×
19.01.2018
218.016.04e9

Результат интеллектуальной деятельности: ЭЛЕКТРИЧЕСКИ ПРОВОДЯЩАЯ СТРУКТУРА ДЛЯ РЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002630646
Дата охранного документа
11.09.2017
Аннотация: Электрически проводящая структура для пропускания и отвода электрического тока от основного тела выходной направляющей лопасти в наружную опорную структуру содержит обшивку из металла, покрывающую переднюю кромку основного тела лопасти, и электрически проводящую прокладку из металла, содержащую контактную часть, имеющую такой размер, чтобы перекрывать одним концом обшивку, и часть в виде шайбы, предназначенную для ввода болта для затягивания в опорную структуру, при этом одно или больше соединений, выбранных из группы, содержащей сварку, точечную сварку, пайку, соединение с помощью электрически проводящей пасты и зажим, создают соединение между концом обшивки и контактной частью. Предотвращаются повреждения матричной смолы основного тела лопасти за счет безопасного отвода электрического тока при ударе в самолет молнии, ток обходит основное тело лопасти. 3 з.п. ф-лы, 8 ил.

Область техники, к которой относится изобретение

Данное изобретение относится к электрически проводящей структуре для безопасного отвода электрического тока при ударе в самолет молнии и, в частности, относится к структуре для пропускания электрического тока через выходные направляющие лопасти турбовентиляторного двигателя с малым сопротивлением.

Уровень техники

Когда в самолет ударяет молния, то ее авиационная конструкция проводит и отводит электрический ток через статический разрядник или любые другие средства в атмосферу, удаляя тем самым электрический заряд из авиационной конструкции. Если она имеет локально часть с высоким сопротивлением, то электрический ток через авиационную конструкцию может обходить эту часть и затем создавать здесь искру. Эта искра может вызывать повреждение определенных частей авиационной конструкции или зажигать некоторые воспламеняемые материалы. Поэтому необходимо принимать меры для достаточного снижения электрического сопротивления в каждой части, через которую протекает электрический ток, вызванный молнией. Соответствующий уровень техники раскрыт в патентной публикации 1.

Турбовентиляторный двигатель является реактивным двигателем, который имеет внешний контур вокруг двигателя в качестве сердечника. Часть энергии, генерируемой двигателем, приводит в действие вентилятор, часть воздушного потока, генерируемого вентилятором, выходит назад непосредственно через внешний контур, который используется для создания тяги. Хотя внутри внешнего контура предусмотрены выходные направляющие лопасти, имеющие лопасти для выпрямления воздушного потока, выходные направляющие лопасти могут также выполнять функцию опоры, которая соединяет корпус вентилятора с сердечником, которые окружают внешний контур.

Цитируемые документы

Патентные публикации

Патентная публикация 1: WO 2010/135318

Сущность изобретения

Техническая проблема

В случае, когда выходные направляющие лопасти соединяют корпус вентилятора с сердечником, то выходные направляющие лопасти являются принципиальными путями для электрической проводимости между корпусом вентилятора и сердечником. Поскольку выходные направляющие лопасти согласно уровню техники выполнены из любого материала с высокой проводимостью, такого как алюминиевые сплавы, то не требуется особого внимания относительно противомер относительно молний. Поскольку в последнее время изучается использование армированных углеродных волокном пластмасс (CFRP), которые являются менее проводящими, чем алюминиевые сплавы, считалось, что их электрическая проводимость не создает проблем, поскольку каждая лопасть имеет достаточную площадь поперечного сечения и поэтому имеет относительно низкое сопротивление, и множество таких лопастей действуют в качестве пучка проводящих путей. Однако исследования заявителей данной заявки показали, что когда ток проходит через выходные направляющие лопасти из CFPR, то электрическое сопротивление между корпусом вентилятора и сердечником составляет несколько Ом. Это является величиной, которая может привести к образованию искры. Кроме того, электрический ток в 100 кА или больше может моментально проходить между корпусом вентилятора и сердечником во время удара молнии. В комбинации с электрическим сопротивлением в несколько Ом создаваемое джоулево тепло может не отводиться и может создавать опасность повреждения матричной смолы в CFPR.

