×
19.01.2018
218.016.048c

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ ГЕКСАФТОРИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз гексафторида урана, при этом гексафторид урана предварительно охлаждают до температуры ≤-40°C, а в воду добавляют фторид аммония и лед, количество которого выбирают из условия компенсации тепловыделения при гидролизе гексафторида урана, при этом гексафторид урана постепенно загружают в полученную смесь, а его количество выбирают обратно пропорционально росту температуры раствора продуктов, далее осуществляют обработку продуктов гидролиза аммиачной водой, фильтрацию и термообработку осадка. Изобретение позволяет с высокой эффективностью и производительностью перерабатывать значительное количество гексафторида урана. При этом способ не требует сложной агрегированной системы аппаратов и может быть применен для переработки как высокообогащенного, так и обедненного (отвального) по изотопу U гексафторида урана, в том числе после длительного периода его хранения. 6 з.п. ф-лы, 4 пр.

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана (UO2F2) и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида.

Способы переработки гексафторида урана (UF6) делятся на две категории - «сухие» или пирометаллургические и «мокрые» или гидрометаллургические методы. Пирометаллургические способы заключаются в обработке гексафторида урана при температуре 600-1000°С водяным паром или другими газообразными реагентами - продуктами горения кислородно-водородного пламени. Процессы пирогидролиза гексафторида урана перегретым водяным хорошо изучены и широко применяются в промышленности (Б.В. Громов. «Введение в химическую технологию урана». М.: Атомиздат, 1978, стр. 286-287).

Известен способ получения порошка диоксида урана из гексафторида урана, включающий подачу в предварительно разогретую первую реакционную зону реакционной камеры гексафторида урана и водяного пара, подачу во вторую реакционную зону реакционной камеры смеси водяного пара и водорода с созданием в этой зоне псевдоожиженного слоя для восстановления в ней полученного в первой реакционной зоне диоксидифторида до диоксида урана, выгрузку порошка из реакционной камеры и подачу его в печь, в которую вводят смесь водяного пара и водорода для обеспечения довосстановления непрореагировавшего диоксидифторида урана (патент RU 2381993, МПК C01G 43/025, опубл. 20.02.2010).

Общим недостатком этого и других «сухих» методов переработки гексафторида урана является необходимость использования для проведения процесса сложного и нестандартного аппаратурного оборудования из коррозионностойких в парах фтористого водорода металлов (никеля или сплавов на его основе). Кроме того, в некоторых случаях использование сложных комплексов реакторов и трубчатых вращающихся печей приводит к затруднениям в контроле параметров процессов, что обуславливает повышенные эксплуатационные затраты.

Гидрометаллургические методы переработки сводятся к гидролизу гексафторида урана в воде и последующей обработке продуктов гидролиза аммиаком, фильтрации и термообработке осадка (Н.П. Галкин, А.А. Майоров и др. «Химия и технология фтористых соединений урана». М., 1961, стр. 220-224).

Известен способ переработки гексафторида урана в диоксидифторид урана уранилфторид путем гидролиза водным раствором фтороводорода при перемешивании, с последующим отделением фтороводорода от диоксидифторида урана (патент RU 2311346, МПК C01G 43/06, опубл. 27.11.2007). Недостатком данного способа является использование агрессивного фтороводорода и сложность аппаратурного оформления процесса отделения фтороводорода от диоксидифторида урана.

Наиболее близким по технической сущности является способ переработки гексафторида урана, который заключается в том, что растворяют гексафторид урана в воде с получением раствора диоксидифторида урана, полученный раствор обрабатывают аммиачной водой с получением твердого полиураната аммония и раствора фторида аммония. Твердую фракцию отфильтровывают и прокаливают при температуре 450-600°С до октаоксида триурана и далее раствор после фильтрации упаривают до получения твердого фторида аммония (патент RU 2489357, МПК C01G 43/06, опубл. 10.08.2013). Этот способ выбран в качестве прототипа. Недостатком данного способа является то, что он применим при небольших загрузках UF6 (до 10 г). При больших загрузках UF6 (более 10,0 г), вследствие высокого значения теплоты реакции гидролиза (118 ккал/моль) и большого тепловыделения, происходит сильный неконтролируемый разогрев образующегося раствора, что приводит к испарению (возгонке) UF6 и уменьшению выхода продукта, а также необходимости применения сложной агрегированной системы улавливания и конденсации испарившего UF6 (конденсаторы, скрубберы, сорбенты и т.п.).

Задачей настоящего изобретения является разработка способа, позволяющего с высокой эффективностью перерабатывать значительное количество гексафторида урана и не требующего при этом дополнительной сложной агрегированной системы аппаратов.

