×
19.01.2018
218.016.0349

Результат интеллектуальной деятельности: СПОСОБ УСТРАНЕНИЯ ВЗАИМОПРОДАВЛИВАНИЯ СКВАЖИН В ГАЗОСБОРНЫХ ШЛЕЙФАХ ГАЗОВЫХ ПРОМЫСЛОВ КРАЙНЕГО СЕВЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области добычи природного газа и, в частности, к устранению взаимопродавливания скважин, работающих на общий коллектор в реальном масштабе времени. Техническим результатом является повышение точности определения правильности выбора режима работ ГСШ с общим коллектором в реальном масштабе времени. Способ включает назначение режимов его эксплуатации в рамках технологических ограничений, которые определяются расчетным методом по результатам газогидродинамических исследований скважин. При этом в процессе эксплуатации месторождения, используя средства телеметрии и АСУ ТП установки комплексной подготовки газа (УКПГ), с заданным шагом квантования измеряют фактические давления газа на коллекторе каждого куста скважин и в конце газосборного шлейфа (ГСШ), а также расход газа каждого куста скважин, и, используя измеренные данные и паспортные характеристики ГСШ в реальном масштабе времени, вычисляют давление газа в точках подкачки и строят синхронизированные во времени графики пар давлений: измеренного на коллекторе куста и рассчитанного для точки подкачки, к которой он подключен, а также измеренного давления в конце ГСШ и рассчитанного для последней точки подкачки перед УКПГ, и, как только будет выявлено, что разность одной из пар давлений стала меньше заданного порога, значение которого назначают по результатам последних газогидродинамических испытаний скважин и заданному режиму работы УКПГ, оператору УКПГ выдается сообщение о выявлении проблем в работе ГСШ и (или) соответствующего куста газовых скважин, а также рекомендуемый перечень индивидуальной последовательности операций по парированию возникшей ситуации на проблемном участке, и, используя этот перечень, оператор установки принимает окончательное управляющее решение по устранению проблемы. 2 ил.

Изобретение относится к области добычи природного газа, в частности к устранению взаимопродавливания скважин, работающих на общий коллектор в реальном масштабе времени.

Известен способ определения режима работ сложных газопроводов, к которым относятся газосборные шлейфы (ГСШ) газоконденсатных месторождений Крайнего Севера, позволяющий исключить взаимопродавливание скважин, подключенных к газосборному шлейфу с общим коллектором, включающий назначение режимов его эксплуатации в рамках технологических ограничений, которые определяются расчетным методом по результатам газогидродинамических исследований скважин (например, см. Новоселов В.Ф., Гольянов А.И., Муфтахов Е.М. Типовые расчеты при проектировании и эксплуатации газопроводов. Учебное пособие для вузов. М.: Недра, 1982. 136 с.).

Недостатком указанного способа является отсутствие возможности оперативно проверить правильность выбора режима работ ГСШ с общим коллектором в реальном масштабе времени, что исключает возможность принимать эффективные, оперативные решения по устранению взаимопродавливания скважин во время эксплуатации.

Известен способ определения режима работы сложных газопроводов, позволяющий исключить взаимопродавливание скважин, подключенных к газосборному шлейфу с общим коллектором, включающий назначение режимов его эксплуатации в рамках технологических ограничений, которые определяются расчетным методом по результатам газогидродинамических исследований скважин (например, см. Трубопроводный транспорт нефти и газа: Учеб. для вузов / Р.А. Алиев, В.Д. Белоусов, А.Г. Немудров и др. - 2-е изд., перераб. и доп. - М.: Недра, 1988, - 368 с.: ил.).

Существенным недостатком указанного способа является то, что отсутствует возможность оперативно проверить правильность выбора режима работ ГСШ с общим коллектором в реальном масштабе времени, что исключает возможность принимать эффективные, оперативные решения по устранению взаимопродавливания скважин и подготовки соответствующих рекомендаций обслуживающему персоналу во время эксплуатации.

