанию и иллюстрациям источника /2/) отвод фильтрата иначе, как непосредственно через турбинный аппарат, что будет отрицательно сказываться на его работе;

- как и в конструкции-аналоге /1/, полное вакуумирование как приемной, так и выходной полостей делает невозможным использование межполостного перепада воздушного/газового давления для разделения и осушки твердой составляющей суспензии;

- потребность в дополнительном насосе предварительного разрежения.

Технической задачей предлагаемого изобретения является устранение вышеупомянутых недостатков и обеспечение условий использования для разделения и осушки твердой составляющей суспензии наряду с центробежным фактором, также и межполостного перепада воздушного/газового давления.

Решение поставленной технической задачи достигается тем, что в известной вакуумной центрифуге, содержащей внешний корпус, размещенный внутри него на приводном валу перфорированный барабан и встроенный турбомолекулярный насос, в соответствии с изобретением роторные ступени турбомолекулярного насоса закреплены на обечайке барабана вблизи его загрузочного отверстия, а статорные выполнены разъемными и установлены минимум на двух отдельных фрагментах обечайки внешнего корпуса, выполненных с возможностью герметичной стыковки между собой и внешним корпусом с образованием замкнутой поверхности вращения и снабженных приводами плоскопараллельного перемещения относительно оси вращения барабана, при этом контуры радиальных сечений загрузочного отверстия барабана и охватывающей его с зазором поверхности вращения, образованной отдельными фрагментами обечайки внешнего корпуса, выполнены по профилю кольцевого сопла Лаваля, а в приемной полости центрифуги между внешним корпусом и барабаном перед роторными ступенями турбомолекулярного насоса дополнительно установлены каплеотбойные устройства, закрепленные на внешнем корпусе.

Размещение роторных ступеней турбомолекулярного насоса на обечайке барабана вблизи его загрузочного отверстия позволит осуществлять отвод фильтрата не через турбинный аппарат, а из приемной полости центрифуги.

Отдельные фрагменты обечайки внешнего корпуса при взаимной герметичной стыковке между собой и внешним корпусом барабана образуют замкнутую поверхность вращения и, по сути, одновременно являются как частью внешнего корпуса центрифуги, так и корпусом турбомолекулярного насоса. Т.к. на них закреплены разъемные статорные ступени турбомолекулярного насоса, в данном случае насос будет находиться в рабочем состоянии. Благодаря наличию приводов плоскопараллельного перемещения относительно оси вращения барабана эти фрагменты, совместно с закрепленными на них разъемными статорными ступенями насоса, могут расстыковываться, вплоть до полного выхода последних из зазоров между роторными ступенями. В этом случае, т.е. при расстыковке всех вышеуказанных элементов конструкции, насос «лишается» корпуса и статорных ступеней, вследствие чего перестает выполнять свои функции - фактически отключается.

Таким образом, исполнение статорных ступеней турбомолекулярного насоса разъемными и их установка минимум на двух отдельных фрагментах обечайки внешнего корпуса, выполненных с возможностью герметичного совмещения между собой и внешним корпусом с образованием замкнутой поверхности вращения, при обеспечении их приводами плоскопараллельного перемещения относительно оси вращения барабана позволит осуществлять регулирование (включение/отключение) процесса вакуумирования приемной полости центрифуги.

Для обеспечения работоспособности турбомолекулярного насоса часто необходимо обеспечить на выходе из его последней ступени молекулярный режим течения газа любым насосом предварительного разрежения (форвакуумным насосом) с выхлопом в атмосферу.

Сопло Лаваля представляет собой канал особого профиля, суженный в середине, в простейшем случае состоящий из пары усеченных конусов, сопряженных узкими концами. Кольцевое же кольцо Лаваля получается путем установки по оси классического сопла осесимметричного тела вращения. Проходящий по соплу Лаваля воздушный/газовый поток может быть разогнан до высоких, вплоть до сверхзвуковых, скоростей. Таким образом, в соответствии с законом Бернулли, на выходе из сопла Лаваля за счет высокой скорости газового потока можно получить низкое давление. Таким образом выполнение в предложенной конструкции центрифуги контуров радиальных сечений загрузочного отверстия барабана и охватывающей его с зазором поверхности вращения, образованной отдельными фрагментами обечайки внешнего корпуса, по профилю кольцевого сопла Лаваля позволяет исключить потребность в насосе предварительного разряжения (форвакуумном).

