×
19.01.2018
218.015.ffbe

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ МИКРОРУЧЕЙКОВОГО ТЕЧЕНИЯ ЖИДКОСТИ В МИКРО- И МИНИКАНАЛАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники. Изобретение заключается в том, что в канале, на одной из сторон, которая является поверхностью подложки тепловыделяющего элемента, выполнены продольные микроканавки или нанесены продольные полосы гидрофобного нанопокрытия, формирующие микроручейковые течения жидкости. Гидрофобное нанопокрытие, ограничивающее микро-ручейковое течение по краям, может быть нанесено на внутреннюю поверхность всех стенок мини- или микроканала или только на поверхность подложки с обеих сторон от электронного тепловыделяющего элемента. Технический результат - существенная интенсификация теплообмена в микросистемах, устойчивая работа как в земных условиях, так и в невесомости, в том числе при любых нестандартных ситуациях. 2 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокую интенсивность теплообмена при течении жидкостей в относительно небольших объемах.

Такие условия реализуются в микроэлектромеханических системах, интегрированных электрических цепях, лазерно-диодных массивах, высокоэнергетических отражателях и других микроустройствах, подверженных кратковременным высоким тепловым нагрузкам; в устройствах для охлаждения электроники, управления температурными режимами в аэрокосмической индустрии; в микроэлектромеханических устройствах для биологических и химических исследований.

По мере развития микро- и нанотехнологий и внедрения их в различные отрасли человеческой деятельности (электроника, химическая, биологическая, пищевая индустрии) все чаще возникают задачи, где объектом изучения является течение жидкости в мини- и микроканалах. Несмотря на низкие значения чисел Рейнольдса и, как правило, отсутствие турбулентности, в микроканалах обеспечивается высокая интенсивность теплопередачи благодаря малым значениям термических сопротивлений стенок и теплоносителей. Поверхность теплообмена в расчете на единицу объема достигает чрезвычайно высоких значений. Часто применяются плоские мини- и микроканалы с отношением ширины к высоте 10-400. При уменьшении высоты плоских каналов соотношение поверхности канала к его объему увеличивается обратно пропорционально его высоте, что приводит к высокой интенсивности передачи тепла.

Одним из значительных препятствий на пути внедрения и распространения микросистем с протяженными плоскими микро- и мини каналами являются значительные потери энергии при прокачке жидкости и пара или газа. Значительные потери энергии возникают из-за требования прокачивать строго определенное количество жидкости и пара или газа для обеспечения отвода определенного количества тепла от электронного компонента [Kabov О., Cooling of Microelectronics by Thin Liquid Films, Keynote lecture, Proc. Int. Workshop on "Wave Dynamics and Stability of Thin Film Flow Systems", September 1-4, Chennai, India, Narosa Publishing House, pp. 279-311, 2006]. Кроме того, жидкость, a также пар или газ, как правило, должны двигаться со значительными скоростями, чтобы обеспечить требуемую интенсивность теплообмена. Поиск новых методов существенной интенсификации теплообмена является одной из самых актуальных проблем. Глобальной задачей является использование модификаций твердой поверхности на микро- и наноуровне и обеспечение влияния этих модификаций на тепломассообмен в двухфазных микросистемах, с целью достижения коэффициентов теплоотдачи порядка 100-300 кВт/м2К и более, тепловых потоков порядка 500-1500 Вт/см2 и более.

Известно устройство охлаждения интегральных микросхем (US 7957137, 25.02.2010, H01L 23/38; H01L 23/473; Н05К 7/20), в котором используют систему плоских микроканалов и тонкую пленку жидкости для охлаждения интегральных микросхем. Устройство включает в себя подложку, на которой методом перевернутого кристалла ("flip-chip" методом) смонтирована интегральная микросхема, а на микросхеме - система микроканалов, сформированных множеством микроканавок. Высота микроканалов составляет порядка 300 мкм, ширина - порядка 200 мкм. В некоторых каналах установлены термоэлектрические элементы.

Недостатки устройства:

1) значительные потери энергии при прокачке жидкости в каналах;

2) техническая сложность реализации такой системы, которая связана с монтажом, а также с необходимостью принятия мер по изоляции термоэлектрических элементов.