На Крайнем Севере, как правило, используется коллекторная схема подключения кустов скважин к установке комплексной подготовки газа (УКПГ). На самом кусте взаимопродавливание самих скважин друг друга устраняется благодаря наличию системы телеметрии, которой оснащаются современные кусты скважин: на устье каждой скважины и в коллекторе, к которому подключены скважины, одновременно контролируется давление газа. С помощью систем телеметрии на кусте поддерживается такой режим их работы, чтобы на устье каждой скважины давление газа всегда было выше, чем в коллекторе куста. Далее коллекторы кустов скважин подключаются к ГСШ. Чтобы исключить взаимопродавливание кустов скважин, подключенных к единому ГСШ, т.е. обратные перетоки из одного куста в другой, необходимо контролировать текущие параметры газа и в точках подкачки и оценивать режим течения в этих точках для принятия решений, соответствующих возникшей ситуации. Это очень важно и в том случае, если кусты скважин, которые подключены к единому ГСШ, используются для добычи газа из разных пластов, что характерно для нефтегазоконденсатных месторождений Крайнего Севера и эти перетоки считаются серьезной аварией.

Чтобы контролировать давление газа в точках подкачки, необходимо установить средства телеметрии для измерения давления газа в этих точках. Но в условиях Крайнего Севера это невозможно реализовать по причине значительного удорожания стоимости обустройства нефтегазоконденсатного месторождения, связанного с тем, что местность болотистая, и поэтому для монтажа и обслуживания этих средств потребуется создать целую дорогостоящую инфраструктуру (проложить дороги, отсыпать площадки и т.д.).

На фиг. 1 (для простоты изложения сути способа далее принято, что к ГСШ подключены три куста скважин - I, II и III) приведена укрупненная схема подключения кустов скважин к ГСШ.

На фиг. 1 использованы следующие обозначения:

1 - начальная точка ГСШ - точка подключения общего коллектора куста скважин №I к ГСШ;

2, 3 - точки подключения общего коллектора куста скважин №II и №III к ГСШ, соответственно - точки подкачки газа;

4 - конец ГСШ - вход УКПГ;

5, 6 - кусты скважин №II и №III соответственно.

На начальном этапе проектирования обустройства нефтегазоконденсатного месторождения, как правило, многие параметры ГСШ (скорость и характер падения пластового давления, качество добываемого флюида и т.д.) точно оценить невозможно. Со временем эти факторы претерпевают сильные изменения и становятся причиной того, что реальный режим эксплуатации ГСШ на Крайнем Севере значительно отличается от проектного. Поэтому учитывая специфические условия Крайнего Севера (суровые природно-климатические условия, сложность инженерно-геологических условий местности, вечная мерзлота грунтов, наличие высокого дебита скважин и т.д.), очень важно найти такой режим работы ГСШ, который обеспечивает заданный режим работы УКПГ. Он позволяет оперативно выявлять возникающие нарушения в работе шлейфа и исключать взаимопродавливание кустов скважин, подключенных к нему, а также не тратить пластовую энергию нефтегазоконденсатной залежи впустую, т.е. не эффективно.

Задачей заявляемого технического решения является проверка правильности выбора режима работ ГСШ с общим коллектором в реальном масштабе времени, что позволит принимать оперативно эффективные управляющие решения по устранению взаимопродавливания скважин и подготовить соответствующие рекомендации обслуживающему персоналу для ликвидации возникающих нежелательных ситуаций во время эксплуатации газового промысла.

Поставленная задача решается и технический результат достигается за счет того, что в процессе эксплуатации месторождения, используя средства телеметрии и АСУ ТП установки комплексной подготовки газа (УКПГ), с заданным шагом квантования измеряют фактические давления газа на коллекторе каждого куста скважин и в конце газосборного шлейфа (ГСШ). Одновременно производят измерения расхода газа каждого куста скважин. Используя получаемые при этих измерениях данные и паспортные характеристики ГСШ в реальном масштабе времени, вычисляют давление газа в точках подкачки, к которым подключены коллектора кустов газовых скважин. Используя результаты измерения давлений и вычислений, АСУ ТП строит синхронизированные во времени графики следующих пар давлений:

- измеренного на коллекторе куста и рассчитанного для точки подкачки, к которой он подключен;

- измеренного в конце ГСШ и рассчитанного для последней точки подкачки перед УКПГ.

В процессе эксплуатации газового промысла непрерывно ведется контроль динамики поведения указанных пар измеренного и рассчитанного давлений. И как только будет выявлено, что разность одной из пар давлений стала меньше заданного порога, значение которого назначают по результатам последних газогидродинамических испытаний скважин и заданному режиму работы УКПГ, оператору УКПГ выдается сообщение о выявлении проблем в работе ГСШ и (или) соответствующего куста газовых скважин. Одновременно АСУ ТП выводит на экран рекомендуемый перечень индивидуальной последовательности операций по парированию возникшей ситуации на проблемном участке. Используя этот перечень, оператор установки принимает окончательное управляющее решение по устранению проблемы.