И, наконец, наличие каплеотбойных устройств, например сетчатых или уголковых, закрепленных в приемной полости центрифуги на внешнем корпусе, т.е. между внешним корпусом и барабаном, перед роторными ступенями турбомолекулярного насоса, позволит избежать попадания капель фильтрата в его турбинный аппарат.

Центрифугу наиболее целесообразно использовать в горизонтальном исполнении, т.к. в этом случае на внутренней поверхности барабана будет получаться слой осадка равной толщины, что положительно скажется при его осушке в режиме работы с вакуумированием приемной полости. Режим работы - циклический.

Изобретение поясняется следующей графической информацией.

На фиг. 1 изображена принципиальная схема горизонтальной центрифуги (вид сверху) при "включенном" турбомолекулярном насосе.

На фиг. 2 - при "отключенном" турбомолекулярном насосе.

На фиг. 3, 4 - схематичные виды со стороны загрузочного отверстия барабана, также при "отключенном" турбомолекулярном насосе, при различных исполнениях приводов плоскопараллельного перемещения фрагментов обечайки внешнего корпуса с разъемными статорными ступенями турбомолекулярного насоса.

Центрифуга (фиг. 1, 2) содержит внешний корпус 1, внутри которого на приводном валу 2 размещен перфорированный барабан 3 и встроенный турбомолекулярный насос. Роторные ступени турбомолекулярного насоса 4 закреплены на обечайке барабана 3 вблизи его загрузочного отверстия, а статорные 5 выполнены разъемными и установлены минимум на двух отдельных фрагментах обечайки 6 внешнего корпуса. Фрагменты обечайки 6 выполнены с возможностью герметичной стыковки между собой и внешним корпусом 7 с образованием замкнутой поверхности вращения и снабжены приводами плоскопараллельного перемещения 8 относительно оси вращения барабана. Контуры радиальных сечений загрузочного отверстия барабана 3 и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки 6 внешнего корпуса 1, выполнены по профилю кольцевого сопла Лаваля 9, в приемной полости центрифуги между внешним корпусом 1 и барабаном 3 перед роторными ступенями 4 турбомолекулярного насоса дополнительно установлены каплеотбойные устройства 10, закрепленные на внешнем корпусе 1. Приводной вал 2 снабжен опорным подшипниковым узлом 11. На входе приводного вала 2 во внешний корпус 1 смонтировано уплотнительное устройство 12. Отбор фильтрата из приемной полости центрифуги осуществляется через клапан патрубка 13 (фиг. 3, 4).

На фиг. 1 фрагменты обечайки 6 посредством приводов плоскопараллельного перемещения 8 герметично состыкованы между собой и внешним корпусом центрифуги 1. Закрепленные на них статорные ступени турбомолекулярного насоса 5 находятся в зазорах между роторными ступенями 4. Контуры радиальных сечений загрузочного отверстия барабана 3 и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки 6 внешнего корпуса 1, формируют при стыковке профиль кольцевого сопла Лаваля 9. Турбомолекулярный насос "включен".

На фиг. 2…4 - фрагменты обечайки 6 посредством приводов плоскопараллельного перемещения 8 расстыкованы между собой и отстыкованы от внешнего корпуса центрифуги 1. Закрепленные на них статорные ступени турбомолекулярного насоса 5 выдвинуты из зазоров между роторными ступенями 4. Кольцевое сопло Лаваля отсутствует. Турбомолекулярный насос "выключен" (Для упрощения изображения приводы плоскопараллельного перемещения с поворотом на фиг. 4 условно не показаны).

Работа центрифуги осуществляется циклично в несколько стадий следующим образом.

1 - При условно "выключенном" турбомолекулярном насосе (фиг. 2, 3) на внутренней поверхности приводного барабана 3 закрепляется фильтрующий элемент (ткань, сетка и т.п.).

2 - Посредством приводного вала 2 размещенный во внешнем корпусе 1 перфорированный барабан 3 приводится во вращение.