Поставленная задача решается тем, что в способе переработки гексафторида урана, включающем его гидролиз, обработку продуктов гидролиза аммиачной водой, фильтрацию и термообработку осадка, согласно изобретению гексафторид урана предварительно охлаждают до температуры ≤-40°С, перед гидролизом гексафторида в воду добавляют фторид аммония (NH4F) и лед, количество которого выбирают из условия компенсации тепловыделения при гидролизе гексафторида урана, а затем в полученную смесь постепенно загружают гексафторид урана, количество которого выбирают обратно пропорционально росту температуры раствора продуктов гидролиза.

Глубокое охлаждение гексафторида урана до температуры ≤(-40)°С позволяет без применения специальной агрегированной аппаратуры осуществлять работу с гексафторидом урана в открытом виде при атмосферном давлении, поскольку указанная температура является границей резкого снижения давления паров UF6 при атмосферном давлении.

Перед гидролизом гексафторида в воду добавляют фторид аммония и лед. Добавление фторида аммония приводит к образованию комплексов с гексафторидом и диоксидифторидом урана (NH4UF7, (NH4)3UO2F5), что способствует более полному превращению UF6 в готовый продукт. Кроме того, образование комплексов с гексафторидом приводит к снижению давления паров UF6 и тем самым уменьшает потери урана в процессе его гидролиза. Добавление льда перед гидролизом позволяет компенсировать тепловыделение при гидролизе гексафторида. При этом количество льда для выполнения условий компенсации тепловыделения определяется величиной суммарной загрузки гексафторида урана и воды. Исходя из тех же соображений, гексафторид урана загружают в полученную смесь постепенно, уменьшая загрузку обратно пропорционально росту температуры в процессе гидролиза UF6..

В частных случаях осуществления изобретения охлажденный UF6 постепенно порциями погружают в водный раствор фторида аммония и льда. Величину загружаемых порций гексафторида урана можно определить экспериментально или рассчитать по формуле:

,

где

ΔT=Tni-Tno - рост температуры раствора в процессе гидролиза гексафторида урана, °С;

Тno - начальная температура воды и льда, °С;

Тni - температура воды и льда после i-й загрузки, °С;

ΔM - масса порционной загрузки UF6, г.

При этом интервал между загрузками гексафторида урана можно рассчитать по формуле:

,

где

ΔТ=Тni-Тno - рост температуры раствора в процессе гидролиза гексафторида, °С;

Δt - интервал времени между порциями гексафторида, мин.

Оптимальное объемное соотношение льда и воды составляет 1:(4-5), поскольку увеличение объема льда может затруднить теплообмен и снизить поглощающую способность гидролизующей системы, особенно в начальный период.

Оптимальное весовое отношение фторида аммония к гексафториду урана составляет (1-3):10. Оно подобрано экспериментальным путем из условия обеспечения образования водорастворимых комплексов NH4UF7 и (NH4)3UO2F5.

Гексафторид загружают в смесь воды, льда и фторида аммония постепенно при весовом отношении общего количества гексафторид урана к воде и льду, равном 1:(5-7). Указанное соотношение ингредиентов является оптимальным и обеспечивает полную растворимость образующихся диоксидифторида урана и его комплекса с фторидом аммония без кристаллизации продуктов реакции.

Охлаждение гексафторида урана можно проводить жидким азотом или «сухим льдом».

Сведения, подтверждающие возможность осуществления изобретения.

Пример 1

600 г гексафторида урана охлаждали жидким азотом до температуры -85°С. В воде (3000 мл) растворяли 180 г фторида аммония, далее добавляли 600 мл льда.

Охлажденный UF6 постепенно порциями по ≤100 г погружали в водный раствор фторида аммония и льда с получением раствора диоксидифторида урана, его комплекса с фторидом аммония и бифторида аммония (NH4HF2):

UF6+2Н2O=UO2F2+4HF;

UO2F2+3NH4F=(NH4)3UO2F5;

NH4F+HF=NH4HF2 .

В процессе гидролиза гексафторида урана за счет тепловыделения температура гидролизующей системы (вода, лед, фторид аммония, диоксидифторид урана) увеличивалась с 3°С до 23°С. Величину загружаемых порций рассчитывали по формуле .

Согласно формуле (1) порции UF6 уменьшали обратно пропорционально росту температуры раствора в процессе гидролиза:

При ΔТ=0°С ΔМ=100/{1+0,1(0)}=100 г.

При ΔТ=5°С ΔМ=100/{1+0,1(5)}=66,6 г.

При ΔТ=10°С ΔМ=100/{1+0,1(10)}=50 г.

При ΔТ=20°С ΔМ=100/(1+0,1(20)}=33,3 г.

Интервал между порциями гексафторида урана увеличивали прямо пропорционально росту температуры раствора и в соответствии с формулой (2).