Способ осуществляют следующим образом.

Используя телеметрию и средства АСУ ТП УКПГ, с заданным шагом квантования измеряют фактические давления газа рф.I, рф.II, рф.III на коллекторе каждого куста скважин и в конце ГСШ - р4, а также расход газа каждого куста скважин QI, QII, QII. В рассматриваемом случае давление на кусте скважин I будет равно давлению газа в начале ГСШ.

Далее аналитическим путем определяют значения давлений в точках подкачки 2 и 3 ГСШ. В случае, если ГСШ является газопроводом постоянного диаметра с путевыми подкачками газа, давления определяются из следующих выражений:

или

где QI, QII, QIII - расход газа куста скважин I, II, III соответственно;

pф.I, p2 и p3 - давление газа в начале и в точках подкачки ГСШ 2 и 3 соответственно;

D - диаметр ГСШ;

λ1, λ2 - гидравлическое сопротивление ГСШ между точками 1 и 2, 2 и 3 соответственно;

l1, l2 - длина ГСШ между точками 1 и 2, 2 и 3 соответственно;

А - коэффициент, который определяется из соотношения:

,

где K - постоянный коэффициент;

z - коэффициент сжимаемости газа;

Δ - относительная плотность газа по воздуху;

Т0 - температура окружающей среды.

Формулы (1) и (2) получены из известного соотношения для газопроводов постоянного диаметра с путевыми подкачками газа [см. стр. 40, формула (92), Новоселов В.Ф., Гольянов А.И., Муфтахов Е.М. Типовые расчеты при проектировании и эксплуатации газопроводов. Учеб. пособие для вузов. М.: Недра, 1982. 136 с.]:

.

В указанном источнике имеются аналитические зависимости расчета давления в точках подкачки газа и для ГСШ, построенного из труб разных диаметров.

Порядок определения значения коэффициента сжимаемости газа (z) и относительной плотности газа по воздуху (Δ) можно найти в соответствующей литературе [см. например, Гриценко А.И., Алиев З.С. и др. Руководство по исследованию скважин. – М.: Наука, 1995. - 523 с.].

K - постоянный коэффициент, равный

(например, см. 143, Трубопроводный транспорт нефти и газа: Учеб. для вузов / Р.А. Алиев, В.Д. Белоусов, А.Г. Немудров и др. - 2-е изд., перераб. и доп. - М.: Недра, 1988, - 368 с.: ил.).

С учетом технологического режима работ УКПГ и заданного плана расхода добываемого газа по ГСШ, а также основываясь на информации, представленной геологами по результатам газогидродинамического исследования скважин, распределяется расход газа по отдельным кустам скважин, которые подключены к ГСШ. Для исключения обратных перетоков между кустами скважин, давление на коллекторе куста скважин устанавливается так, чтобы оно в коллекторе всегда было выше, чем в точке подкачки в ГСШ и на входе УКПГ.

Используя расчетные значения р2 и р3 в точках подкачки, получаемые из формул (1) и (2), а также фактически измеренные давления газа рф.I, рф.II, рф.III на коллекторе куста скважин и в конце ГСШ - р4, строят в виде графиков их синхронизированные временные функции. Для ГСШ, укрупненная схема которого приведена на фиг. 1, эти синхронные временные функции строят между следующими парами параметров рф.I и р2, рф.II и р2, pф.III и p3, p2 и p3, p3 и p4. Очевидно, чтобы не было обратных перетоков всегда должны соблюдаться следующие условия:

Учитывая то, что любой вид моделирования всегда является лишь приближением к действительности, поэтому наблюдаемая разность между параметрами в соотношении (3) при нормальном ходе технологических процессов будет сохраняться примерно постоянной, и соответствовать перепаду давлений между указанными точками с учетом систематической ошибки моделирования.

Как только динамика изменения давления, находящегося в левой части неравенства (3), изменится так, что его значение начнет приближаться к давлению, находящемуся в правой части неравенства (3), и это сближение превысит определенный порог, значение которого заранее известно (определяется из опыта эксплуатации конкретного ГСШ с учетом технологических режимов работы скважин и УКПГ. Значение этого порога устанавливается по результатам ежегодных газогидродинамических исследований скважин и режимам работы УКПГ, которые определяются технологическим регламентом ее работы), то в этих случаях однозначно можно констатировать, что возникли и развиваются проблемы в системе. Это могут быть проблемы:

- либо со шлейфом, по которому газ поступает из кустов скважин в соответствующую точку подкачки ГСШ или с самим ГСШ;

- либо проблемы с самими скважинами: например, падает забойное давление, возможно начинается образование гидратов в стволе скважины и т.д.