Решение проблемы

С учетом указанной выше проблемы, согласно одному аспекту данного изобретения предлагается электрически проводящая структура для пропускания и отвода электрического тока от основного тела выходной направляющей лопасти в наружную опорную структуру.

Электрически проводящая структура содержит: обшивку из металла, покрывающую переднюю кромку основного тела лопасти; и электрически проводящую прокладку из металла, содержащую контактную часть, имеющую такой размер, чтобы перекрывать одним концом обшивку, и часть в виде шайбы, предназначенную для ввода болта для затягивания в опорную структуру, при этом одно или больше соединений, выбранных из группы, содержащей сварку, точечную сварку, пайку, соединение с помощью электрически проводящей пасты и зажим, создают соединение между концом обшивки и контактной частью.

Преимущества

Электрически проводящий путь с низким сопротивлением создается между корпусом вентилятора и сердечником, который способен проводить и отклонять электрический ток от основного тела лопасти.

Краткое описание чертежей

На чертежах изображено:

фиг.1 – разрез турбовентиляторного двигателя;

фиг.2 - выходная направляющая лопасть согласно данному изобретению, в изометрической проекции;

фиг.3 – частичный разрез выходной направляющей лопасти с изображением, в частности, связи между лопастью и опорной структурой лопасти;

фиг.4 – лопасть и опорная структура лопасти с изображением, в частности, деталей электрически проводящей прокладки, в изометрической проекции;

фиг.5А – электрически проводящая прокладка, в изометрической проекции;

Фиг.5В – часть электрически проводящей прокладки и обшивки, на виде сверху;

фиг.6А – разрез связи между основным телом лопасти и обшивкой;

фиг.6В – разрез связи между основным телом лопасти и обшивкой согласно модифицированному примеру выполнения.

Описание вариантов выполнения

Ниже приводится в качестве примера описание вариантов выполнения изобретения со ссылками на прилагаемые чертежи. Следует, в частности, отметить, что эти чертежи выполнены не всегда с точным соблюдением масштаба, и поэтому соотношения размеров показанных элементов не ограничиваются изображенными соотношениями.

Как показано на фиг.1, турбовентиляторный двигатель 1 содержит, в качестве примера, вентилятор 3 в своем центре, и внутренняя стенка гондолы 5, окружающая его окружность, и сердечник 7 задают внешний контур. Часть а воздушного потока, создаваемого вентилятором 3, проходит в компрессор 9 низкого давления и используется для сгорания в двигателе, а другая часть b проходит во внешний контур. Часть b воздушного потока, проходящая через внешний контур, выпрямляется выходными направляющими лопастями, содержащими множество лопастей 11, и затем выходит сзади.

Как показано на фиг.2, каждая лопасть 11 является пластинообразной структурой, имеющей обтекаемую форму для выпрямления потока воздуха, и удлинена в радиальном направлении. Основное тело каждой лопасти 11 выполнено из армированной углеродным волокном пластмассы (CFRP). Ее наружный конец опирается на опорную структуру 13, а ее внутренний конец опирается на аналогичную опорную структуру 15, так что она закреплена на гондоле 5 и сердечнике 7.

Вблизи опорной структуры 13, кромка которой находится в контакте с лицевой стороной лопасти 11, расположен наружный вкладыш 17. Аналогичным образом, вблизи опорной структуры 15, кромка которой находится в контакте с лицевой стороной лопасти 11, расположен внутренний вкладыш 19. Кроме того, между лопастью 11 и вкладышами 17, 19 расположены уплотнения 21 для герметизации соответствующих зазоров. Вкладыши 17, 19 выполнены из CFRP, однако могут состоять из любого другого материала, такого как алюминиевый сплав.

