×
19.01.2018
218.016.081d

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ МНОГОСЛОЙНОГО ИОННО-ПЛАЗМЕННОГО ПОКРЫТИЯ НА ПОВЕРХНОСТЬ ГРАВЮРЫ ШТАМПА ИЗ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава и может быть использовано для гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей. Способ включает помещение штампа в вакуумную камеру установки, создание требуемого вакуума, ионную очистку поверхности гравюры штампа с последующим нанесением на нее заданного количества слоев соединений титана с металлами и азотом. После ионной очистки наносят подслой из титана или из сплава на основе титана толщиной от 0,3 до 0, 7 мкм. Затем наносят разнородные слои соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый. Чередуют формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10 Па до 5⋅10 Па с формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10 Па до 3⋅10 Па. Для формирования соединений титана с металлами используют соединения титана со следующими металлами: Al, Mo, Zr, V, Si, С или их сочетание. 4 з.п. ф-лы, 1 пр.

Изобретение относится к машиностроению и может быть использовано для защиты поверхностей гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей, в том числе деталей сложной формы, например лопаток газотурбинных двигателей.

Метод горячей объемной изотермической штамповки используется, в основном, для изготовления деталей, работающих в условиях действия значительных статических и динамических нагрузок. К таким деталям относятся, например, лопатки компрессоров ГТД и ГТУ. Лопатки компрессора являются наиболее дорогостоящими деталями, определяющими ресурс двигателя, поэтому повышение их эксплуатационной надежности является достаточно важной экономической и технической задачей.

Процесс горячей объемной изотермической штамповки в условиях сверхпластичности включает пластическую деформацию металлической заготовки, происходящую под воздействием прикладываемого к ней давления штампа, имеющего гравюру, соответствующую форме получаемой детали. При этом в процессе эксплуатации штамп находится под постоянным воздействием высокой температуры.

Титановые сплавы, например такие, как ВТ6, ВТ3-1 и др., обладают высокой удельной прочностью и коррозионной стойкостью, поэтому они являются наиболее распространенными материалами для изготовления лопаток компрессора. Так, например, штампованные лопатки из сплава ВТ6 после стандартной термообработки имеют прочность до 1100 МПа и относительное удлинение 12-15%, а уровень усталостной прочности лопаток из сплава ВТ6 составляет около 410 МПа.

Наиболее распространенным методом производства деталей из титановых сплавов является объемное деформирование в горячем состоянии и, в частности, такие широко применяемые процессы, как штамповка и прессование. При изготовлении лопаток из титановых сплавов горячая объемная штамповка выполняется в условиях высоких температур, обеспечивающих структурные изменения в сплаве для получения заданных механических свойств деталей.

В условиях горячей объемной изотермической штамповки из-за высокого уровня напряжений, которому подвергается материал штампа при контакте с материалом заготовки, на рабочую поверхность штампа накладывают смазку, позволяющую несколько уменьшить контактные напряжения между материалом заготовки штампа. Однако, например, даже при прессовании титановых сплавов со смазкой матрицы выходят из строя через каждые 10-15 прессовок [М.З. Ерманок. Прессование титановых сплавов. - М.: Металлургия, 1979, с. 120-135, 2, Л.А. Никольский. Горячая штамповка и прессование титановых сплавов. - М.: Машиностроение, 1975, 205 с.].

Процесс штамповки заготовок из сплавов на основе титана характеризуется высокой температурой нагрева заготовки до 1000°С, значительными усилиями, обусловленные высоким пределом текучести материала (при t=1000°C т>200 МПа, в то время как сталь при t=1200°C имеет т<100 МПа), значительной величиной коэффициента трения пары Тi - материал инструмента, склонностью Ti к адгезионному схватыванию с материалом инструмента, особенно в условиях горячей объемной изотермической штамповки.

В этой связи достаточно большой интерес представляют способы обработки рабочих поверхностей штампов, с помощью которых достигается их значительное упрочнение. Значительный эффект поверхностного упрочнения достигается за счет повышения не только твердости, но и износо-, и коррозионной стойкости рабочей поверхности инструмента деформации. Для реализации указанных достоинств в промышленных условиях нашли применение методы упрочнения концентрированными потоками энергии.

Известен способ упрочнения штампа с оплавлением передней поверхности пуансона и матрицы непрерывным излучением лазера, сориентированным перпендикулярно передней поверхности и перемещающимся от периферии к рабочим кромкам (RU 2033435, C21D 1/09, C21D 9/22, 1995).

