×
19.01.2018
218.016.0168

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой. Способ измерения реактивной мощности в трехфазной симметричной электрической цепи включает измерение мгновенных величин токов и напряжений на каждой фазе. Измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов I, I и напряжений U, U в α-β системе координат формируют векторы тока I и напряжения U: далее определяют векторное произведение между векторами I и U: Q=I×U. Полученные проекции токов и напряжений в α-β системе координат перемножают Q=I⋅U и Q=-I⋅U, затем складывают и умножают на число фаз: где - оценка реактивной мощности трехфазной цепи. Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям: где I, I, I - мгновенные фазные токи; I, I - проекции токов в α-β системе координат; U, U, U - мгновенные фазные напряжения; U, U - проекции напряжений в α-β системе координат. Технический результат: повышение точности измерения. 1 з.п. ф-лы, 2 табл., 7 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой.

Известен способ измерения реактивной мощности [SU 1567990 А1, МПК 5 G01R 21/06, опубл. 30.06.1990], выбранный в качестве прототипа, включающий перемножение мгновенных значений тока и напряжения, выделение переменной составляющей произведения и усреднение ее с момента перехода через нуль одного из входных сигналов тока (напряжения) в течение интервала времени, в течение которого производится усреднение, заканчивают в момент ближайшего перехода через нуль другого сигнала напряжения (тока).

Недостатком предложенного способа является необходимость определения точки перехода синусоидального сигнала через нуль, которая влияет на точность измерения реактивной мощности.

Задачей изобретения является расширение арсенала средств аналогичного назначения.

Предложенный способ измерения реактивной мощности, так же как в прототипе, включает измерение мгновенных фазных величин токов и напряжений.

Согласно изобретению, измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов Iα, Iβ и напряжений Uα, Uβ в α-β системе координат формируют векторы тока Is и напряжения Us:

далее определяют векторное произведение между векторами Is и Us:

Qγ=Is×Us,

Полученные проекции токов и напряжений в α-β системе координат перемножают Q1=Iα⋅Uβ и Q2=-Iβ⋅Uα, затем складывают и умножают на число фаз:

где - оценка реактивной мощности трехфазной цепи.

Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям:

где IА, IВ, IС - мгновенные фазные токи;

Iα, Iβ - проекции токов в α-β системе координат;

UA, UB, UC - мгновенные фазные напряжения;

Uα, Uβ - проекции напряжений в α-β системе координат.

Таким образом, измерение реактивной мощности осуществляют с большой точностью благодаря использованию векторного произведения мгновенных величин проекций токов и напряжений в двухфазной системе координат α-β.

В таблице 1 представлены данные фазных токов и напряжений.

В таблице 2 представлены параметры трехфазной цепи.

На фиг. 1 приведена схема устройства, реализующего способ измерения реактивной мощности в трехфазной цепи.

На фиг. 2 приведены осциллограммы напряжений в трехфазной цепи.

На фиг. 3 приведены осциллограммы токов в трехфазной цепи.

На фиг. 4 приведен график сигнала с выхода блока умножителя 16.

На фиг. 5 приведен график сигнала с выхода блока умножителя 17.

На фиг. 6 приведена осциллограмма реактивной мощности.

На фиг. 7 приведен график относительной ошибки реактивной мощности.

Предлагаемый способ осуществлен с помощью устройства (фиг. 1) для определения реактивной мощности в трехфазной симметричной электрической цепи, которое содержит блок нормирующий 1 (БН), блок преобразователя координат 2 (БПК) и блок вычисления реактивной мощности 3 (БВРМ).

Блок нормирующий 1 (БН) содержит шесть усилителей-нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6).

Входы первого, второго и третьего усилителей-нормализаторов 4 (УН1), 5 (УН2) 6 (УН3) связаны с выходами датчиков фазных токов. Входы четвертого, пятого и шестого усилителей-нормализаторов 7 (УН4), 8 (УН5) и 9 (УН6) подключены к выходам датчиков фазных напряжений.

Блок преобразователя координат 2 (БПК) содержит два сумматора 10 (С1), 11 (С2) и четыре масштабирующих усилителя 12 (МУ1), 13 (МУ2), 14 (МУ3), 15 (МУ4).