Известно устройство охлаждения микроэлектронного оборудования (ЕР 1662852, 31.05. 2006 г., H01L 23/473; Н05К 7/20), включающее один или несколько микроканалов длиной от 50 до 500 мкм и шириной 500 мкм, на внутреннюю поверхность которых нанесены наноструктурные области с гидрофобным покрытием. Расположение и геометрия наноструктурных областей подбираются таким образом, чтобы минимизировать сопротивление при движении потока жидкости по каналу и регулировать эффективность теплообмена. Основной недостаток устройства - значительные потери энергии при прокачке жидкости в каналах.

Известен способ изготовления системы охлаждения электронного и микроэлектронного оборудования (заявка №2014123346, 2014, МПК: В81В 7/00; В81С 1/00; H01L 23/46; Н05К 7/20), при котором на поверхность микроканала наносят гидрофобные полосы поперек течения охлаждающей жидкости для снижения гидравлического сопротивления. Основным недостатком данного решения является низкий коэффициент теплоотдачи.

В качестве прототипа выбрана двухфазная система охлаждения микроэлектронного оборудования с локальным тепловыделением [Kabov О.А., Kuznetsov V.V., and Legros J-C., Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment, Second Int. Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, June 17-19, 2004, Rochester, NY, ASME, New York, pp. 687-694 (2004)]. Система содержит микроканал высотой 150-500 мкм и длиной 10-50 мм с нагревателями (электронные тепловыделяющие элементы) размерами от 2,5 до 5 мм, расположенными на одной стенке канала, либо на двух противоположных стенках канала. Пленка диэлектрической жидкости FC-72 толщиной от 50 до 200 мкм движется со спутным потоком газа (азота) в микроканале.

В такой системе при относительно малых расходах жидкости и относительно большом угле смачивания (более 30-40 град), в углах канала формируется мениск жидкости. Скорость течения жидкости в углах канала существенно замедляется, что ведет к потере энергии при прокачке жидкости и пара или газа в микроканале. К тому же часть жидкости практически не участвует в процессе охлаждения. Кроме того, непосредственно перед формированием мениска в пленке жидкости образуется локальное утонение в силу специфики действия капиллярных сил. Часто именно это утонение вызывает разрыв пленки жидкости при малых скоростях газа и расходах жидкости. Данный факт подтвержден экспериментально в работах авторов [Zaitsev D.V. and Kabov О.А., Flow patterns and CHF in a locally heated liquid film shear-driven in a minichannel // Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels, FEDSM2010-ICNMM2010, August 1-5, 2010, Montreal, Canada, ISBN: 978-0-7918-3880-8, Paper FEDSM-ICNMM2010-31209, P. 1-8, 2010] для условий земной гравитации, микрогравитации и гипергравитации до 1.8xg0.

Эксперименты показали, что жидкость утоняется вблизи боковых стенок канала и в некоторых случаях образуются сухие пятна. Данные обстоятельства требуют увеличивать ширину канала, что ведет к дополнительным материальным затратам. Жидкость, движущаяся в углах канала, фактически теряется, что приводит к потере энергии, которая требуется для прокачки жидкости и пара или газа в микроканале.

При относительно больших расходах жидкости или относительно малых углах смачивания (менее 20-30 градусов), в углах канала формируется жидкостное течение, т.е. углы канала затапливаются. Затопление может достигать половины и более по ширине канала, [Chinnov Е.А., Guzanov V.V., Cheverda V., Markovich D.M and Kabov O.A., Regimes of Two-Phase Flow in Short Rectangular Channel, Microgravity sci. technol., Vol. 21, Suppl. 1, p. S199-S205, 2009]. Это связано с достаточно малым радиусом кривизны жидкости в углах канала, что вызывает пониженное давление в мениске жидкости и приток жидкости из основного потока пленки.

Задачей изобретения является создание устройства для формирования микроручейкового течения жидкости в микро- и миниканалах с целью существенной интенсификации теплообмена в микросистемах с протяженными плоскими микро- и мини каналами, эффективно и устойчиво работающего как в земных условиях, так и в невесомости, в том числе при любых нестандартных ситуациях, в частности, в случае пульсаций давления, вибраций системы, отклонения системы от горизонтального положения, неоднородного или нестационарного тепловыделения на электронном компоненте.

Задача решается тем, что в устройстве для формирования микроручейкового течения жидкости в микро- и миниканалах, включающем плоский микро- или миниканал прямоугольного сечения, одна из стенок которого является подложкой, с одним или несколькими электронными тепловыделяющими элементами, расположенными на одной или двух противоположных стенках канала, для охлаждения микроэлектронного оборудования используют систему ручейков жидкости, движущихся вдоль микро- или миниканала под действием спутного потока газа или пара. Таким образом, предложено устройство, в котором сплошное течение пленки, увлекаемой потоком пара или газа, заменяется потоком микроручейков с небольшим расстоянием между ними.