Δt=1+0,2ΔТ интервал составлял:

При ΔТ=0°С Δt=1+0,2(0)=1 мин.

При ΔТ=5°С Δt=1+0,2(5)=2 мин.

При ΔТ=10°С Δt=1+0,2(10)=3 мин.

При ΔТ=20°С Δt=1+0,2(20)=5 мин.

Полученный раствор обрабатывали 1050 мл 25% аммиачной воды с получением твердого ураната аммония (NH4)2U2O7 и раствора фторида аммония NH4F:

2UO2F2+6NH4OH=(NH4)2U2O7+4NH4F+3H2O.

Уранат аммония (NH4)2U2O7 фильтрационно отделяли от раствора фторида аммония и прокаливали при температуре 600°С до октаоксида триурана:

3(NH4)2U2O7=2U3O8+6NH3+3H2O+O2.

В результате перечисленных операций получили порошок U3O8 массой 478,2 г. Химический выход урана составил 99,93%.

Пример 2

600 г гексафторида урана охлаждали «сухим льдом» (твердая двуокись углерода) до температуры -44°С. В воде (3000 мл) растворяли 60 г фторида аммония и далее добавляли 600 мл льда и затем в полученную смесь постепенно порциями загружали гексафторид урана. Интервал между порционными загрузками гексафторида урана, как и в примере №1, с ростом температуры, согласно формуле (2), увеличивали с 1 мин до 5 мин. Полученный раствор обработали 1050 мл 25% аммиачной воды, фильтрационно отделили твердый продукт (NH4)2U2O7 и прокалили его при 600°С. Получили U3O8 массой 470,2 г. Химический выход урана составил 98,03%.

Пример 3

600 г гексафторида урана охлаждали жидким азотом до температуры -77°С. В воде (3200 мл) растворяли 60 г фторида аммония и далее добавляли 800 мл льда и затем в полученную смесь постепенно порциями загружали гексафторид урана. Интервал между порционными загрузками гексафторида урана, как и в примерах 1 и 2, с ростом температуры, согласно формуле (2), увеличивали с 1 мин до 5 мин. Полученный раствор обработали 1050 мл 25% аммиачной воды, фильтрационно отделили твердый продукт (NH4)2U2O7 и прокалили его при 600°С. Получили U3O8 массой 471,3 г. Химический выход урана составил 98,23%.

Пример 4

650 г гексафторида урана охлаждали жидким азотом до температуры -73°С. В воде (2650 мл) растворяли 120 г фторида аммония и далее добавляли 600 мл льда и затем в полученную смесь постепенно порциями загружали гексафторид урана. Интервал между порционными загрузками гексафторида урана, как и в предыдущих примерах, увеличивали с 1 мин до 5 мин. Полученный раствор обработали 1000 мл 25% аммиачной воды, фильтрационно отделили твердый продукт (NH4)2U2O7 и прокалили его при 600°С. Получили U3O8 массой 469,2 г. Химический выход урана составил 97,98%.

Таким образом, из приведенных примеров видно, что осуществление способа в соответствии с заявленным изобретением позволяет с высокой эффективностью и производительностью перерабатывать значительное количество гексафторида урана. При этом способ не требует сложной агрегированной системы аппаратов и может быть применен для переработки как обедненного (отвального), так и высокообогащенного по изотопу U235 гексафторида урана, в том числе после длительного периода его хранения.

Источник поступления информации: Роспатент

Showing 11-20 of 78 items.
27.02.2014
№216.012.a769

Способ прессования заготовок керметных стержней

Изобретение относится к способам прессования заготовок керметных стержней тепловыделяющих элементов ядерных реакторов. Заготовки, заплавленные силикатом натрия в цилиндрическом контейнере, выполненном из стали с содержанием углерода (0,1-0,35) мас.%, после образования на поверхности контейнера...
Тип: Изобретение
Номер охранного документа: 0002508572
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b8cc

Способ изготовления газонаполненного тепловыделяющег элемента

Изобретение относится к ядерной энергетике, в частности к способам изготовления газонаполненных тепловыделяющих элементов (твэлов) с топливными сердечниками из нитрида или карбонитрида урана. Способ изготовления твэла включает изготовление «трубы в сборе» путем герметичного соединения оболочки...
Тип: Изобретение
Номер охранного документа: 0002513036
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb3f

Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций. Диаметр пятна...
Тип: Изобретение
Номер охранного документа: 0002513663
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c267

Ампульное облучательное устройство

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для...
Тип: Изобретение
Номер охранного документа: 0002515516
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cc35