Известны также способы упрочнения штампа, заключающиеся в том, что на предварительно подготовленную поверхность наносится износостойкое покрытие из нитрида титана, при этом образуется переходная зона между поверхностью инструмента и покрытием, величина которой влияет на сцепление покрытия с материалом инструмента (Патент РФ 2062817, С23С 14/00, 14/26, опубл. 1996.06.27).

Наиболее близким к предлагаемому техническому решению является способ упрочнения штампа для штамповки, включающий подготовку поверхности гравюры штампа под нанесение покрытия и нанесение на подготовленную поверхность упрочняющего покрытия (Патент РФ 2096518, МПК С23С 14/06, С23С 14/16, МНОГОСЛОЙНОЕ КОМПОЗИЦИОННОЕ ПОКРЫТИЕ НА РЕЖУЩИЙ И ШТАМПОВЫЙ ИНСТРУМЕНТ, опубл. 20.11.1997). Многослойное композиционное покрытие наносится на режущий или штамповый инструмент. Покрытие состоит из чередующихся слоев тугоплавких соединений, причем один из чередующихся слоев содержит тугоплавкие соединения металлов IV, V или IV, VI групп Периодической системы элементов, а другой - тугоплавкие соединения металлов IV, V, или VI групп, при этом толщина слоев составляет 1-10 мкм.

В то же время штамп для горячей изотермической штамповки, имеющий гравюру, соответствующую конфигурации готового изделия из титанового сплава, изготавливают из жаропрочных сплавов, например, таких как ЖС6-У, ЖС6-К, ХН77ТЮР и др. В условиях воздействия высоких напряжений и температур возникают локальные адгезионные взаимодействия (схватывание, сварка и т.п.) между материалом поверхностного слоя гравюры штампа (жаропрочным никелевым сплавом) и материалом штампуемой заготовки (титановым сплавом). В результате такого взаимодействия и связанных с ним локальных «выровов» с поверхности гравюры ухудшается ее микрогеометрия. Изменение микрогеометрии поверхности гравюры приводит к увеличению неоднородности напряженно-деформированного состояния поверхностного слоя гравюры. В результате этого возникающие на локальных участках поверхности в процессе штамповки значительные механические напряжения приводят к резкому возрастанию температуры на этих участках до 900°С-1000°С и, как следствие, к разупрочнению материала штампа на этих участках. Далее наступает ускоренная фаза износа поверхности гравюры из-за сильной деформации ее разупрочненных участков поверхности.

В этой связи, основным недостатком аналогов и прототипа является низкая стойкость штампов из жаропрочных никелевых сплавов из-за неэффективности их поверхностного упрочнения, не предотвращающего разупрочнение материала поверхностного слоя.

В основу настоящего изобретения была положена задача уменьшения адгезионного взаимодействия между материалом штампа и штампуемой заготовкой.

Техническим результатом изобретения является повышение износостойкости штампа.

Поставленная задача и указанный технический результат осуществляется за счет того, что в способе нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава, включающем помещение штампа в вакуумную камеру установки, создание требуемого вакуума, ионную очистку поверхности гравюры штампа с последующим нанесением на нее заданного количества слоев соединений титана с металлами и азотом, в отличие от прототипа, после ионной очистки наносят подслой из титана или из сплава на основе титана толщиной от 0,3 до 0,7 мкм, а затем разнородные слои соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый, причем чередуют формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па с формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па, а для формирования соединений титана с металлами используют соединения титана со следующими металлами: Al, Mo, Zr, V, Si, С или их сочетание, при следующем их соотношении, % вес: либо - Al от 4 до 8%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 0,5 до 2%, V от 0,5 до 3%, Si до 0,5%, С до 0,3%, остальное - Ti, либо - Al от 4 до 8%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti.

Кроме того, возможны дополнительные варианты воплощения способа: ионную очистку проводят ионами аргона при плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа; заданное количество пар слоев покрытия определяется ее общей толщиной, равной от 7 мкм до 15 мкм; перед помещением деталей в вакуумную камеру установки проводят электролитно-плазменное полирование деталей, погружая их в водный раствор электролита и прикладывая к деталям положительное по отношению к электролиту электрическое напряжение.