Согласно изобретению, вариант 1, вдоль канала на поверхности подложки с электронным тепловыделяющим элементом расположены формирующие микроручейковые течения жидкости продольные микроканавки, причем микроканавки выполнены таким образом, что A>D, A/D=3÷100, С/А≥10, где А - ширина ручейка, D - ширина микроканавки, В≤С<Cm, где В - ширина электронного тепловыделяющего элемента, С - ширина микроручейкового течения, Cm - расстояние между крайними микроканавками, L/Cm=1÷10, где L - ширина мини- или микроканала, а угол между плоскостью электронного тепловыделяющего элемента и стороной микроканавки α≤135 градусов.

Согласно изобретению, вариант 2, вдоль канала на поверхности подложки с электронным тепловыделяющим элементом расположены формирующие

микроручейковые течения жидкости продольные полосы гидрофобного нанопокрытия, причем продольные полосы гидрофобного нанопокрытия выполнены таким образом, что A>D, A/D=3÷100, С/А≥10, где А - ширина гидрофильной области (поверхность без нанопокрытия с равновесным контактным углом смачивания θhydrophile), D - ширина гидрофобного нанопокрытия (с равновесным контактным углом смачивания θhydrophobe), при этом внутренняя поверхность всех остальных стенок мини- или микроканала покрыта сплошным гидрофобным нанопокрытием, ограничивающим микроручейковое течение по краям, а размер наноструктур составляет 1-500 нм.

Также сплошное гидрофобное нанопокрытие, ограничивающее микроручейковое течение по краям, может быть нанесено только на поверхность подложки с обеих сторон от электронного тепловыделяющего элемента таким образом, что С≥В, где С - ширина микроручейкового течения, В - ширина электронного тепловыделяющего элемента, L/С=1÷10, где L - ширина мини- или микроканала, при этом размер наноструктур составляет 1-500 нм, а разность между равновесным контактным углом смачивания на гидрофобной поверхности и равновесным контактным углом смачивания на гидрофильной поверхности (поверхности течения жидкости) составляет 10-175 градусов.

Замена течения в виде сплошной пленки жидкости толщиной Н микроручейковым течением с тем же расходом жидкости имеет целый ряд существенных преимуществ:

1. За счет искривления поверхности в ручейке средняя интегральная толщина жидкости уменьшается, т.е. имеет место соотношение Hav<Н, где Hav - средняя интегральная толщина жидкости. Для испарения пленок и слоев жидкостей известно соотношение (Nusselt W., 1916, Die Oberflachen-Kondensation des Wasserdampfes // Zeitschrift der VDI, N 27. - P. 541-546, N 28. - P. 569-575):

α=λ/H,

т.е. коэффициент теплоотдачи α обратно пропорционален толщине пленки Н, здесь λ -теплопроводность жидкости. Таким образом, переход к микроручейковому течению приводит к интенсификации теплообмена.

2. Для пленочных течений справедливо соотношение, связывающее расход жидкости G с толщиной пленки (Nusselt W., 1916, Die Oberflachen-Kondensation des Wasserdampfes // Zeitschrift der VDI, N 27. - P. 541-546, N 28. - P. 569-575):

За счет искривления поверхности в ручейке в средней его части имеет место соотношение Hce>Н, где Hce - толщина пленки в средней части ручейка. Вследствие нелинейности зависимости (1) большая часть расхода жидкости протекает в средней части ручейка, что

снижает гидравлическое сопротивление течения жидкости и, как следствие, снижает потери энергии на прокачку жидкости за счет течения газа.

3. Каждый ручеек имеет две линии контакта газ - жидкость - твердое тело. В литературе эти области так же называют «переходный слой» или «микрорегион». Это - область длиной порядка 1-10 мкм в месте контакта жидкого мениска и твердой стенки. Толщина пленки в этой области плавно снижается от величин порядка 10 мкм до значений в диапазоне 10-20 нм (адсорбированная пленка). Именно в области микрорегиона достигаются наиболее высокие значения локального теплового потока вследствие сверхвысокой интенсивности испарения, как показано не только в теоретических работах, но и в экспериментах (Gokhale S.J., Plawsky J.L., Wayner Jr P.С, Experimental Investigation of contact angle, curvature, and contact line motion in dropwise condensation and evaporation, Journal of Colloid and Interface Sci., Vol. 259 (2), 2003, 354-366.) и авторов патента (Marchuk Igor, Karchevsky Andrey, Surtaev Anton, and Kabov Oleg A. Heat flux at the surface of metal foil heater under evaporating sessile droplets // International Journal of Aerospace Engineering Volume 2015 (2015), Article ID 391036, 5 pages). Плотность теплового потока в этой области может достигать до нескольких киловатт на см2. Таким образом, переход к микроручейковому течению благодаря наличию контактных линий может приводить к очень существенной интенсификации теплообмена при испарении. Причем интенсификация тем больше, чем больше протяженность контактных линий.

