×
19.01.2018
218.015.ff2d

Результат интеллектуальной деятельности: Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре 800-850°С и катодной плотности тока не выше 1А/см с периодической выгрузкой алюминиевой лигатуры из электролизера и загрузкой оксида скандия и металлического алюминия в электролизер с расплавленной смесью, при этом оксид скандия в расплавленную смесь загружают в количестве 3-6 мас.% от расплавленной смеси, а металлический алюминий – в количестве, обеспечивающем соотношение масс алюминия и расплавленной смеси в электролизере, составляющее 1:1-4. Обеспечивается непрерывное получение лигатуры и снижение себестоимости получаемого из лигатуры алюминиевого сплава. 1 табл.

Изобретение относится к металлургии цветных металлов, в частности к получению алюминиевой лигатуры с редкоземельными металлами, и может быть использовано для получения алюминиевой лигатуры с 2 мас.% скандия (лигатура AlSc2), которая может быть использована для приготовления многофункциональных алюминиевых сплавов со скандием, применяемых в автомобилестроении, роботостроении, аэрокосмической отрасли.

Преимущество алюминиевых лигатур заключается в уменьшении затрат на транспортировку готовой продукции и повышенное извлечение из исходного сырья ценного компонента, к которым относится скандий. Актуальность разработки энергосберегающих и ресурсосберегающих технологий получения алюминиевых лигатур со скандием подтверждается их присутствием в списке стандартизированных лигатур (см. ГОСТ Р 53777-2010).

Известно, что к достоинствам алюминиевых лигатур относится воспроизводимость их свойств в получаемых алюминиевых сплавах. К преимуществам лигатуры AlSc2 относится то, что в соответствии с фазовой диаграммой системы «алюминий-скандий», лигатура AlSc2 с воспроизводимыми свойствами может быть получена при относительно низкой температуре (до 900°С).

В настоящее время в России и за рубежом лигатуру AlSc2 получают восстановлением фторида скандия алюминием из реакционной смеси хлорида калия, фторида натрия и фторида алюминия при 900°С (Цветные металлы, 2010, №5, 95-96) [1]. Известный способ характеризуется рядом существенных недостатков, среди которых такие как использование относительно дорогого фторида скандия и быстрое накопление оксида в солевом флюсе, которое приводит к необходимости периодической регенерации либо замены реакционной смеси, к большим потерям ценного компонента (фторида скандия) и, как следствие, к повышению себестоимости получаемой лигатуры. Помимо этого, алюмотермическое восстановление фторида скандия представляется сложным с точки зрения подбора параметров синтеза и поэтому требует непрерывного мониторинга.

Известен способ получения алюминиевой лигатуры с содержанием скандия от 1.5 до 30 мас. % алюмотермическим восстановлением фторида скандия при соотношении в реакционной смеси ScF3:Al 1:(1.6-8) в три стадии с постепенным повышением температуры до 1300°С в течение 5-6 часов(SU873692, C22C1/03, опубл. 30.11.1983)[2]. Процесс осуществляется в закрытой восстановительной камере, изолированной от внешней атмосферы. Недостатками известного способа являются высокая температура и длительность процесса, невоспроизводимость содержания скандия в готовой лигатуре, трудоемкость и многостадийность процесса. Кроме того, существенным недостатком является присутствие субфторида алюминия AlF в готовой лигатуре, который при охлаждении диссоциирует с образованием фторида алюминия и мелкодисперсного алюминия. При разгерметизации восстановительной камеры мелкодисперсный алюминий окисляется с выделением большого количества энергии.

При более низкой температуре, из более дешевого оксида скандия, с более высокой воспроизводимостью содержания скандия в готовой лигатуре и с меньшей трудоемкостью алюминиевую лигатуру получают способом (RU 2124574, C22C1/03, опубл.10.01.1999) [3]. Данный способ включает расплавление и выдержку при 820°С реакционной смеси алюминия,хлорида калия, фторида натрия, фторида алюминия и оксида скандия. Помимо того, что этим способом получают алюминиевую лигатуру с содержанием скандия 1.82-1.84 мас.%, т.е. менее 2 мас. %,способ характеризуется накоплением оксида алюминия в реакционной смеси, приводящее к необходимости периодической регенерации либо замены реакционной смеси, что повышает себестоимость получаемой лигатуры.