Способ осуществляется следующим образом. Промытую от загрязнений и подготовленную под нанесение покрытий в вакууме штамповую оснастку (пуансон, матрицу) помещают в вакуумную камеру ионно-плазменной установки. Покрываемые поверхности детали должны иметь шероховатость поверхности Ra 1,2-2,5 мкм. При визуальном осмотре поверхности должны иметь металлический блеск, не иметь следов окисления, загрязнений и других поверхностных дефектов. Перед нанесением покрытия рекомендуется провести виброабразивную обработку в среде порошка карбида кремния. Промывку можно осуществлять ультразвуковым методом в моющем растворе. Далее целесообразно промыть детали горячей (60°С - 90°С) водой, просушить в струе горячего воздуха и протереть этиловым спиртом. В связи с тем, что пуансон и матрица закрытых штампов представляют собой сложнофасонную объемную форму, а используемый для формирования покрытия состав является многокомпонентным и, кроме того, напыляемым несколькими электродуговыми испарителями, то для обеспечения стабильности свойств поверхности пуансона и матрицы их целесообразно обрабатывать одновременно за одну загрузку. При этом расположение рабочих поверхностей пуансона и матрицы при нанесении покрытия должно обеспечивать получение однородного по толщине и свойствам покрытия. Для формирования покрытий на основе нитридов металлов необходимо обеспечивать температуру детали порядка 300°С - 400°С. Из-за значительной массы штамповой оснастки целесообразно осуществлять их предварительный нарев в вакууме, например, за счет электронов плазмы, подачей положительного потенциала на деталь (возможен также нагрев штампа вне камеры установки, но такой нагрев менее предпочтителен).

Последовательность процесса ионно-плазменного нанесения покрытия может быть следующей.

Ионная очистка поверхности. Ионная очистка согласно предлагаемому способу проводится в целях удаления окислов, активации и нагрева обрабатываемой поверхности. Ионная очистка проводится в вакууме 10-3 Па. При подаче электрического напряжения на деталь порядка 1000 В включают электродуговые испарители.

Нанесение покрытий. После окончания процесса ионной очистки на деталь подается опорное напряжение, при этом электродуговые испарители продолжают работать, формируя подслой из сплава на основе титана из толщиной от 0,3 до 0, 7 мкм. После нанесения подслоя в вакуумную камеру напускают азот, и формируют многослойное покрытие нанесением разнородных слоев соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый. При этом чередуют формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па с формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па. Для формирования соединений титана с металлами используют соединения титана со следующими металлами: Al, Мо, Zr, V, Si, С или их сочетание, при следующем их соотношении, % вес: либо - Al от 4 до 8%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 0,5 до 2%, V от 0,5 до 3%, Si до 0,5%, С до 0,3%, остальное - Ti, либо - Al от 4 до 8%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti. После нанесения покрытия детали охлаждают в вакуумной камере до температуры 160°С - 180°С при давлении в камере 10-3 Па. В качестве примера приведены основные технологические параметры процесса напыления. Толщины полученных на штампах покрытий составляли от 7 до 15 мкм.

Для оценки стойкости штампов были проведены следующие испытания. На образцы из высоколегированных жаропрочных никелевых сплавов (ЖС6-У, ЖС6-К) были нанесены покрытия как по способу-прототипу (патент РФ №2096518), согласно приведенных в способе-прототипе условий и режимов нанесения, так и покрытия по предлагаемому способу.

Режимы обработки образцов и нанесения покрытия по предлагаемому способу.

Ионная очистка: ионы аргона при энергии от 8 до 10 кэВ; плотность тока: 110 мкА/см2 - неудовлетворительный результат (Н.Р.); 130 мкА/см2 - удовлетворительный результат (У.Р.); 160 мкА/см2 (У.Р.); 180 мкА/см2 (Н.Р.); время ионной очистки: 0,1 часа (Н.Р.); 0,3 часа (У.Р.); 1,0 часа (У.Р.); 1,5 часа (Н.Р.).

Толщина подслоя из сплава на основе титана: 0,2 мкм (Н.Р.); 0,3 мкм (У.Р.); 0,5 мкм (У.Р.); 0,7 мкм (У.Р.); 0,9 мкм (Н.Р.). Толщина слоя соединений титана с металлами и азотом: 0,8 мкм (Н.Р.); 1,0 мкм (У.Р.); 1,3 мкм (У.Р.); 1,5 мкм (У.Р.); 1,8 мкм (У.Р.); 2,0 мкм (Н.Р.).