4. Микроручейковое течение в отличие от пленки жидкости занимает только часть поперечного сечения канала. В углах канала движется газ. Таким образом, достигается снижение расхода жидкости. Известно, что вязкость газа на несколько порядков меньше, чем жидкости, что и обеспечивает значительное снижение сопротивления при движении потока и, как следствие, снижение перепада давления вдоль канала, а значит, снижение энергетических затрат на прокачку жидкости и пара или газа в микроканале. Снижение расхода жидкости пропорционально отношению ширины канала к ширине микроручейкового течения жидкости, L/C. Таким образом, в общей сложности замена течения в виде сплошной пленки жидкости микроручейковым течением может привести к снижению расхода жидкости и гидравлическому сопротивлению канала до двух раз в зависимости от размеров канала и электронных компонент.

Использование вместо пленки жидкости, как в прототипе, занимающей все поперечное сечение канала, микроручейкового течения позволяет снизить гидравлическое сопротивление стенок канала и существенно увеличить интенсивность теплообмена. Использование микроканавок и нанопокрытия позволяет достичь стабильной работы устройства охлаждения микроэлектронного оборудования в любых, в том числе нестандартных, ситуациях. В случае пульсаций давления, вибраций системы, отклонения системы от горизонтального положения, неоднородного или нестационарного тепловыделения на электронном компоненте ручеек жидкости может терять устойчивость и менять направление течения. Когда ручеек начинает поворачивать или растекаться, то наступающий контактный угол увеличивается, что увеличивает кривизну на границе раздела ручейка и, как следствие, возникает капиллярная сила, которая стремится вернуть ручеек на место. Кроме того, поверхностное натяжение стремится придать ручейку форму окружности в сечении, минимизируя поверхностную энергию и, соответственно, площадь поверхности жидкости. В работе авторов патента было показано, что с помощью потока газа в миниканале можно обеспечить контролируемое течение ручейка жидкости в условиях с изменяемым ускорением (V. Cheverda, A. Glushchuk, P. Queeckers, S.В. Chikov, О.А. Kabov, Liquid rivulets moved by shear stress of gas flow at altered levels of gravity // Microgravity sci. technol. - 2013. - Vol.25(1). - P. 73-81).

На фиг. 1 показана схема устройства для формирования микроручейкового течения жидкости в микро- и миниканалах, вид сверху.

На фиг. 2, 3 и 4 схематически показано поперечное сечение микро- или миниканала устройства с использованием разных технических решений для стабилизации микро-ручейкового течения жидкости со спутным потоком газа или пара.

На фиг. 2 показано поперечное сечение микро- или миниканала с использованием микроканавок, выполненных вдоль микроручейкового течения.

На фиг. 3 показано поперечное сечение микро- или миниканала с использованием гидрофобного нанопокрытия с контрастным смачиванием, нанесенного на подложку.

На фиг. 4 показано поперечное сечение микро или миниканала с использованием гидрофобного нанопокрытия с контрастным смачиванием, нанесенного на все стенки канала за исключением области микроручейкового течения, которая обычно бывает гидрофильной.

На фиг. 5 показано поперечное сечение микро- или миниканала с использованием гидрофобного нанопокрытия и изображен один микроручеек на гидрофобной поверхности с равновесным контактным углом смачивания на гидрофобной поверхности.

На фиг. 6 показано поперечное сечение микро- или миниканала с гидрофильной областью (без покрытия) и изображен один микроручеек на гидрофильной поверхности с равновесным контактным углом смачивания на гидрофильной поверхности.

Где: 1 - подложка; 2 - электронный тепловыделяющий элемент; 3 - ручейки жидкости; 4 - газ или пар; 5 - микроканавки; 6 - гидрофобное нанопокрытие; 7 -

жидкостное сопло; А - ширина ручейка (гидрофильной области); D - ширина микроканавки (гидрофобного нанопокрытия); L - ширина мини- или микроканала; С - ширина микроручейкового течения, Cm - расстояние между крайними микроканавками; В - ширина электронного тепловыделяющего элемента, θhydrophile - равновесный контактный угол смачивания на гидрофильной поверхности, θhydrophobe - равновесный контактный угол смачивания на гидрофобной поверхности.

Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах содержит плоский мини- или микроканал прямоугольного сечения. В центре подложки 1 находится электронный тепловыделяющий элемент 2 или несколько элементов, расположенных в ряд (на схеме не показано). Движение ручейков жидкости происходит за счет касательного напряжения, создаваемого потоком газа или пара 4 в канале.

Для обеспечения устойчивости микроручейкового течения жидкости в случае пульсаций давления, вибраций системы, отклонения системы от горизонтального положения, неоднородного или нестационарного тепловыделения на электронном компоненте на поверхности подложки с обеих сторон от каждого ручейка 3 расположены микроканавки 5, ограничивающие область течения ручейка. Микроканавки выполнены так, что ширина ручейка, А, существенно больше ширины микроканавки D. Общая ширина микроручейкового течения, С, больше или равна ширине электронного тепловыделяющего элемента, В, и меньше расстояния между крайними микроканавками, Cm, отношение ширины мини- или микроканала, L, к расстоянию между крайними микроканавками, Cm, находится в диапазоне от 1 до 10, а угол между плоскостью электронного тепловыделяющего элемента и стороной микроканавки находится в диапазоне от 0 до 135 град [V. Cheverda, A. Glushchuk, P. Queeckers, S.В. Chikov, O.A. Kabov, Liquid rivulets moved by shear stress of gas flow at altered levels of gravity // Microgravity sci. technol. - 2013. - Vol. 25(1). - P. 73-81; Viktor Grishaev, A. Amirfazli, Sergey Chikov, Yuriy Lyulin, Oleg Kabov, Study of Edge Effect to Stop Liquid Spillage for Microgravity Application, Microgravity Sci. Technol. (2013) 25:27-33].

Форма поперечного сечения микроканавки может быть треугольной, прямоугольной, и в форме «ласточкин хвост». Эффективность микроканавки зависит от величины угла между плоскостью электронного тепловыделяющего элемента и стороной канавки, чем меньше этот угол, тем эффективнее стабилизирующее действие микроканавки.

В другом варианте исполнения устройства для обеспечения устойчивости микроручейкового течения жидкости используют гидрофобное нанопокрытие, которое наносят либо только на поверхность подложки в виде системы продольных полос вдоль канала, а также с обеих сторон от тепловыделяющего элемента для ограничения микроручейкового течения, либо гидрофобное нанопокрытие наносится также на три другие внутренние поверхности канала. Таким образом, поверхность течения ручейков жидкости по подложке всегда остается гидрофильной. Нанопокрытие выполнено так, что ширина ручейка, А, существенно больше ширины гидрофобного нанопокрытия между ручейками, D. Ширина всего микроручейкового течения, С, больше или равна ширине электронного тепловыделяющего элемента, В, а отношение ширины мини- или микро канала, L, к ширине всего микроручейкового течения, С, находится в диапазоне от 1 до 10.

Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах включается в замкнутый циркуляционный контур, содержащий резервуары для газа и жидкости, регуляторы поддержки расхода газа и давления, насосы для подачи жидкости и газа и эвакуации двухфазной смеси, сепарационную систему для разделения использованной жидкости от газовой фазы.

Жидкость и газ подаются при помощи насосов из резервуаров через сопла в микро- или миниканал устройства. Газ подается под давлением над жидкостным соплом, и течет, увлекая поток жидкости. Заданные расход газа и давление в устройстве поддерживаются автоматически при помощи регуляторов, например регуляторов BRONKHORST. Плоское микро-ручейковое течение жидкости шириной, равной или больше ширины электронного компонента, но меньше ширины канала, формируется благодаря узкой щели сопла и ограничивающим канавкам или нанопокрытию с контрастным смачиванием и движется под действием спутного потока газа. Толщина каждого ручейка меняется в зависимости от расходов жидкости и газа.