3 - При достижении заданной частоты вращения в полость барабана 3 подается расчетное количество фильтруемой суспензии (например, вымытого при расснаряжении фосфорного боеприпаса из его корпуса красного фосфора совместно с водой). Под действием центробежного эффекта суспензия равномерно распределяется по внутренней поверхности стенки барабана 3 и часть воды сквозь фильтрующий элемент и перфорированную стенку барабана 3 попадает в приемную полость центрифуги - между внешним корпусом 1 и барабаном 3, откуда непрерывно удаляется через клапан патрубка 13 (фиг. 3, 4).

4 - Без прекращения вращения барабана, клапан патрубка 13 перекрывается и включаются приводы плоскопараллельного перемещения 8 (фиг. 1, 2). Осуществляется герметичная стыковка фрагментов обечайки 6 между собой и внешним корпусом центрифуги 1, одновременно закрепленные на них статорные ступени турбомолекулярного насоса 5 входят в зазоры между роторными ступенями 4, а контуры радиальных сечений загрузочного отверстия барабана 3 и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки 6 внешнего корпуса 1, формируют профиль кольцевого сопла Лаваля 9 (по завершении стыковки приводы 8, естественно, отключаются). Турбомолекулярный насос "включается" в работу и осуществляет вакуумирование приемной полости центрифуги, благодаря чему, наряду с центробежным фактором, за счет межполостного перепада воздушного/газового давления осуществляется окончательное разделение и осушка твердой составляющей суспензии до заданной влажности. Возможному попаданию капель фильтрата в турбинный аппарат турбомолекулярного насоса и уносу их во внешнюю среду препятствую каплеотбойные устройства 10.

5 - Реверсно включаются приводы плоскопараллельного перемещения 8 (фиг. 1, 2). Осуществляется расстыковка фрагментов обечайки 6 между собой и их отстыковка от внешнего корпуса центрифуги 1. Одновременно закрепленные на них статорные ступени турбомолекулярного насоса 5 выходят из зазоров между роторными ступенями 4, а также осуществляется "расформирование" кольцевого сопла Лаваля 9 (по завершении расстыковки приводы 8, естественно, отключаются). Турбомолекулярный насос из работы "выключается". Из приемной полости центрифуги через клапан патрубка 13 (фиг. 3, 4) удаляются остатки фильтрата.

6 - Отфильтрованная и осушенная твердая составляющая суспензии удаляется из барабана 3 известными техническими устройствами, например посредством ножа, без прекращения вращения барабана, после чего стадии 3…5 повторяются.

Таким образом, предложенная конструкция центрифуги при применении ее для разделения суспензий, содержащих в качестве твердой фазы компоненты, чувствительные к механическим воздействиям, предотвращает удаление фильтрата через турбинный аппарат турбомолекулярного насоса, наряду с центробежным фактором дополнительно использует межполостной перепад воздушного/газового давления для разделения и осушки твердой составляющей суспензии, а также исключает потребность в дополнительном насосе предварительного разрежения.

Источники информации

1. Патент WO 2014016125 (A1) Separator arrangement (Separator-anordnung), B04В 15/08, 2014.

2. Патент США US 3822823 (A) Vacuum centrifuge, В04В 15/08, 1974 (прототип).

Вакуумная центрифуга, содержащая внешний корпус, размещенный внутри него на приводном валу перфорированный барабан и встроенный турбомолекулярный насос, отличающаяся тем, что роторные ступени турбомолекулярного насоса закреплены на обечайке барабана вблизи его загрузочного отверстия, а статорные выполнены разъемными и установлены минимум на двух отдельных фрагментах обечайки внешнего корпуса, выполненных с возможностью герметичной стыковки между собой и внешним корпусом с образованием замкнутой поверхности вращения и снабженных приводами плоскопараллельного перемещения относительно оси вращения барабана, при этом контуры радиальных сечений загрузочного отверстия барабана и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки внешнего корпуса, выполнены по профилю кольцевого сопла Лаваля, а в приемной полости центрифуги между внешним корпусом и барабаном перед роторными ступенями турбомолекулярного насоса дополнительно установлены каплеотбойные устройства, закрепленные на внешнем корпусе.
Вакуумная центрифуга
Вакуумная центрифуга
Вакуумная центрифуга
Вакуумная центрифуга
Источник поступления информации: Роспатент

Showing 21-30 of 45 items.
25.08.2017
№217.015.cb85

Способ управления перемещением подвижной мишени и устройство для его осуществления