На фиг. 2 приведены синхронизированные временные функции давлений рф.I и р2, на которых эта проблемная область обозначена как «Область нарушения».

При обнаружении такой области, характеризующей наличие нарушений в работе ГСШ, немедленно сообщается обслуживающему персоналу для принятия решений по ликвидации возникшей ситуации. В этом случае в первую очередь начинают менять режим работы ГСШ в рамках технологических ограничений. И если это позволит устранить возникшую ситуацию, то процесс регулирования прекращают. Если проблемную ситуацию не удается устранить, то начинают подавать метанол в скважину для предупреждения процесса гидратообразования. Но если и это не помогает, то принимают решение об остановке скважины для восстановления пластового давления и т.д.

Заявляемое изобретение отработано и реализовано на газовых промыслах ООО «Газпром добыча Ямбург».

Применение данного способа позволяет:

- существенно повысить оперативность получения информации о состоянии кустов скважин, так как нарушения в их работе оперативно выявляются в реальном масштабе времени, а не в ходе очередного газогидродинамического исследования скважин, которое, как правило, проводится один раз в год;

- в реальном масштабе времени получать информацию о режимах работ ГСШ и оперативно корректировать технологический режим работы кустов скважин и шлейфа с учетом выявленных нарушений;

- эффективно организовать режим работы кустов скважин, что ведет к увеличению жизненного цикла эксплуатации скважин и, соответственно, сказывается на конечной производительности нефтегазоконденсатного месторождения;

- повысить эффективность принимаемых управленческих решений и улучшить условия работы обслуживающего персонала УКПГ.

Способ устранения взаимопродавливания скважин в газосборных шлейфах газовых промыслов Крайнего Севера, включающий назначение режимов его эксплуатации в рамках технологических ограничений, которые определяются расчетным методом по результатам газогидродинамических исследований скважин, отличающийся тем, что в процессе эксплуатации месторождения, используя средства телеметрии и АСУ ТП установки комплексной подготовки газа (УКПГ), с заданным шагом квантования измеряют фактические давления газа на коллекторе каждого куста скважин и в конце газосборного шлейфа (ГСШ), а также расход газа каждого куста скважин, и, используя измеренные данные и паспортные характеристики ГСШ в реальном масштабе времени, вычисляют давление газа в точках подкачки и строят синхронизированные во времени графики пар давлений: измеренного на коллекторе куста и рассчитанного для точки подкачки, к которой он подключен, а также измеренного давления в конце ГСШ и рассчитанного для последней точки подкачки перед УКПГ, и, как только будет выявлено, что разность одной из пар давлений стала меньше заданного порога, значение которого назначают по результатам последних газогидродинамических испытаний скважин и заданному режиму работы УКПГ, оператору УКПГ выдается сообщение о выявлении проблем в работе ГСШ и (или) соответствующего куста газовых скважин, а также рекомендуемый перечень индивидуальной последовательности операций по парированию возникшей ситуации на проблемном участке, и, используя этот перечень, оператор установки принимает окончательное управляющее решение по устранению проблемы.
СПОСОБ УСТРАНЕНИЯ ВЗАИМОПРОДАВЛИВАНИЯ СКВАЖИН В ГАЗОСБОРНЫХ ШЛЕЙФАХ ГАЗОВЫХ ПРОМЫСЛОВ КРАЙНЕГО СЕВЕРА
Источник поступления информации: Роспатент

Showing 1-10 of 28 items.
10.02.2013
№216.012.2302

Способ регенерации водометанольного раствора на нефтегазоконденсатном месторождении

Изобретение относится к области добычи природного газа и подготовке газа и газового конденсата к дальнему транспорту. Способ регенерации водометанольного раствора (BMP) на нефтегазоконденсатном месторождении включает дегазацию BMP, отделение из BMP свободного конденсата, нагрев BMP в блоке...
Тип: Изобретение
Номер охранного документа: 0002474464
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.23df

Способ оперативного контроля выноса воды и песка с добываемым продуктом из скважины в асу тп газопромысловых объектов нефтегазоконденсатных месторождений крайнего севера