Известен способ получения алюминиевой лигатуры с использованием относительно дешевого оксида скандия, снижающего себестоимость алюминиевого сплава с заданным содержанием скандия (WO2006079353A1, публ. 03.08.2006) [4]. Данный способ включает электролиз при 1000°С криолитового расплава, представляющего смесь фторидов натрия и алюминия, содержащего оксид алюминия, оксид или фторид скандия, который позволяет организовать непрерывное получение алюминиевой лигатуры и по технической сущности может быть принят в качестве наиболее близкого аналога к заявленному изобретению.

Однако, как показали исследования (Advanced Materials Research, 2015, Vol.1088, pp.213-216)[5], при электролизе криолитового расплава с добавками оксида скандия при катодной плотности тока не выше 1 А/см2 может быть получена алюминиевая лигатура с содержанием скандия не выше 1.3 мас.%. Лигатуру AlSc2 данным способом получить можно, однако для этого потребуется повышение катодной плотности тока до 2-3 А/см2, что приведёт к выделению щелочного металла, солевой пассивации электродов в электролизере и остановке процесса, либо для получения лигатуры AlSc2 данным способом потребуется использование дорогого фторида скандия, что приведет к повышению себестоимости получения этой лигатуры (Цветные металлы, 1998, № 7, с. 43-46) [6].

Задачей изобретения является непрерывное получение лигатуры AlSc2 при катодной плотности тока не выше 1 А/см2 и снижении себестоимости получаемого из лигатуры алюминиевого сплава.

Поставленная задача решается тем, что электролитический способ получения алюминиевой лигатуры с 2 мас.% скандия включает электролиз расплава, содержащего фториды калия, натрия, алюминия и оксид скандия, при этом в расплав, содержащий фториды калия, натрия и алюминия загружают оксид скандия, и электролиз расплавленной смеси с оксидом скандия ведут в электролизере при температуре 800-850°С, периодически осуществляя выгрузку готовой алюминиевой лигатуры из электролизера и загрузку оксида скандия и металлического алюминия в электролизер с расплавленной смесью, при этом оксид скандия в расплавленную смесь загружают в количестве 3-6 мас.% от расплавленной смеси, а металлический алюминий – в количестве, чтобы соотношение масс алюминия и расплавленной смеси в электролизере составляло 1 : 1-4.

Сущность заявленного способа заключается в следующем. При введении оксида скандия в расплавленную смесь KF-NaF-AlF3 происходит его растворение с образованием скандий-содержащих ионов. Несмотря на то, что скандий является более электроотрицательным металлом по отношению к алюминию, при контакте скандий-содержащей расплавленной смеси с жидким алюминием происходит восстановление скандия по суммарной реакции:

2Al + Sc2O3 = 2Sc + Al2O3 (1)

Восстановленный скандий растворяется в алюминии с образованием алюминиевой лигатуры, а оксид алюминия (Al2O3) растворяется в расплавленной смеси KF-NaF-AlF3 с оксидом скандия. Экспериментально показано, что в зависимости от температуры и состава расплавленной смеси KF-NaF-AlF3, содержащей 3-6 мас.% оксида скандия, в алюминий по реакции (1) переходит до 1.3 мас.% скандия. Сдвигу реакции (1) вправо и повышению извлечения скандия способствуют непрерывный отвод продуктов от фронта реакции: скандия вглубь алюминия; оксида алюминия – в объем расплавленной смеси.