В соединениях титана с металлами и азотом использовались следующие металлы: Al, Мо, Zr, V, Si и их сочетание (AlMo, AlMoZr, AlMoZrV, AlMoZrVSi, AlZrVSi, AlMoVSi, AlMoZrSi, AlVSi, AlMoSi), при следующем их содержании, % вес: Al - [2% (Н.Р.); 4% (У.Р.); 8% (У.Р.) 10% (Н.Р.)]; Zr - [0,5% (Н.Р.); 1% (У.Р.); 3% (У.Р.); 5% (Н.Р.)]; Мо - [0,5% (Н.Р.); 1% (У.Р.); 2% (У.Р.); 4% (Н.Р.)]; V - [0,3% (Н.Р.); 0,5% (У.Р.); 1% (У.Р.); 3% (У.Р.); 5% (Н.Р.)]; Si от 1 до 4% - [0,5% (Н.Р.); 1% (У.Р.); 4% (У.Р.); 6% (Н.Р.)]; остальное - Ti.

После нанесения каждого слоя изменялось давление в вакуумной камере установки. При этом чередовали формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па [1⋅10-2 Па - (Н.Р.); 2⋅10-2 Па - (У.Р.); 3⋅10-2 Па - (У.Р.); 4⋅10-2 Па - (У.Р.); 5⋅10-2 Па - (У.Р.); 7⋅10-2 Па - (Н.Р.)] с формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па [0,4⋅10-1 Па - (Н.Р.); 1⋅10-1 Па - (У.Р.); 2⋅10-1 Па - (У.Р.); 3⋅10-1 Па - (У.Р.); 5⋅10-1 Па - (Н.Р.)].

Общая толщина покрытия-прототипа и покрытия, нанесенного по предлагаемому способу, составляла от 7 мкм до 15 мкм.

Электролитно-плазменное полирование проводили, погружая детали в водный раствор электролита и прикладывая к ним положительное по отношению к электролиту электрическое напряжение, осуществляя следующие варианты: полирование вели до обеспечения шероховатости не ниже Ra=0,08…0,12 мкм; полирование вели при рабочем напряжении 18..490 В; как варианты в качестве электролита использовали: водный раствор сульфата аммония с концентрацией 0,8…3,4; водный раствор, содержащий серную и орто-фосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас. %:

Серная кислота 10-30
Орто-фосфорная кислота 40-80
Блок-сополимер окисей этилена и пропилена 0,05-1,1
Натриевая соль сульфированного бутилолеата 0,01-0,05
Вода Остальное

Как варианты в качестве электролита использовали: водный растворы солей неорганических кислот аммония и щелочных металлов или соли низших карбоновых кислот, а также растворы свободных кислот; электролит, содержащий аммонийную соль неорганической кислоты, аммонийные соли низших карбоновых кислот и органические или неорганические вещества, образующие с металлами сплава комплексные соединения; используют электролит состава, мас. %:

(NH4)2SO4 5
Трилон Б 0,8

Как вариант, в качестве электролита использовали: электролит состава, мас. %:

(NH4)3PO4 5
Н3РО4 0,5
Тартрат К 0,5

Как вариант, в качестве электролита использовали: водные растворы солей натрия; в качестве водного раствора солей натрия используют 3-22%-ный раствор кислого углекислого натрия. В качестве электролита использовали: водные растворы солей аммония; в качестве соли аммония используют аммоний лимоннокислый одно- или двух- или трехзамещенный, или их смеси при следующем соотношении компонентов, мас. %:

Аммоний лимоннокислый одно-, или двух- или трехзамещенный, или их смеси - 2 – 18;

Вода - остальное.

Как вариант, в качестве электролита использовали: водные растворы солей со значением рН 4…9.

Как показали проведенные авторами исследования, нанесение на рабочие поверхности штамповой оснастки многослойных ионно-плазменных покрытий по предлагаемому техническому решению позволяет по сравнению с прототипом приблизительно в 1, 8-2,3 раза повысить стойкость штампов из жаропрочных никелевых сплавов (ЖС6-У, ЖС6-К) за счет снижения адгезионного взаимодействия материалов штампа и штампуемой детали, а также за счет резкого снижения процессов разупрочнение материала поверхностного слоя. Испытания проводились на образцах и натурных штампах в производственных условиях при штамповке лопаток из титановых сплавов.