Изобретение относится к оперативному контролю выноса воды и песка из скважины в автоматизированных системах управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера. Способ включает измерение давления газа на устье скважины средствами АСУ ТП и...
Тип: Изобретение
Номер охранного документа: 0002474685
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2423

Способ определения коэффициента теплопередачи газа в газосборном шлейфе в окружающую среду в автоматизированных системах управления технологическими процессами установок комплексной подготовки газа газоконденсатных месторождений крайнего севера

Способ предназначен для своевременного устранения потенциальных аварийных и других нештатных ситуаций. Способ осуществляют следующим образом. Измеряют средствами телеметрии температуру газа в начале шлейфа - t и объемный расход газа куста в нормальных условиях - Q, а температуру окружающей...
Тип: Изобретение
Номер охранного документа: 0002474753
Дата охранного документа: 10.02.2013
27.08.2013
№216.012.639c

Способ контроля эффективности рекультивации нарушенных тундровых почв различного гранулометрического состава посредством анализа активности дегидрогеназы

Изобретение относится к области экологии и почвоведения. Способ включает внесение торфа в почвы и контроль за восстановлением их плодородия. На первом этапе определяют гранулометрический состав нарушенной почвы, например, пирофосфатным методом и назначают дозы торфа в зависимости от...
Тип: Изобретение
Номер охранного документа: 0002491137
Дата охранного документа: 27.08.2013
10.11.2013
№216.012.7c9d

Способ распределения нагрузки между технологическими линиями цеха осушки газа газодобывающего комплекса

Изобретение относится к области добычи природного газа, в частности к ведению процесса осушки газа с использованием автоматизированных систем управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа (УКПГ) газоконденсатных месторождений Крайнего Севера...
Тип: Изобретение
Номер охранного документа: 0002497574
Дата охранного документа: 10.11.2013
10.05.2014
№216.012.c155

Способ утилизации газов выветривания

Изобретение относится к нефтегазовой промышленности. Изобретение касается способа утилизации газов выветривания, включающего сепарацию и компримирование, сначала газы выветривания сепарируют, после чего жидкую фазу направляют на стабилизацию или хранение, а газовую фазу - на компримирование до...
Тип: Изобретение
Номер охранного документа: 0002515242
Дата охранного документа: 10.05.2014
20.08.2015
№216.013.6f2a

Способ управления процессом предупреждения гидратообразования в газосборных шлейфах газовых и газоконденсатных месторождений крайнего севера

Изобретение относится к области добычи природного газа и, в частности, к предупреждению гидратообразования и разрушению гидратов в системах сбора газа - газосборных шлейфах газовых и газоконденсатных месторождений Крайнего Севера. Технический результат - повышение качества эксплуатации газового...
Тип: Изобретение
Номер охранного документа: 0002560028
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.794f

Способ подготовки газодобывающей скважины для удаления жидкости

Изобретение относится к области добычи газа и, в частности, к ремонту газодобывающих скважин, из которых необходимо удалять скапливающуюся на забое жидкость - воду, газоконденсат. Техническим результатом изобретения является обеспечение безопасной эксплуатации скважин. По способу на устье...
Тип: Изобретение
Номер охранного документа: 0002562644
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.9101

Способ определения коэффициента гидравлического сопротивления газосборного шлейфа в асу тп установок комплексной подготовки газа газоконденсатных месторождений крайнего севера

Изобретение относится к области добычи природного газа и, в частности, к определению коэффициента фактического гидравлического сопротивления газосборного шлейфа. Автоматизированная система управления технологическими процессами газового промысла в реальном масштабе времени контролирует значение...
Тип: Изобретение
Номер охранного документа: 0002568737
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9cdc

Изотопный способ определения природы воды в продукции скважин газовых и газоконденсатных месторождений

Изобретение относится к газонефтедобыче и может быть использовано на стадии эксплуатации скважин газовых и газоконденсатных месторождений для определения природы воды, поступающей в продукцию скважин. Техническим результатом изобретения является определение природы воды в продукции скважин...
Тип: Изобретение
Номер охранного документа: 0002571781
Дата охранного документа: 20.12.2015
Showing 1-10 of 73 items.
10.02.2013
№216.012.2302

Способ регенерации водометанольного раствора на нефтегазоконденсатном месторождении

Изобретение относится к области добычи природного газа и подготовке газа и газового конденсата к дальнему транспорту. Способ регенерации водометанольного раствора (BMP) на нефтегазоконденсатном месторождении включает дегазацию BMP, отделение из BMP свободного конденсата, нагрев BMP в блоке...
Тип: Изобретение
Номер охранного документа: 0002474464
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.23df