Входы первого сумматора 10 (С1) соединены с выходами второго 5 (УН2) и третьего 6 (УН3) усилителей-нормализаторов. Выход первого сумматора 10 (С1) связан с входом второго масштабирующего усилителя 13 (МУ2). Входы второго сумматора 11 (С2) соединены с выходами пятого и шестого усилителей-нормализаторов 8 (УН5) и 9 (УН6). Выход второго сумматора 11 (С2) связан с входом четвертого масштабирующего усилителя 15 (МУ4). Выход первого усилителя-нормализатора 4 (УН1) связан с входом первого масштабирующего усилителя 12 (МУ1). Выход четвертого усилителя-нормализатора 7 (УН4) связан с входом третьего масштабирующего усилителя 14 (МУ3).

Блок вычисления реактивной мощности 3 (БВРМ) содержит два умножителя 16 (У1), 17 (У2), третий сумматор 18 (С3) и пятый масштабирующий усилитель 19 (МУ5).

Выходы первого масштабирующего усилителя 12 (МУ1) и четвертого масштабирующего усилителя 15 (МУ4) соединены с входами первого умножителя 16 (У1). Выходы третьего масштабирующего усилителя 14 (МУ3) и второго масштабирующего усилителя 13 (МУ2) соединены с входами второго умножителя 17 (У2). Выходы первого умножителя 16 (У1) и второго умножителя 17 (У2) соединены с входами третьего сумматора 18 (С3), выход которого соединен с входом пятого масштабирующего усилителя 19 (МУ5), выход которого соединен с индикатором реактивной мощности.

В качестве усилителей нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6) могут быть использованы - ЛА-УНИ4. Сумматоры 10 (C1), 11 (С2) и масштабирующие усилители 12 (МУ1), 13 (МУ2), 14 (МУ3), 15 (МУ4) могут быть реализованы на базе DSP-микроконтроллеров фирмы «Texas Instruments» с применением стандартных библиотек. Умножители 16 (У1), 17 (У2), сумматор 18 (С3) и масштабирующие усилители 19 (МУ5) могут быть выполнены аналогично на базе DSP-микроконтроллеров фирмы «Texas Instruments».

Измерение реактивной мощности в трехфазной симметричной электрической цепи для одной мгновенной величины осуществляли следующим образом: при подключении усилителей-нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6) к трехфазным датчикам тока и напряжения выходные сигналы мгновенных величин токов IА_Н, IВ_Н, IС_Н и напряжений UA_H, UB_H, UC_H с этих блоков (фиг. 2, 3) подавали в блок преобразования координат 2 (БПК), где на основе этих данных (таблица 1) определили проекции Iα, Iβ токов и напряжений Uα, Uβ. Выходные сигналы IА_Н, IА_Н с усилителей-нормализаторов 4 (УH1), 7 (УН4) преобразовали масштабирующими усилителями 12 (МУ1), 14 (МУ3). С помощью сумматора 10 (С1) сложили выходные сигналы IВ_Н, IС_Н с усилителей-нормализаторов 5 (УН2), 6 (УН3). С помощью сумматора 11 (С2) сложили выходные сигналы UB_Н, UC_H с усилителей-нормализаторов 8 (УН5) и 9 (УН6). Выходные сигналы сумматоров 10 (С1) и 11 (С2) преобразовали масштабирующими усилителями 13 (МУ2) и 15 (МУ4):

где IA_Н, IВ_Н, IС_Н - нормализованные мгновенные фазные токи;

Iα, Iβ - проекции токов в α-β системе координат;

UA_H, UB_H, UC_H - нормализованные мгновенные фазные напряжения;

Uα, Uβ - проекции напряжений в α-β системе координат.

Выходные значения блоков 12 (МУ1), 13 (МУ2) и 14 (МУ1), 15 (МУ2), которые являются проекциями токов Iα, Iβ и напряжений Uα, Uβ, подали в блок вычисления реактивной мощности 3 (БВРМ), где осуществили перемножение выходных сигналов Q1=Iα·Uβ (фиг. 4) и Q2=-Iβ⋅Uα (фиг. 5) в блоках умножения 16 (У1) и 17 (У2), произведения которых Q1 и Q2 затем сложили в сумматоре 18 (С3) Q0=(Q1+Q2), выходной сигнал которого преобразовали в масштабирующем усилителе 19 (МУ5) путем умножения на число фаз:

где - оценка реактивной мощности трехфазной цепи (фиг. 6).