Множество комбинаций из лопастей 11 и вкладышей 17, 19 расположено в окружном направлении с боковым примыканием друг к другу с образованием круговой структуры. Множество наружных вкладышей 17, расположенных цилиндрически, образуют часть внутренней стенки гондолы 5, и множество внутренних вкладышей 19 образуют аналогичным образом часть наружной стенки сердечника. Таким образом, наружные вкладыши 17 и внутренние вкладыши 19 образуют внешний контур.

В качестве альтернативного решения, вместо вкладышей можно применять платформы из любого алюминиевого сплава или т.п. Обычно платформы находятся в непосредственном контакте с лопастями 11 и тем самым их фланцевые части образуют внешний контур.

Как показано, в основном, на фиг.3 внутренний конец 11е лопасти 11 выступает сбоку наружу для усиления опорной способности, при этом он зажат опорной структурой 15. Как показано на фиг.4, отверстие для болта проходит через опорную структуру 15 и внутренний конец 11е и в него вставляется болт 41 и затягивается, за счет чего достигается обоюдная фиксация внутреннего конца 11е и опорной структуры 15. Опорная структура 15 имеет дополнительно другой набор отверстий 23 под болт, с помощью которых она закрепляется на сердечнике 7. Наружный конец имеет аналогичную структуру и закреплен с ее помощью на гондоле 5.

Передняя кромка основного тела лопасти 11 покрыта обшивкой 31, выполненной из подходящего металла. Эта обшивка 31 предотвращает эрозию лопасти 11 за счет фрикционного действия воздушного потока, включающего песок или пыль. В качестве материала для обшивки 31 можно применять, с учетом стойкости к эрозии и пригодности для машинной обработки, например, титан, титановые сплавы, никель, сплавы никеля и нержавеющие стали. Предпочтительно, обшивка 31 выполнена в тесном контакте с передней кромкой основного тела лопасти 11 без зазора между ними, как показано на фиг.6А. Такая структура с плотным контактом без оставления зазора может быть реализована с помощью любого известного пластического формования, однако вместо него можно применять также сверхпластическое формование. Некоторые сплавы титана подходят для сверхпластического формования. Кроме того, можно применять любой другой подходящий способ изготовления, такой как литье или машинная обработка.

Как показано на фиг.4, электрически проводящая прокладка 33 предусмотрена в качестве перехода от обшивки 31 к болту 41. Электрически проводящая прокладка 33 выполнена из подходящего металла и предпочтительно из того же материала, что и обшивка 31. Воздух, всасываемый вентилятором 3, содержит значительное количество влаги, так что эта часть подвергается воздействию влаги, достаточной для вызывания коррозии. Если идентичный материал применяется как для обшивки 31, так и для электрически проводящей прокладки 33, то может быть предотвращена контактная коррозия.

Электрически проводящая прокладка 33, как показано на фиг.5А, имеет переднюю часть 35, контактную часть 37, отходящую вверх от ее конца, и часть 39 в виде шайбы, отходящую вниз от ее другого конца. Контактная часть 37 используется для соединения с обшивкой 31, а часть 39 в виде шайбы используется для соединения с болтом 41.

Контактная часть 37 имеет размеры, обеспечивающие перекрытие с концом обшивки 31. Как показано на фиг.5В, ширина L1 перекрытия составляет, например, 1 мм или больше для обеспечения достаточной контактной поверхности, и длина L2 равна 10 мм или больше. Для уменьшения электрического сопротивления предпочтительно выполнять ширину L1 и длину L2 большими, однако верхние пределы ограничены структурными факторами. Например, если верхний конец контактной части 37 выступает во внешний контур, то это может приводить к разрыву воздушного потока. Таким образом, ширина L1 ограничена тем, что верхний конец не должен достигать внутреннего вкладыша 19. Кроме того, поскольку перекрытие не должно превышать ширину обшивки 31, то длина L2 ограничена шириной обшивки 31.

Конец обшивки 31 и контактная часть 37 могут быть соединены друг с другом с помощью точечной сварки, выполняемой с помощью точечного подвода энергии. В качестве альтернативного решения, вместо точечной сварки или дополнительно к ней, можно применять сварку, пайку, соединение с помощью электрически проводящей пасты или зажимание. Эти средства являются предпочтительными с точки зрения возможности уменьшения контактного сопротивления в месте соединения между обшивкой 31 и контактной частью 37 и обеспечения прочного соединения между ними.