В заявляемом способе отвод скандия вглубь алюминия практически не затруднен, поскольку температура синтеза (800-850°С) обеспечивает конвекцию скандия и алюминия за счет высокого перегрева алюминия (140-190°С). Отвод оксида алюминия из зоны реакции интенсифицируется за счет его электролитического разложения, которое происходит при электролизе расплавленной смеси KF-NaF-AlF3, содержащей оксиды алюминия и скандия. При электролизе на алюминиевом катоде и углеродном аноде параллельно протекают суммарные реакции разложения оксидов алюминия (Al2O3) и скандия (Sc2O3):

Al2O3 + 3С + 6е- = 2Al + CO + CO2 (2)

Sc2O3 + 3С + 6е- = 2Sc + CO + CO2 (3)

Экспериментально показано, что доля электрического тока, расходуемого на реакцию (3), незначительна ввиду быстрого расходования оксида скандия и накопления оксида алюминия по реакции (1).

Увеличение содержания скандия до 2 мас.% в алюминиевой лигатуре в сравнении с прототипом обеспечивается за счет поддержания концентрации оксида скандия в расплавленной смеси KF-NaF-AlF3 в диапазоне 3-6 мас.%. Эмпирически показано, что содержание скандия в лигатуре, получаемой при электролизе расплавленной смеси KF-NaF-AlF3, содержащей менее 3 мас.% оксида скандия при катодной плотностью тока не выше 1 А/см2, не превышает 1.6-1.8 мас.%. Верхний предел концентрации оксида скандия (6 мас.%) обусловлен растворимостью оксида в расплавленной смеси. Превышение концентрации оксида скандия в расплавленной смеси приведет к пассивации катодного алюминия.

Соотношение масс алюминия и расплавленной смеси (1:1-4) в электролизере подобрано эмпирически.

Непрерывность получения лигатуры обеспечивается тем, что готовую алюминиевую лигатуру периодически выгружают из электролизера, а металлический алюминий вместе с очередной добавкой оксида скандия периодически загружают в электролизер.

Таким образом, заявляемый способ непрерывного получения алюминиевой лигатуры с 2 мас.% скандия включает наплавление алюминия, наплавление фторидов калия, натрия и алюминия в электролизере, введение оксида скандия в расплавленную смесь фторидов, восстановление оксида скандия алюминием, электролиз расплавленной смеси KF-NaF-AlF3, периодическую выгрузку готовой алюминиевой лигатуры, периодическую загрузку металлического алюминия и периодическую загрузку оксида скандия в электролизер с алюминием и расплавленной смесью KF-NaF-AlF3.

При восстановлении оксида скандия алюминием до 1.3 мас.% скандия растворяется в алюминии, а в расплавленной смеси KF-NaF-AlF3 образуется оксид алюминия. При электролизе расплавленной смеси KF-NaF-AlF3, содержащей оксиды скандия и алюминия, происходит электролитическое разложение оксидов, преимущественно оксида алюминия, приводящее к сдвигу реакции (1) вправо и повышению извлечения скандия в алюминий до 2 мас.%. Требуемое содержание скандия в алюминиевой лигатуре (2 мас.%) достигается путем подбора соотношения масс алюминия и расплавленной смеси KF-NaF-AlF3 в электролизере, силы тока на конкретном электролизере и периодичности выгрузки готовой алюминиевой лигатуры с содержанием скандия 2.0 ± 0.2 мас.%.

Технический результат, достигаемый заявленным способом, заключается в интенсификации отвода оксида алюминия от фронта алюмотермической реакции (1) за счет электролитического разложения оксидов алюминия и скандия, преимущественно оксида алюминия, при электролизе расплавленной смеси KF-NaF-AlF3.

Заявляемый способ реализован в лабораторном электролизере на силу тока 20 А. Лабораторный электролизер состоит из графитового тигля, который размещают в печи сопротивления. В тигель электролизера загружают 400 г приготовленной смеси:

- фторида калия -30-50 мас. %, преимущественно 39 мас. %;

- фторида натрия - 1-12 мас. %, преимущественно 10 мас. %;

- фторида алюминия – остальное, преимущественно 51 мас. %.