Результаты исследований процессов износа штамповой оснастки показали, что применение в способе нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава следующих приемов: помещение штампа в вакуумную камеру установки; создание требуемого вакуума; ионную очистку поверхности гравюры штампа с последующим нанесением на нее заданного количества слоев соединений титана с металлами и азотом; нанесение после ионной очистки подслоя из титана или из сплава на основе титана толщиной от 0,3 до 0, 7 мкм; затем: нанесение разнородных слоев соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый, при их следующем чередовании: формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па и формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па; для формирования соединений титана с металлами используют соединения титана со следующими металлами: Al, Мо, Zr, V, Si, С или их сочетание, при следующем их соотношении, % вес: либо - Al от 4 до 8%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 0,5 до 2%, V от 0,5 до 3%, Si до 0,5%, С до 0,3%, остальное - Ti, либо - Al от 4 до 8%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti; а также при использовании следующих дополнительных вариантов: ионную очистку проводят ионами аргона при плотности тока от 130 МкА/см2 до 160 МкА/см2 в течение от 0,3 до 1,0 часа; заданное количество пар слоев покрытия определяется ее общей толщиной, равной от 7 мкм до 15 мкм; перед помещением деталей в вакуумную камеру установки проводят электролитно-плазменное полирование деталей, погружая их в водный раствор электролита и прикладывая к деталям положительное по отношению к электролиту электрическое напряжение, позволяют достичь технического результата заявляемого изобретения - повышения износостойкости штампа за счет решения задачи уменьшения адгезионного взаимодействия между материалом штампа и штампуемой заготовкой

Источник поступления информации: Роспатент

Showing 11-20 of 81 items.
10.06.2013
№216.012.4753

Армированный элемент прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, а именно к армированным элементам для уплотнения зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Элемент включает несущую часть, выполненную в виде сотовой структуры, и прирабатываемую...
Тип: Изобретение
Номер охранного документа: 0002483839
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b8e

Элемент прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Элемент прирабатываемого уплотнения турбины выполнен из адгезионно соединенных между собой путем спекания...
Тип: Изобретение
Номер охранного документа: 0002484924
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4b8f

Способ изготовления элемента прирабатываемого уплотнения турбины с армированной оболочкой

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Способ включает формирование элемента уплотнения заданной формы и размеров путем спекания в пресс-форме порошка...
Тип: Изобретение
Номер охранного документа: 0002484925
Дата охранного документа: 20.06.2013
20.10.2013
№216.012.7662

Способ полирования деталей из титановых сплавов

Изобретение относится к электролитно-плазменному полированию деталей из титановых сплавов и может быть использовано в турбомашиностроении при полировании рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров газотурбинных двигателей, для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002495966
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.7663

Способ электролитно-плазменного полирования деталей из титановых сплавов

Изобретение относится к электролитно-плазменному полированию металлических изделий, преимущественно из титановых сплавов, и может быть использовано в турбомашиностроении при обработке рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров...
Тип: Изобретение
Номер охранного документа: 0002495967
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7a10

Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе

Изобретение относится к области машиностроения и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора и турбины из легированных сталей и сплавов на никелевой основе для повышения выносливости и...
Тип: Изобретение
Номер охранного документа: 0002496910
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a11

Способ получения теплозащитного покрытия на детали газовой турбины из никелевого или кобальтового сплава

Изобретение относится к области машиностроения, а именно к способам получения теплозащитных покрытий на деталях турбин из никелевых или кобальтовых сплавов, в частности газовых турбин авиадвигателей и энергетических установок. Способ включает нанесение жаростойкого подслоя и формирование...
Тип: Изобретение
Номер охранного документа: 0002496911
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a13

Установка для ионно-лучевой и плазменной обработки

Изобретение может быть использовано при обработке длинномерных изделий для модифицирования поверхности и нанесения функциональных покрытий с использованием технологий вакуумной ионно-плазменной обработки, ионной имплантации и нанесения покрытий. Цилиндрическая вакуумная камера (1) установки...
Тип: Изобретение
Номер охранного документа: 0002496913
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.81b3

Составной сегмент прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Составной сегмент прирабатываемого уплотнения турбины содержит уплотняющий блок, выполненный в виде призмы из...
Тип: Изобретение
Номер охранного документа: 0002498879
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.82bb