Для обеспечения устойчивого течения ручейка в заданной области используют микроканавки, которые располагают вдоль течения ручейка, ограничивая его течение с двух сторон, как показано на фиг. 2. Микроканавка удерживает жидкость от растекания, используя эффект острой кромки. Впервые использование эффекта острой кромки в качестве барьера против растекания жидкости было предложено Гибсом [Gibbs, J.W. Scientific Papers, p. 326, 1906]. В дальнейшем эта идея была развита и проанализирована в работе [Fang,G., Amirfazli, A.:Understanding the edge effect in wetting: a thermodynamic approach. Langmuir (2012). doi:10.1021/la301623h], а также исследована экспериментально в работах [Oliver, J.F., Huh, С, Mason, S.G.: Resistance to spreading of liquids by sharp edges.

J. Colloid Interface Sci. 59, 568-581 (1977); Bayramli, E., Mason, S.G.: Liquid spreading: edge effect for zero contact angle. J. Colloid Interface Sci. 66, 200-202 (1978); Yu, L.M.Y., Lu J.J., Chan, Y.W., Ng, A., Zhang, L., Hoorfar, M., Policova, Z., Grundke, K., Neumann, A.W.: Constrained sessile drop as a new configuration to measure low surface tension in lung surfactant systems. J. Appl. Physiol. 97, 704-715 (2004); Sheng, X., Zhang, J., Jiang, L.: Application of the restricting flow of solid edges in fabricating superhydrophobic surfaces. Langmuir 25, 9903-9907 (2009); Toth, В.: Future experiments to measure liquid-gas phase change and heat transfer phenomena on the international space station. Microgravity Sci. Technol. (2011). doi:10.1007/s12217-011-9286-1].

Поверхность жидкости вблизи острой кромки канавки составляет с поверхностью подложки равновесный контактный угол смачивания θ. Этот угол отражает взаимодействие жидкости и поверхности твердого тела. Для того чтобы жидкость могла преодолеть острую кромку твердого тела, контактный угол должен достигнуть соответствующего критического угла θс=α+θ, где α - угол между плоскостью электронного тепловыделяющего элемента и стороной микроканавки. При достижении жидкостью положения, когда контактный угол смачивания достигает критического угла 0 с, жидкость закрепляется на краю твердого тела (кромки микроканавки). Таким образом, контактный угол с поверхностью твердого тела может быть увеличен при помощи острой кромки. Для стабилизации течения ручейка в случае резких вибраций работают канавки очень широкого спектра форм - треугольные, прямоугольные, и в форме «ласточкин хвост» [Viktor Grishaev, A. Amirfazli, Sergey Chikov, Yuriy Lyulin, Oleg Kabov, Study of Edge Effect to Stop Liquid Spillage for Microgravity Application, Microgravity Sci. Technol. (2013) 25:27-33]. Чем меньше угол между плоскостью электронного тепловыделяющего элемента и стороной канавки, тем она эффективнее, но стоимость может возрасти. Канавки выполняют эксимерным лазером или электроэрозионным методом.

Для обеспечения устойчивости ручейкового течения жидкости также используют гидрофобное нанопокрытие. Гидрофобное нанопокрытие 6 наносят вдоль течения на поверхность подложки с обеих сторон от каждого ручейка, а также на всю подложку, как показано на фиг. 3. Течение ручейка удерживается за счет контрастной смачиваемости на подложке канала. Когда ручеек начинает растекаться на поверхность с нанопокрытием, то контактный угол смачивания существенно увеличивается, что увеличивает кривизну на границе раздела ручейка и, как следствие, возникает капиллярная сила, которая стремится вернуть ручеек на место. Однако в случае существенных вибраций системы и отклонения системы от горизонтального положения могут возникнуть силы, способные перебросить часть жидкости на одну из стенок канала или верхнюю стенку канала, без нанопокрытия.

Для предотвращения такой ситуации гидрофобное нанопокрытие 6 наносят вдоль течения на поверхность подложки с обеих сторон от каждого ручейка, на всю подожку за пределами микроручейкового течения, и на внутреннюю поверхность трех других стенок канала. Таким образом, вся поверхность стенок канала имеет сплошное гидрофобное нанопокрытие, за исключением области течения ручейков, которая обычно бывает гидрофильной, как показано на фиг. 4. В этом случае ручейки жидкости вернутся на обычное место их течения при любых отклонениях устройства, как только исчезнет источник дестабилизации, так как течение по гидрофильной поверхности является наиболее энергетически выгодным для ручейков.