Часть 39 в виде шайбы имеет отверстие для введения болта и в него вставлен болт 41. Болт 41 при прохождении через часть 39 в виде шайбы и затягивания относительно опорной структуры 15 создает электрическое соединение между электрически проводящей прокладкой 33 и опорной структурой 15. В качестве альтернативного решения, соединение можно выполнять не с помощью болта 41, а с помощью любого другого болта, такого как болт, затягиваемый в одном из отверстий 23 под болт. В качестве другого альтернативного решения, вместо затягивания болта или дополнительно к нему, можно применять соединение с помощью сварки или пайки. Однако с учетом необходимости разборки в последующем для проверки, технического обслуживания или ремонта соединение посредством затягивания является более целесообразным.

С помощью поясненной выше структуры обшивка 31 образует электрическое соединение с сердечником через электрически проводящую прокладку 33 и опорную структуру 15. Поскольку достаточно низкое сопротивление можно ожидать в каждой точке контакта, то ожидаемое электрическое сопротивление проводящего пути также является достаточно низким.

Другой конец лопасти 11 имеет аналогичную проводящую структуру, которая образует электрическое соединение между обшивкой 31 и корпусом вентилятора. За счет этого корпус вентилятора и сердечник электрически соединены друг с другом с низким сопротивлением через обшивку 31 и электрически проводящую прокладку 33, а именно, по пути, обходящем основное тело лопасти из CFRP. Эта электрически проводящая структура применима ко всем лопастям 11.

Согласно указанному выше варианту выполнения электрическое сопротивление между корпусом вентилятора и сердечником уменьшается до нескольких десятых или нескольких сотых миллиОм. Это является достаточно низким сопротивлением для уменьшения опасности образования искры. Поскольку сопротивление уменьшается на порядок по сравнению со случаем, когда электрический ток проходит через лопасть 11, то можно считать, что электрический ток обходит основное тело лопасти. Это является предпочтительным для предотвращения повреждения матричной смолы CFRP.

Кроме того, в указанном варианте выполнения предотвращается прохождение электрического тока через внутренний вкладыш и наружный вкладыш. Даже в случае, когда они выполнены из CFRP, эффективно предотвращается их повреждение. Кроме того, поскольку внутренний вкладыш и наружный вкладыш не обязательно используются в качестве электрически проводящих путей, то они могут быть изолированы от лопасти. В случае, когда они выполнены из алюминиевого сплава или т.п., можно применять изолирующую обработку, такую как анодирование. Даже в случае применения особого металла, такого как титан, в других элементах не возникает контактная коррозия. Это относится к случаю использования платформенной структуры вместо вкладышей.

В указанном выше варианте выполнения возможно множество модификаций. Например, как показано на фиг.6В, можно применять для этого вспомогательный электрически проводящий провод 37’. Электрически проводящий провод 37’ предназначен для прохождения через пространство 11а между основным телом лопасти и обшивкой 31 и соединения с контактной частью 37 с помощью сварки или т.п. В качестве альтернативного решения, он может быть непосредственно соединен с болтом 41 или с любым другим болтом. В качестве другого альтернативного решения, электрически проводящий провод 37’ может быть заделан в основное тело лопасти. Такой электрически проводящий провод 37’ может служить вместо или дополнительно к обшивке 31 в качестве электрически проводящего пути, имеющего низкое сопротивление.

Хотя описание изобретения было приведено со ссылками на определенные варианты выполнения изобретения, изобретение не ограничивается указанными выше вариантами выполнения. Для специалистов в данной области техники могут быть очевидными модификации и вариации указанных выше вариантов выполнения в свете поясненных выше идей.

Промышленная применимость

Предлагается электрически проводящая структура, которая образует электрически проводящий путь с низким сопротивлением между корпусом вентилятора и сердечником, который способен проводить и отводить электрический ток от основного тела лопасти.