Адекватность определения оценки реактивной мощности была установлена аналитически на основе определения относительной погрешности Δ:

где QT - расчетная величина реактивной мощности аналитическим способом;

- оценка реактивной мощности в трехфазной цепи.

На основании данных из таблицы 2 произвели аналитический расчет реактивной мощности QT. Вначале определили индуктивные сопротивления ХА, ХВ, ХС фаз А, В, С:

ХА=ω⋅LA=314,59⋅30⋅10-3=9,4 Ом,

ХВ=ω⋅LВ=314,59⋅30⋅10-3=9,4 Ом,

ХС=ω⋅LС=314,59⋅30⋅10-3=9,4 Ом,

где LА, LB, LC индуктивные сопротивления; ω=2⋅π⋅ƒ=2⋅3,14⋅50=314,59 - циклическая частота, ƒ - частота питающей цепи.

Далее рассчитали токи IФА, IФВ, IФС для каждой фазы:

где UФ - фазное напряжение.

Затем определили sin(ϕA), sin(ϕB), sin(ϕC):

Далее на основе расчетных данных определили реактивную мощность в трехфазной цепи:

QT=UФ⋅IФА⋅sin(ϕA)+UФ⋅IФВ⋅sin(ϕB)+

+UФ⋅IФС⋅sin(ϕC)=3⋅220⋅16,01⋅0,686=7,247⋅103 Вар.

Затем рассчитали относительную погрешность определения оценки реактивной мощности Q для трехфазной симметричной цепи:

Анализ относительной погрешности оценки вычисления реактивной мощности показал, что точность измерения для цепи с симметричной нагрузкой определяется точностью измерения мгновенных величин тока и напряжения и шагом расчета (фиг. 7).


СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Источник поступления информации: Роспатент

Showing 41-50 of 267 items.
27.05.2016
№216.015.4294

Устройство для очистки плазменного потока дуговых испарителей от микрокапельной фракции

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и может быть использовано в электронной, инструментальной, оптической, машиностроительной и других отраслях промышленности. Устройство содержит жалюзийную систему, выполненную в виде набора электродов, перекрывающих...
Тип: Изобретение
Номер охранного документа: 0002585243
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46bc

Способ измерения коэффициентов диффузии водорода в титане

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах на основе титана, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию в процессе...
Тип: Изобретение
Номер охранного документа: 0002586960
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.5d86

Устройство для управления подводным объектом

Изобретение относится к управлению подводными объектами с использованием судовых спускоподъемных устройств. Устройство для управления подводным объектом содержит на судне-носителе лебедку, задатчик среднего значения длины каната, задатчик скорости лебедки, управляющий блок, электропривод...
Тип: Изобретение
Номер охранного документа: 0002590801
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.66e5

Электропривод колебательно-вращательного движения

Изобретение относится к электротехнике, в частности к электроприводам переменного тока периодического движения. Электропривод колебательно-вращательного движения содержит двухфазный асинхронный двигатель, обмотка возбуждения которого подключена к источнику переменного тока, а обмотка управления...
Тип: Изобретение
Номер охранного документа: 0002592080
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66ec

Способ количественного определения смеси афлатоксинов b1, b2, g1, g2 методом инверсионной вольтамперометрии

Изобретение относится к аналитической химии и может быть использовано для анализа пищевых продуктов, кормов и кормовых добавок, сельскохозяйственной продукции растительного происхождения, а также в медицине. Способ одновременного количественного определения смеси афлатоксинов В1, В2, G1, G2...
Тип: Изобретение
Номер охранного документа: 0002592049
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.673c

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят эталонные испытания на износостойкость в процессе...
Тип: Изобретение
Номер охранного документа: 0002591874
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.67cb

Способ определения палладия в рудах методом инверсионной вольтамперометрии

Изобретение направлено на определение палладия в руде методом инверсионной вольтамперометрии и может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратах и породах концентраций ионов палладия. Способ...
Тип: Изобретение
Номер охранного документа: 0002591872
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a76