Для получения нанопокрытия часть поверхности обрабатывают химическим способом (нанесением монослоя молекул другого вещества) так, чтобы на поверхности появилась область с наноразмерной шероховатостью и более высоким значением контактного угла смачивания. Области поверхности с нанесенными на нее наноструктурами являются гидрофобными относительно остальной поверхности. Размер наноструктур может составлять от 1 до 500 нм и более, в зависимости от типа поверхности, и не является принципиальным параметром, т.е. заметным сужением канала. Разница между контактными углами смачивания на гидрофобных участках и необработанной поверхностью (поверхностью течения жидкости) может составлять от 10 до 175 градусов.

Работоспособность предложенной конструкции устройства для формирования микроручейкового течения жидкости в микро- и миниканалах подтверждается экспериментальными данными и выполненными оценками и расчетами [Viktor Grishaev, A. Amirfazli, Sergey Chikov, Yuriy Lyulin, Oleg Kabov, Study of Edge Effect to Stop Liquid Spillage for Microgravity Application, Microgravity Sci. Technol. (2013) 25:27-33; [Cheverda V. Liquid rivulets moved by shear stress of gas flow at altered levels of gravity / V. Cheverda, A. Glushchuk, P. Queeckers, S.B. Chikov, O.A. Kabov // Microgravity sci. technol. - 2013. - Vol. 25(1). - P. 73-81].

Преимущество заявляемого изобретения состоит в том, что предложенное устройство позволяет существенно снизить энергозатраты на прокачку охлаждающей жидкости, одновременно позволяя существенно интенсифицировать теплообмен при испарении, т.е. обеспечивает высокую эффективность и устойчивость работы, в том числе и в нестандартных ситуациях, таких как невесомость.


УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ МИКРОРУЧЕЙКОВОГО ТЕЧЕНИЯ ЖИДКОСТИ В МИКРО- И МИНИКАНАЛАХ
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ МИКРОРУЧЕЙКОВОГО ТЕЧЕНИЯ ЖИДКОСТИ В МИКРО- И МИНИКАНАЛАХ
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ МИКРОРУЧЕЙКОВОГО ТЕЧЕНИЯ ЖИДКОСТИ В МИКРО- И МИНИКАНАЛАХ
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ МИКРОРУЧЕЙКОВОГО ТЕЧЕНИЯ ЖИДКОСТИ В МИКРО- И МИНИКАНАЛАХ
Источник поступления информации: Роспатент

Showing 11-20 of 96 items.
10.05.2014
№216.012.bfb5

Способ свч-градиентной активации угольного топлива с использованием защитной пленки

Изобретение относится к способу СВЧ-градиентной активации угольного топлива с использованием защитной пленки путем СВЧ-воздействия на угольное топливо, при котором производят СВЧ-градиентную активацию угольной частицы, при этом поверхность кусков угля покрыта защитной пленкой, задерживающей...
Тип: Изобретение
Номер охранного документа: 0002514826
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.ccb0

Электродуговой нагреватель водяного пара

Изобретение относится к области электротехники, а именно к электродуговым нагревателям газа (плазмотронам), используемым для получения стационарных потоков низкотемпературной плазмы различных газов, и может быть применено в химической и металлургической промышленности, машиностроении,...
Тип: Изобретение
Номер охранного документа: 0002518171
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.e1cd

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим для горения перегретый водяной пар. Горелочное устройство содержит расположенные соосно корпус, парогенератор водяного пара, установленный в корпусе и состоящий из бачка-испарителя, паросепаратора, выполненных в виде...
Тип: Изобретение
Номер охранного документа: 0002523591
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e25d

Многоходовая фокусирующая система и способ фокусировки лазерного излучения, обеспечивающий многократное прохождение лазерного пучка через измерительный объем

Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света. Система включает способные перемещаться в направлении к точке фокуса сборки оптических элементов, каждая из...
Тип: Изобретение
Номер охранного документа: 0002523735
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e25f

Способ бесконтактной оптико-лазерной диагностики нестационарного гидропотока и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. Способ, основанный на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (PIV), включает установку CCD камер под углом,...
Тип: Изобретение
Номер охранного документа: 0002523737
Дата охранного документа: 20.07.2014
10.10.2014
№216.012.fae0

Способ синтеза полых наночастиц γ-alo

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-AlO. Способ синтеза полых наночастиц γ-AlO реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала,...
Тип: Изобретение
Номер охранного документа: 0002530070
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.054e

Способ синтеза наноструктурного композиционного сео-pdo материала

Изобретение относится к области нанотехнологий, а именно к пламенно-дуговой технологии синтеза наноструктурированных композиционных материалов. Предложенный способ синтеза наноструктурного композиционного CeO-PdO материала в плазме электрического разряда включает откачивание вакуумной камеры,...
Тип: Изобретение
Номер охранного документа: 0002532756
Дата охранного документа: 10.11.2014
27.12.2014
№216.013.14ae