ЭЛЕКТРИЧЕСКИ ПРОВОДЯЩАЯ СТРУКТУРА ДЛЯ РЕАКТИВНОГО ДВИГАТЕЛЯ
ЭЛЕКТРИЧЕСКИ ПРОВОДЯЩАЯ СТРУКТУРА ДЛЯ РЕАКТИВНОГО ДВИГАТЕЛЯ
ЭЛЕКТРИЧЕСКИ ПРОВОДЯЩАЯ СТРУКТУРА ДЛЯ РЕАКТИВНОГО ДВИГАТЕЛЯ
ЭЛЕКТРИЧЕСКИ ПРОВОДЯЩАЯ СТРУКТУРА ДЛЯ РЕАКТИВНОГО ДВИГАТЕЛЯ
ЭЛЕКТРИЧЕСКИ ПРОВОДЯЩАЯ СТРУКТУРА ДЛЯ РЕАКТИВНОГО ДВИГАТЕЛЯ
ЭЛЕКТРИЧЕСКИ ПРОВОДЯЩАЯ СТРУКТУРА ДЛЯ РЕАКТИВНОГО ДВИГАТЕЛЯ
ЭЛЕКТРИЧЕСКИ ПРОВОДЯЩАЯ СТРУКТУРА ДЛЯ РЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 91-100 of 106 items.
14.06.2019
№219.017.82d3

Устройство формования армированного волокном композитного элемента и способ формования армированного волокном композитного элемента

Устройство и способ относятся к области формованных композитных изделий, армированных волокном, Устройство 1 формования армированного волокном композитного элемента содержит нижнюю пресс-форму 2 с полостью 21, верхнюю пресс-форму 3 с формовочным стержнем 31 для зажатия многослойного препрега P...
Тип: Изобретение
Номер охранного документа: 0002691340
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.881e

Способ технологической обработки летучего органического соединения, устройство для адсорбции и десорбции и установка для технологической обработки летучего органического соединения

Изобретение может быть использовано в химической промышленности. Газ, содержащий летучие органические соединения, подается во внутренний отсек сосуда для очистки 11, а затем через перегородку 13 - во внешний отсек. Летучие органические соединения адсорбируются слоем активированного угля 12....
Тип: Изобретение
Номер охранного документа: 0002366494
Дата охранного документа: 10.09.2009
06.07.2019
№219.017.a6e3

Устройство для формования композитного элемента с волоконным армированием

Изобретение относится к устройству 1 для формования композитного элемента с волоконным армированием. Устройство содержит пару полуформ 2, 3 для зажимания многослойного препрега Р, или наложенных один на другой листов препрега, состоящих из длинных углеродных волокон, пропитанных смолой, катушки...
Тип: Изобретение
Номер охранного документа: 0002693729
Дата охранного документа: 04.07.2019
03.08.2019
№219.017.bbf3

Устройство для формования армированных волокнами композиционных элементов

Изобретение относится к устройству для формования армированных волокнами композиционных элементов. Описано устройство для формования армированных волокнами композиционных элементов, включающее: первую форму, имеющую полость, которая приводится в контакт с препрегом, выполненным из тканого...
Тип: Изобретение
Номер охранного документа: 0002696438
Дата охранного документа: 01.08.2019
10.10.2019
№219.017.d428

Устройство для оценки деформации, устройство для диагностики и способ оценки деформации

Устройство для оценки деформации согласно аспекту настоящего изобретения представляет собой устройство для оценки деформации, которое оценивает деформацию компонента, обеспеченного в текучей среде, и включает в себя устройство получения данных о давлении, которое получает сигнал давления,...
Тип: Изобретение
Номер охранного документа: 0002702404
Дата охранного документа: 08.10.2019
10.11.2019
№219.017.dfce

Метательный снаряд для имитации столкновения с птицей

Изобретение относится к метательному снаряду для имитации столкновений с птицами, когда птицы сталкиваются с самолетом или втягиваются в двигатель во время его взлета или посадки. Технический результат – повышение эффективности имитации. Метательный снаряд содержит объемное тело с контуром...
Тип: Изобретение
Номер охранного документа: 0002705444
Дата охранного документа: 07.11.2019
14.12.2019
№219.017.edfa