Надбандажное прирабатываемое уплотнение для паровой турбины

Надбандажное прирабатываемое уплотнение для паровой турбины содержит уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения и кольцевые пазы статора турбины. Сегменты уплотнения включают в себя уплотняющие блоки, прикрепленные к корпусам уплотняющих блоков, имеющим в поперечном...
Тип: Изобретение
Номер охранного документа: 0002499143
Дата охранного документа: 20.11.2013
Showing 11-20 of 140 items.
20.10.2013
№216.012.7663

Способ электролитно-плазменного полирования деталей из титановых сплавов

Изобретение относится к электролитно-плазменному полированию металлических изделий, преимущественно из титановых сплавов, и может быть использовано в турбомашиностроении при обработке рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров...
Тип: Изобретение
Номер охранного документа: 0002495967
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7a10

Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе

Изобретение относится к области машиностроения и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора и турбины из легированных сталей и сплавов на никелевой основе для повышения выносливости и...
Тип: Изобретение
Номер охранного документа: 0002496910
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a11

Способ получения теплозащитного покрытия на детали газовой турбины из никелевого или кобальтового сплава

Изобретение относится к области машиностроения, а именно к способам получения теплозащитных покрытий на деталях турбин из никелевых или кобальтовых сплавов, в частности газовых турбин авиадвигателей и энергетических установок. Способ включает нанесение жаростойкого подслоя и формирование...
Тип: Изобретение
Номер охранного документа: 0002496911
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a13

Установка для ионно-лучевой и плазменной обработки

Изобретение может быть использовано при обработке длинномерных изделий для модифицирования поверхности и нанесения функциональных покрытий с использованием технологий вакуумной ионно-плазменной обработки, ионной имплантации и нанесения покрытий. Цилиндрическая вакуумная камера (1) установки...
Тип: Изобретение
Номер охранного документа: 0002496913
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.81b3

Составной сегмент прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Составной сегмент прирабатываемого уплотнения турбины содержит уплотняющий блок, выполненный в виде призмы из...
Тип: Изобретение
Номер охранного документа: 0002498879
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.82bb

Надбандажное прирабатываемое уплотнение для паровой турбины

Надбандажное прирабатываемое уплотнение для паровой турбины содержит уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения и кольцевые пазы статора турбины. Сегменты уплотнения включают в себя уплотняющие блоки, прикрепленные к корпусам уплотняющих блоков, имеющим в поперечном...
Тип: Изобретение
Номер охранного документа: 0002499143
Дата охранного документа: 20.11.2013
20.03.2014
№216.012.ac95

Надбандажное лабиринтное уплотнение для паровой турбины

Лабиринтное надбандажное уплотнение для паровой турбины содержит уплотнительный кольцевой гребешок и уплотняющие блоки. Гребешок выполнен или установлен на бандаже лопаток ступени ротора турбины. Уплотняющие блоки установлены с уплотняющим радиальным зазором относительно кольцевого гребешка...
Тип: Изобретение
Номер охранного документа: 0002509896
Дата охранного документа: 20.03.2014
27.08.2014
№216.012.eea2

Способ изготовления металлического изделия из порошкового материала цикличным послойным лазерным синтезом

Изобретение относится к порошковой металлургии, в частности к изготовлению металлических изделий из порошков селективным лазерным спеканием. Наносят слой керамического порошка, проводят селективное спекание на заданных участках слоя и удаляют указанный материал из неспеченных участков. Между...
Тип: Изобретение
Номер охранного документа: 0002526909
Дата охранного документа: 27.08.2014
20.11.2014
№216.013.071e

Способ обработки лопатки газотурбинного двигателя

Изобретение относится к электрофизическим и электрохимическим методам обработки, в частности к способу размерной и упрочняющей обработки лопаток ГТД, и может быть использовано в турбомашиностроении при обработке рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих...
Тип: Изобретение
Номер охранного документа: 0002533223
Дата охранного документа: 20.11.2014
10.01.2015
№216.013.1e1d

Способ повышения износостойкости резьбовой поверхности детали из легированных сталей

Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки и нанесения износостойких покрытий на резьбовые поверхности деталей, применяемых, например, в ролико-винтовых и шарико-винтовых передачах. Способ включает подготовку поверхности под нанесение...
Тип: Изобретение
Номер охранного документа: 0002539137
Дата охранного документа: 10.01.2015
+ добавить свой РИД