Способ повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно, к способу устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки. Способ включает формирование и стабилизацию вихревого потока. Формирование вихревого потока осуществляют за счет симметричного...
Тип: Изобретение
Номер охранного документа: 0002536718
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.17ce

Способ триангуляционного измерения толщины листовых изделий

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. Техническим результатом изобретения является повышение точности определения толщины листового изделия. В...
Тип: Изобретение
Номер охранного документа: 0002537522
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2867

Способ использования и утилизации соломы злаковых культур

Изобретение относится к сельскому хозяйству. Способ включает извлечение полезного продукта, преимущественно растворимых биоусвояемых сахаров, и последующую утилизацию лигноцеллюлозных отходов. При извлечении полезного продукта солому злаковых культур подвергают глубокой переработке, а именно:...
Тип: Изобретение
Номер охранного документа: 0002541800
Дата охранного документа: 20.02.2015
Showing 11-20 of 67 items.
10.05.2014
№216.012.bfb5

Способ свч-градиентной активации угольного топлива с использованием защитной пленки

Изобретение относится к способу СВЧ-градиентной активации угольного топлива с использованием защитной пленки путем СВЧ-воздействия на угольное топливо, при котором производят СВЧ-градиентную активацию угольной частицы, при этом поверхность кусков угля покрыта защитной пленкой, задерживающей...
Тип: Изобретение
Номер охранного документа: 0002514826
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.ccb0

Электродуговой нагреватель водяного пара

Изобретение относится к области электротехники, а именно к электродуговым нагревателям газа (плазмотронам), используемым для получения стационарных потоков низкотемпературной плазмы различных газов, и может быть применено в химической и металлургической промышленности, машиностроении,...
Тип: Изобретение
Номер охранного документа: 0002518171
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.e1cd

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим для горения перегретый водяной пар. Горелочное устройство содержит расположенные соосно корпус, парогенератор водяного пара, установленный в корпусе и состоящий из бачка-испарителя, паросепаратора, выполненных в виде...
Тип: Изобретение
Номер охранного документа: 0002523591
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e25d

Многоходовая фокусирующая система и способ фокусировки лазерного излучения, обеспечивающий многократное прохождение лазерного пучка через измерительный объем

Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света. Система включает способные перемещаться в направлении к точке фокуса сборки оптических элементов, каждая из...
Тип: Изобретение
Номер охранного документа: 0002523735
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e25f

Способ бесконтактной оптико-лазерной диагностики нестационарного гидропотока и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. Способ, основанный на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (PIV), включает установку CCD камер под углом,...
Тип: Изобретение
Номер охранного документа: 0002523737
Дата охранного документа: 20.07.2014
10.10.2014
№216.012.fae0

Способ синтеза полых наночастиц γ-alo

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-AlO. Способ синтеза полых наночастиц γ-AlO реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала,...
Тип: Изобретение
Номер охранного документа: 0002530070
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.054e

Способ синтеза наноструктурного композиционного сео-pdo материала

Изобретение относится к области нанотехнологий, а именно к пламенно-дуговой технологии синтеза наноструктурированных композиционных материалов. Предложенный способ синтеза наноструктурного композиционного CeO-PdO материала в плазме электрического разряда включает откачивание вакуумной камеры,...
Тип: Изобретение
Номер охранного документа: 0002532756
Дата охранного документа: 10.11.2014
27.12.2014
№216.013.14ae

Способ повышения устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно, к способу устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки. Способ включает формирование и стабилизацию вихревого потока. Формирование вихревого потока осуществляют за счет симметричного...
Тип: Изобретение
Номер охранного документа: 0002536718
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.17ce

Способ триангуляционного измерения толщины листовых изделий

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. Техническим результатом изобретения является повышение точности определения толщины листового изделия. В...
Тип: Изобретение
Номер охранного документа: 0002537522
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2867

Способ использования и утилизации соломы злаковых культур

Изобретение относится к сельскому хозяйству. Способ включает извлечение полезного продукта, преимущественно растворимых биоусвояемых сахаров, и последующую утилизацию лигноцеллюлозных отходов. При извлечении полезного продукта солому злаковых культур подвергают глубокой переработке, а именно:...
Тип: Изобретение
Номер охранного документа: 0002541800
Дата охранного документа: 20.02.2015
+ добавить свой РИД