Электролизер со смесью KF-NaF-AlF3 нагревают до температуры синтеза (800-850°С), после чего загружают в тигель электролизера 12-24 г (3-6 мас.%) оксида скандия. Спустя 30-60 минут в тигель электролизера загружают 400г алюминия. При контакте алюминия с расплавленной смесью начинает протекать реакция (1), в ходе которой в алюминии образуется скандий, а в расплавленной смеси KF-NaF-AlF3 - оксид алюминия. При этом температура в электролизере опускается до 720-740°С. При достижении температуры синтеза (800-850°С) в полученную расплавленную смесь погружают анод из плотного графита.

Электролиз расплавленной смеси KF-NaF-AlF3, содержащей оксиды скандия и алюминия, осуществляют путем пропускания электрического тока силой 10-20А между графитовым анодом и графитовым тиглем электролизера, который служит токоподводом к жидкому алюминиевому катоду. Размеры катода подбираются таким образом, чтобы катодная плотность тока не превышала 1 А/см2. В ходе электролиза фиксируют изменение напряжения на электролизере и отбирают пробы расплавленной смеси и алюминия с целью определения их элементного состава. На рисунке показано изменение содержания скандия в расплавленной смеси и в алюминии в ходе электролиза расплавленной смеси KF-NaF-AlF3 с разовой добавкой 6 мас.% Sc2O3.

Видно, что за 120-180 минут электролиза обеспечивается требуемое содержание скандия в алюминии, 2 мас.%. Для обеспечения непрерывности получения алюминиевой лигатуры с 2 мас.% скандия часть массы алюминия со скандием, преимущественно половину, выгружают из электролизера с периодичностью 1 выгрузка в 3 часа, а металлический алюминий вместе с очередной добавкой оксида скандия загружают в электролизер. Скорость загрузки оксида скандия составляет 1г за 10 минут.

Всего в лабораторном эксперименте в электролизер было загружено алюминия – 2408г, оксида скандия – 124г; произведено 11 выгрузок алюминиевой лигатуры общей массой 2378г и содержанием скандия 1.98-2.14 мас.%.

Заявляемый способ реализован также в укрупненном лабораторном электролизере на силу тока 100А. Укрупненный лабораторный электролизер состоит из графитового тигля, который размещают в печи сопротивления. В тигель электролизера загружают 4000г приготовленной смеси:

- фторида калия - 39 мас.%;

- фторида натрия - 10 мас.%;

- фторида алюминия – 51 мас.%.

Электролизер со смесью KF-NaF-AlF3 нагревают до температуры 820°С, после чего загружают в тигель электролизера 200г (5 мас.%) оксида скандия и 4000г алюминия. При этом температура в электролизере опускается до 760-770°С. При достижении температуры 820°С в полученную расплавленную смесь погружают анод из плотного графита.

Электролиз расплавленной смеси KF-NaF-AlF3, содержащей оксиды скандия и алюминия, осуществляют путем пропускания электрического тока силой 80А между графитовым анодом и графитовым тиглем электролизера, который служит токоподводом к жидкому алюминиевому катоду. Размеры катода подбираются таким образом, чтобы катодная плотность тока не превышала 1 А/см2. В ходе электролиза фиксируют изменение напряжения на электролизере и отбирают пробы расплавленной смеси и алюминия с целью определения их элементного состава. На основании лабораторных экспериментов и экстраполяции результатов было оценено, что для обеспечения непрерывного получения алюминиевой лигатуры необходимо производить ее выгрузку из электролизера с периодичностью 1 выгрузка по 2000г в 3 часа, а в электролизер, соответственно загружать 2000г чистого алюминия с очередной партией оксида скандия. Скорость загрузки оксида скандия составляет 5г за 6 минут.