Изобретение относится к устройствам для обучения личного состава стрельбе из стрелкового оружия. Минимум три тросовых лебедки установлены с возможностью поворота относительно вертикальной оси. Салазки с установленной на них мишенью выполнены в виде тарелки с внешней отбортовкой выпуклого...
Тип: Изобретение
Номер охранного документа: 0002620245
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.e4f5

Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду

Изобретение относится к области испытания боеприпасов. Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду включает выстрел снарядом по преграде и последующее определение его скорости доплеровским локатором до и после...
Тип: Изобретение
Номер охранного документа: 0002626474
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.fbd6

Способ формирования атмосферной проекционной мишени для обучения боевой стрельбе и устройство для его осуществления

Изобретение относится к проекционным мишеням и может быть использовано для обучения личного состава боевой стрельбе из стрелкового и ракетно-артиллерийского вооружения. Способ формирования атмосферной проекционной мишени (11) заключается в том, что изображение объекта (9) проецируют на...
Тип: Изобретение
Номер охранного документа: 0002638510
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0072

Способ расснаряжения боеприпасов, снаряженных желтым фосфором

Изобретение относится к способам расснаряжения боеприпасов, снаряженных желтым фосфором. Способ включает предварительную физико-химическую модификацию желтого фосфора - преобразование в красный фосфор посредством полимеризации в режиме гомогенной реакции путем нагрева боеприпаса. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002629275
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0562

Способ испытания мобильных боевых робототехнических комплексов и стенд для его осуществления

Группа изобретений относится к способу испытаний мобильных боевых робототехнических комплексов и к стенду для испытаний. Способ заключается в последовательном/одновременном выполнении необходимых тестовых процедур с применением программного имитационного моделирования в виртуальной среде....
Тип: Изобретение
Номер охранного документа: 0002630860
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0a07

Инициирующий волновод

Инициирующий волновод содержит одно- или многослойную визуально прозрачную трубчатую оболочку с размещенным на ее внутренней поверхности слоем окрашенного мелкодисперсного активного вещества, ширина которого в поперечном сечении канала трубки не превышает его периметр. Слой активного вещества...
Тип: Изобретение
Номер охранного документа: 0002632013
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0a3a

Способ испытания корпусов боеприпасов на способность к дроблению

Изобретение относится к способам испытаний осколочных боеприпасов, конкретно к определению характеристик дробления материала корпуса на осколки под действием взрывной нагрузки. В качестве объекта испытаний используют непосредственно корпус реального боеприпаса. Способ включает заполнение каморы...
Тип: Изобретение
Номер охранного документа: 0002632089
Дата охранного документа: 02.10.2017
09.06.2018
№218.016.5fc1

Способ измерения характеристик взрыва заряда взрывчатого вещества в ближней зоне и устройство для его осуществления

Изобретение относится к способам и устройствам для измерения характеристик взрыва боеприпаса. Способ определения характеристик взрыва в ближней зоне с использованием нагружаемого элемента в форме стержня - величины давления ударной воздушной волны (УВВ) и импульса осуществляется по результатам...
Тип: Изобретение
Номер охранного документа: 0002656649
Дата охранного документа: 06.06.2018
20.06.2018
№218.016.647b

Способ измерения характеристик взрыва заряда взрывчатого вещества в ближней зоне и устройство для его осуществления

Изобретение относится к способам и устройствам для измерения характеристик взрыва боеприпаса. Способ определения характеристик взрыва заряда взрывчатого вещества (ВВ) в ближней зоне с использованием измерительного стержня Гопкинсона расчетным путем по замеренным параметрам упругой деформации,...
Тип: Изобретение
Номер охранного документа: 0002658080
Дата охранного документа: 19.06.2018
28.07.2018
№218.016.76f5

Устройство для определения импульса взрыва заряда взрывчатого вещества/боеприпаса в ближней зоне

Устройство для определения импульса взрыва заряда взрывчатого вещества/боеприпаса (ВВ) в ближней зоне содержит опорную конструкцию, состоящую из полки с горизонтальной поверхностью и вертикальной стойки/стоек для ее крепления и размещенную на полке совокупность подвергаемых воздействию...
Тип: Изобретение
Номер охранного документа: 0002662722
Дата охранного документа: 27.07.2018
Showing 21-30 of 52 items.
25.08.2017
№217.015.cb85

Способ управления перемещением подвижной мишени и устройство для его осуществления