Способ оперативного контроля выноса воды и песка с добываемым продуктом из скважины в асу тп газопромысловых объектов нефтегазоконденсатных месторождений крайнего севера

Изобретение относится к оперативному контролю выноса воды и песка из скважины в автоматизированных системах управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера. Способ включает измерение давления газа на устье скважины средствами АСУ ТП и...
Тип: Изобретение
Номер охранного документа: 0002474685
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2423

Способ определения коэффициента теплопередачи газа в газосборном шлейфе в окружающую среду в автоматизированных системах управления технологическими процессами установок комплексной подготовки газа газоконденсатных месторождений крайнего севера

Способ предназначен для своевременного устранения потенциальных аварийных и других нештатных ситуаций. Способ осуществляют следующим образом. Измеряют средствами телеметрии температуру газа в начале шлейфа - t и объемный расход газа куста в нормальных условиях - Q, а температуру окружающей...
Тип: Изобретение
Номер охранного документа: 0002474753
Дата охранного документа: 10.02.2013
27.08.2013
№216.012.639c

Способ контроля эффективности рекультивации нарушенных тундровых почв различного гранулометрического состава посредством анализа активности дегидрогеназы

Изобретение относится к области экологии и почвоведения. Способ включает внесение торфа в почвы и контроль за восстановлением их плодородия. На первом этапе определяют гранулометрический состав нарушенной почвы, например, пирофосфатным методом и назначают дозы торфа в зависимости от...
Тип: Изобретение
Номер охранного документа: 0002491137
Дата охранного документа: 27.08.2013
10.11.2013
№216.012.7c9d

Способ распределения нагрузки между технологическими линиями цеха осушки газа газодобывающего комплекса

Изобретение относится к области добычи природного газа, в частности к ведению процесса осушки газа с использованием автоматизированных систем управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа (УКПГ) газоконденсатных месторождений Крайнего Севера...
Тип: Изобретение
Номер охранного документа: 0002497574
Дата охранного документа: 10.11.2013
10.05.2014
№216.012.c155

Способ утилизации газов выветривания

Изобретение относится к нефтегазовой промышленности. Изобретение касается способа утилизации газов выветривания, включающего сепарацию и компримирование, сначала газы выветривания сепарируют, после чего жидкую фазу направляют на стабилизацию или хранение, а газовую фазу - на компримирование до...
Тип: Изобретение
Номер охранного документа: 0002515242
Дата охранного документа: 10.05.2014
20.08.2015
№216.013.6f2a

Способ управления процессом предупреждения гидратообразования в газосборных шлейфах газовых и газоконденсатных месторождений крайнего севера

Изобретение относится к области добычи природного газа и, в частности, к предупреждению гидратообразования и разрушению гидратов в системах сбора газа - газосборных шлейфах газовых и газоконденсатных месторождений Крайнего Севера. Технический результат - повышение качества эксплуатации газового...
Тип: Изобретение
Номер охранного документа: 0002560028
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.794f

Способ подготовки газодобывающей скважины для удаления жидкости

Изобретение относится к области добычи газа и, в частности, к ремонту газодобывающих скважин, из которых необходимо удалять скапливающуюся на забое жидкость - воду, газоконденсат. Техническим результатом изобретения является обеспечение безопасной эксплуатации скважин. По способу на устье...
Тип: Изобретение
Номер охранного документа: 0002562644
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.9101

Способ определения коэффициента гидравлического сопротивления газосборного шлейфа в асу тп установок комплексной подготовки газа газоконденсатных месторождений крайнего севера

Изобретение относится к области добычи природного газа и, в частности, к определению коэффициента фактического гидравлического сопротивления газосборного шлейфа. Автоматизированная система управления технологическими процессами газового промысла в реальном масштабе времени контролирует значение...
Тип: Изобретение
Номер охранного документа: 0002568737
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9cdc

Изотопный способ определения природы воды в продукции скважин газовых и газоконденсатных месторождений

Изобретение относится к газонефтедобыче и может быть использовано на стадии эксплуатации скважин газовых и газоконденсатных месторождений для определения природы воды, поступающей в продукцию скважин. Техническим результатом изобретения является определение природы воды в продукции скважин...
Тип: Изобретение
Номер охранного документа: 0002571781
Дата охранного документа: 20.12.2015
+ добавить свой РИД