Сопловой аппарат турбины

Сопловой аппарат турбины содержит лопатки статора турбины и уплотнительный элемент. Каждая лопатка содержит аэродинамический участок, загнутый участок и бандажный участок, соединенный с аэродинамическим участком через загнутый участок, и образована путем соединения керамического материала с...
Тип: Изобретение
Номер охранного документа: 0002708931
Дата охранного документа: 12.12.2019
25.01.2020
№220.017.f9c3

Жидкостная ракетная двигательная установка со вспомогательной элктрической мощностью

Изобретение относится к жидкостной ракетной двигательной установке. Жидкостная ракетная двигательная установка со вспомогательной электрической мощностью содержит форкамеру (11) для образования газообразных продуктов сгорания горючего и окислителя; главную камеру (10) сгорания для сжигания...
Тип: Изобретение
Номер охранного документа: 0002711887
Дата охранного документа: 23.01.2020
05.02.2020
№220.017.fe1a

Способ получения композиционного материала с керамической матрицей

Предложенное изобретение относится к способу получения композиционного материала с керамической матрицей, используемого для устройств, требующих термической прочности при высоких температурах, таких как двигатели реактивного самолета. Способ получения композиционного материала с керамической...
Тип: Изобретение
Номер охранного документа: 0002712999
Дата охранного документа: 03.02.2020
12.02.2020
№220.018.017b

Устройство моделирования форм материалов, способ моделирования форм материалов и способ изготовления трехмерных плетеных волокнистых компонентов

Изобретение относится к устройству и способу моделирования форм материалов и способу изготовления трехмерных плетеных волокнистых компонентов. Технический результат заключается в автоматизации моделирования форм материалов. Устройство содержит: блок формирования поля векторов ориентации,...
Тип: Изобретение
Номер охранного документа: 0002713855
Дата охранного документа: 07.02.2020
Showing 71-74 of 74 items.
05.12.2018
№218.016.a33d

Экранирующий элемент и реактивный двигатель, в котором используется такой элемент

Изобретение относится к экранирующим элементам реактивного двигателя. Экранирующий элемент (30) расположен поверх зазоров между участками полки (20) соседних лопаток (10) ротора турбины и выполнен из композита с керамической матрицей с возможностью экранирования зазора между участками полки...
Тип: Изобретение
Номер охранного документа: 0002673963
Дата охранного документа: 03.12.2018
16.02.2019
№219.016.bb8e

Спрямляющий аппарат вентилятора и турбовентиляторный двигатель

Спрямляющий аппарат вентилятора содержит множество лопаток статора, которые прикреплены к корпусу турбовентиляторного двигателя. Если комбинация типа лопатки статора и типа лопатки статора для одной ограничивающей проточный канал пластины является такой же, как комбинация типа лопатки первой...
Тип: Изобретение
Номер охранного документа: 0002679998
Дата охранного документа: 14.02.2019
01.03.2019
№219.016.d088

Лопатка газотурбинного двигателя для воздушного судна и способ ее изготовления

При изготовлении лопатки газотурбинного двигателя из множества препрегов композиционного материала, содержащих армированное волокно и имеющих термопластичный полимер в качестве их матриц, образуют ламинат посредством ламинирования препрегов на плоской поверхности в направлении толщины....
Тип: Изобретение
Номер охранного документа: 0002462620
Дата охранного документа: 27.09.2012
06.07.2019
№219.017.a6e3

Устройство для формования композитного элемента с волоконным армированием

Изобретение относится к устройству 1 для формования композитного элемента с волоконным армированием. Устройство содержит пару полуформ 2, 3 для зажимания многослойного препрега Р, или наложенных один на другой листов препрега, состоящих из длинных углеродных волокон, пропитанных смолой, катушки...
Тип: Изобретение
Номер охранного документа: 0002693729
Дата охранного документа: 04.07.2019
+ добавить свой РИД