Изобретение относится к устройствам для обучения личного состава стрельбе из стрелкового оружия. Минимум три тросовых лебедки установлены с возможностью поворота относительно вертикальной оси. Салазки с установленной на них мишенью выполнены в виде тарелки с внешней отбортовкой выпуклого...
Тип: Изобретение
Номер охранного документа: 0002620245
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.e4f5

Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду

Изобретение относится к области испытания боеприпасов. Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду включает выстрел снарядом по преграде и последующее определение его скорости доплеровским локатором до и после...
Тип: Изобретение
Номер охранного документа: 0002626474
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.fbd6

Способ формирования атмосферной проекционной мишени для обучения боевой стрельбе и устройство для его осуществления

Изобретение относится к проекционным мишеням и может быть использовано для обучения личного состава боевой стрельбе из стрелкового и ракетно-артиллерийского вооружения. Способ формирования атмосферной проекционной мишени (11) заключается в том, что изображение объекта (9) проецируют на...
Тип: Изобретение
Номер охранного документа: 0002638510
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0072

Способ расснаряжения боеприпасов, снаряженных желтым фосфором

Изобретение относится к способам расснаряжения боеприпасов, снаряженных желтым фосфором. Способ включает предварительную физико-химическую модификацию желтого фосфора - преобразование в красный фосфор посредством полимеризации в режиме гомогенной реакции путем нагрева боеприпаса. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002629275
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0562

Способ испытания мобильных боевых робототехнических комплексов и стенд для его осуществления

Группа изобретений относится к способу испытаний мобильных боевых робототехнических комплексов и к стенду для испытаний. Способ заключается в последовательном/одновременном выполнении необходимых тестовых процедур с применением программного имитационного моделирования в виртуальной среде....
Тип: Изобретение
Номер охранного документа: 0002630860
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0a07

Инициирующий волновод

Инициирующий волновод содержит одно- или многослойную визуально прозрачную трубчатую оболочку с размещенным на ее внутренней поверхности слоем окрашенного мелкодисперсного активного вещества, ширина которого в поперечном сечении канала трубки не превышает его периметр. Слой активного вещества...
Тип: Изобретение
Номер охранного документа: 0002632013
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0a3a

Способ испытания корпусов боеприпасов на способность к дроблению

Изобретение относится к способам испытаний осколочных боеприпасов, конкретно к определению характеристик дробления материала корпуса на осколки под действием взрывной нагрузки. В качестве объекта испытаний используют непосредственно корпус реального боеприпаса. Способ включает заполнение каморы...
Тип: Изобретение
Номер охранного документа: 0002632089
Дата охранного документа: 02.10.2017
09.06.2018
№218.016.5fc1

Способ измерения характеристик взрыва заряда взрывчатого вещества в ближней зоне и устройство для его осуществления

Изобретение относится к способам и устройствам для измерения характеристик взрыва боеприпаса. Способ определения характеристик взрыва в ближней зоне с использованием нагружаемого элемента в форме стержня - величины давления ударной воздушной волны (УВВ) и импульса осуществляется по результатам...
Тип: Изобретение
Номер охранного документа: 0002656649
Дата охранного документа: 06.06.2018
20.06.2018
№218.016.647b

Способ измерения характеристик взрыва заряда взрывчатого вещества в ближней зоне и устройство для его осуществления

Изобретение относится к способам и устройствам для измерения характеристик взрыва боеприпаса. Способ определения характеристик взрыва заряда взрывчатого вещества (ВВ) в ближней зоне с использованием измерительного стержня Гопкинсона расчетным путем по замеренным параметрам упругой деформации,...
Тип: Изобретение
Номер охранного документа: 0002658080
Дата охранного документа: 19.06.2018
28.07.2018
№218.016.76f5

Устройство для определения импульса взрыва заряда взрывчатого вещества/боеприпаса в ближней зоне

Устройство для определения импульса взрыва заряда взрывчатого вещества/боеприпаса (ВВ) в ближней зоне содержит опорную конструкцию, состоящую из полки с горизонтальной поверхностью и вертикальной стойки/стоек для ее крепления и размещенную на полке совокупность подвергаемых воздействию...
Тип: Изобретение
Номер охранного документа: 0002662722
Дата охранного документа: 27.07.2018
+ добавить свой РИД