Способ осаждения пироуглерода на топливные частицы

Изобретение относится к области получения графитовых материалов и может быть использовано в химической технологии, атомной и электронной технике. Осуществляют осаждение пироуглерода на топливные частицы путем подачи в зону осаждения смеси углеводорода и инертного газа в течение времени τ,...
Тип: Изобретение
Номер охранного документа: 0002518048
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d187

Способ выращивания монокристаллов методом бестигельной зонной плавки и устройство для его осуществления

Изобретение относится к металлургии, а именно - к выращиванию монокристаллов методом бестигельной зонной плавки с электронно-лучевым нагревом. Способ включает затравление кристалла из расплавленной зоны, выдержку в течение заданного времени и вытягивание монокристалла на затравку из...
Тип: Изобретение
Номер охранного документа: 0002519410
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d2f1

Способ облучения патологий человеческого организма и устройство для его осуществления (варианты)

Группа изобретений относится к медицинской технике. При осуществлении способа одновременно или последовательно воздействуют на патологию ионизирующим и тепловым излучениями через выходное окно источника излучения, которое размещают вблизи или на поверхности патологии. Поток излучения...
Тип: Изобретение
Номер охранного документа: 0002519772
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.de01

Способ получения диоксида урана

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерных технологиях. Способ получения диоксида урана заключается в гидрировании металлического урана при температуре 200-220°С,...
Тип: Изобретение
Номер охранного документа: 0002522619
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec4

Способ получения порошков нитрида урана

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при...
Тип: Изобретение
Номер охранного документа: 0002522814
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e125

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (твэлов) ядерных реакторов. Имитатор твэла содержит оболочку, в которой размещен столб таблеток натурного топлива с центральным отверстием, и расположенный с...
Тип: Изобретение
Номер охранного документа: 0002523423
Дата охранного документа: 20.07.2014
Showing 11-20 of 69 items.
27.02.2014
№216.012.a769

Способ прессования заготовок керметных стержней

Изобретение относится к способам прессования заготовок керметных стержней тепловыделяющих элементов ядерных реакторов. Заготовки, заплавленные силикатом натрия в цилиндрическом контейнере, выполненном из стали с содержанием углерода (0,1-0,35) мас.%, после образования на поверхности контейнера...
Тип: Изобретение
Номер охранного документа: 0002508572
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b8cc

Способ изготовления газонаполненного тепловыделяющег элемента

Изобретение относится к ядерной энергетике, в частности к способам изготовления газонаполненных тепловыделяющих элементов (твэлов) с топливными сердечниками из нитрида или карбонитрида урана. Способ изготовления твэла включает изготовление «трубы в сборе» путем герметичного соединения оболочки...
Тип: Изобретение
Номер охранного документа: 0002513036
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb3f

Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций. Диаметр пятна...
Тип: Изобретение
Номер охранного документа: 0002513663
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c267

Ампульное облучательное устройство

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для...
Тип: Изобретение
Номер охранного документа: 0002515516
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cc35

Способ осаждения пироуглерода на топливные частицы

Изобретение относится к области получения графитовых материалов и может быть использовано в химической технологии, атомной и электронной технике. Осуществляют осаждение пироуглерода на топливные частицы путем подачи в зону осаждения смеси углеводорода и инертного газа в течение времени τ,...
Тип: Изобретение
Номер охранного документа: 0002518048
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d187

Способ выращивания монокристаллов методом бестигельной зонной плавки и устройство для его осуществления

Изобретение относится к металлургии, а именно - к выращиванию монокристаллов методом бестигельной зонной плавки с электронно-лучевым нагревом. Способ включает затравление кристалла из расплавленной зоны, выдержку в течение заданного времени и вытягивание монокристалла на затравку из...
Тип: Изобретение
Номер охранного документа: 0002519410
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d2f1

Способ облучения патологий человеческого организма и устройство для его осуществления (варианты)

Группа изобретений относится к медицинской технике. При осуществлении способа одновременно или последовательно воздействуют на патологию ионизирующим и тепловым излучениями через выходное окно источника излучения, которое размещают вблизи или на поверхности патологии. Поток излучения...
Тип: Изобретение
Номер охранного документа: 0002519772
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.de01

Способ получения диоксида урана

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерных технологиях. Способ получения диоксида урана заключается в гидрировании металлического урана при температуре 200-220°С,...
Тип: Изобретение
Номер охранного документа: 0002522619
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec4

Способ получения порошков нитрида урана

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при...
Тип: Изобретение
Номер охранного документа: 0002522814
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e125

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (твэлов) ядерных реакторов. Имитатор твэла содержит оболочку, в которой размещен столб таблеток натурного топлива с центральным отверстием, и расположенный с...
Тип: Изобретение
Номер охранного документа: 0002523423
Дата охранного документа: 20.07.2014
+ добавить свой РИД