Антиоксидантная композиция

Изобретение относится к химико-фармацевтической промышленности и представляет собой антиоксидантную композицию, содержащую аспартат лития в количестве 40-60 мас.% и сукцинат лития в количестве 40-60 мас.%. Заявленная композиция допускает длительное хранение и не теряет активности при комнатной...
Тип: Изобретение
Номер охранного документа: 0002593010
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6ce6

Способ построения и настройки дифференциально-фазной релейной защиты

Использование: в области электроэнергетики. Технический результат - повышение надежности защиты. Согласно способу линию любой конфигурации разделяют с помощью врезаемых в провода фаз линий безынерционных силовых измерительных шунтов на двухконцевые участки. На концах проводов каждой фазы...
Тип: Изобретение
Номер охранного документа: 0002597243
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e09

Дизель-генераторная установка

Изобретение относится к области электротехники и может быть использовано для электроснабжения электрической нагрузки переменного тока. Технический результат: оптимальное управление потоками электроэнергии между аккумуляторной батареей и электрической нагрузкой переменного тока в тормозных...
Тип: Изобретение
Номер охранного документа: 0002597248
Дата охранного документа: 10.09.2016
Showing 41-50 of 161 items.
13.01.2017
№217.015.673c

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят эталонные испытания на износостойкость в процессе...
Тип: Изобретение
Номер охранного документа: 0002591874
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.67cb

Способ определения палладия в рудах методом инверсионной вольтамперометрии

Изобретение направлено на определение палладия в руде методом инверсионной вольтамперометрии и может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратах и породах концентраций ионов палладия. Способ...
Тип: Изобретение
Номер охранного документа: 0002591872
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a76

Антиоксидантная композиция

Изобретение относится к химико-фармацевтической промышленности и представляет собой антиоксидантную композицию, содержащую аспартат лития в количестве 40-60 мас.% и сукцинат лития в количестве 40-60 мас.%. Заявленная композиция допускает длительное хранение и не теряет активности при комнатной...
Тип: Изобретение
Номер охранного документа: 0002593010
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6ce6

Способ построения и настройки дифференциально-фазной релейной защиты

Использование: в области электроэнергетики. Технический результат - повышение надежности защиты. Согласно способу линию любой конфигурации разделяют с помощью врезаемых в провода фаз линий безынерционных силовых измерительных шунтов на двухконцевые участки. На концах проводов каждой фазы...
Тип: Изобретение
Номер охранного документа: 0002597243
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e09

Дизель-генераторная установка

Изобретение относится к области электротехники и может быть использовано для электроснабжения электрической нагрузки переменного тока. Технический результат: оптимальное управление потоками электроэнергии между аккумуляторной батареей и электрической нагрузкой переменного тока в тормозных...
Тип: Изобретение
Номер охранного документа: 0002597248
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e3a

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости Р режущих инструментов по величине относительной диэлектрической проницаемости полиоксидной массы, полученной при окислении твердосплавных режущих...
Тип: Изобретение
Номер охранного документа: 0002596864
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e67

Резонансный свч компрессор

Изобретение относится к области радиотехники. Особенностью заявленного резонансного СВЧ компрессора является то, что устройство вывода выполнено в виде крестообразного волноводного соединения, представляющего собой ортогональное пересечение круглого волновода и сверхразмерного прямоугольного...
Тип: Изобретение
Номер охранного документа: 0002596865
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e74

Способ управления активностью катализатора процесса дегидрирования высших н-парафинов

Изобретение относится к органической химии, а именно к процессам дегидрирования с образованием неароматических соединений, содержащих двойные углерод-углеродные связи, каталитическим способом, и может быть использовано при производстве сырья, используемого в технологии производства линейных...
Тип: Изобретение
Номер охранного документа: 0002596870
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e88

Устройство компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит два независимых канала, каждый из которых содержит генератор ультразвуковых сигналов,...
Тип: Изобретение
Номер охранного документа: 0002596907
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71e8

Стенд для исследования процесса зажигания и горения капли органоводоугольного топлива

Изобретение относится к экспериментальному оборудованию, а именно к исследованию процессов тепломассопереноса, фазовых превращений и химического реагирования при зажигании одиночных капель различных по компонентному составу органоводоугольных топлив в газовой среде окислителя. Стенд содержит...
Тип: Изобретение
Номер охранного документа: 0002596797
Дата охранного документа: 10.09.2016
+ добавить свой РИД