Всего в укрупненном лабораторном эксперименте было произведено 8 выгрузок алюминиевой лигатуры общей массой 15.5 кг и содержанием скандия 1.99-2.12 мас.%. Химический состав получаемой алюминиевой лигатуры со скандием, мас.%: скандия – 2.0; железа – 0.006; кремния – 0.007; меди – менее 0.001; натрия – 0.0002; лития – не более 0.0001; калия – 0.0003. Таким образом, способ также позволяет существенно снизить содержание примесей в алюминиевой лигатуре со скандием в сравнении с содержанием примесей по ГОСТ Р 53777-2010. Содержание скандия в получаемых слитках лигатуры входит в пределы содержания скандия (1.7-2.3 мас.%), допустимых по ГОСТ Р 53777-2010.

Параметры, отражающие получение алюминиевой лигатуры с 2 мас.% скандия в зависимости от заявленных пределов температуры электролиза, количества загружаемого скандия и соотношения масс алюминия и расплавленной смеси приведены в таблице. Содержание скандия в получаемых слитках лигатуры 1.91-2.18 входит в пределы содержания скандия (1.7-2.3 мас.%), допустимых по ГОСТ Р 53777-2010.

Заявленный способ позволяет непрерывно получать лигатуру AlSc2 при катодной плотности тока не выше 1 А/см2 и снизить себестоимость получаемого из лигатуры алюминиевого сплава.

Способ электролитического получения алюминиевой лигатуры с 2 мас.% скандия, включающий электролиз расплава, содержащего фториды калия, натрия, алюминия и оксид скандия, отличающийся тем, что в упомянутый расплав загружают оксид скандия и ведут электролиз расплавленной смеси с оксидом скандия в электролизере при температуре 800-850°С и катодной плотности тока не выше 1А/смс периодической выгрузкой алюминиевой лигатуры из электролизера и загрузкой оксида скандия и металлического алюминия в электролизер с расплавленной смесью, при этом оксид скандия в расплавленную смесь загружают в количестве 3-6 мас.% от расплавленной смеси, а металлический алюминий – в количестве, обеспечивающем соотношение масс алюминия и расплавленной смеси в электролизере, составляющее 1:1-4.
Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия
Источник поступления информации: Роспатент

Showing 121-130 of 139 items.
09.06.2019
№219.017.7dd6

Тепловая батарея

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока (ТХИТ), и может быть использовано в источниках электропитания как средств управления, так и активного питания силовых электрических агрегатов. Согласно изобретению тепловая батарея содержит...
Тип: Изобретение
Номер охранного документа: 0002457586
Дата охранного документа: 27.07.2012
22.06.2019
№219.017.8e32

Способ получения керамики со структурой майенита

Способ получения керамики со структурой майенита может быть использован для получения керамики, входящей в состав электрохимических устройств. Способ характеризуется тем, что порошки прекурсоров получают из раствора нитратов с использованием смеси исходных компонентов нитрата алюминия и...
Тип: Изобретение
Номер охранного документа: 0002459781
Дата охранного документа: 27.08.2012
27.06.2019
№219.017.92ec

Способ оценки степени интеграции остеозамещающих материалов

Изобретение относится к медицине, а именно к количественной оценке степени остеоинтеграции материалов, а также их влиянию на репаративную регенерацию костной ткани. Способ оценки степени интеграции остеозамещающих материалов включает оценку степени интеграции имплантата по...
Тип: Изобретение
Номер охранного документа: 0002692668
Дата охранного документа: 25.06.2019
27.06.2019
№219.017.9894

Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам-молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур, а именно: оснащения водородных...
Тип: Изобретение
Номер охранного документа: 0002692543
Дата охранного документа: 25.06.2019
13.07.2019
№219.017.b36b

Электрохимическое устройство для дозирования кислорода в газовой среде и одновременного контроля кислородосодержания газа на входе и выходе из кислородного насоса

Изобретение относится к области электротехники, а именно к электрохимическому устройству для дозирования кислорода в газовой среде и одновременного контроля его содержания на входе и выходе из кислородного насоса, и может быть использовано для очистки газовых смесей от кислорода, а также для...
Тип: Изобретение
Номер охранного документа: 0002694275
Дата охранного документа: 11.07.2019
19.07.2019
№219.017.b611

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном...
Тип: Изобретение
Номер охранного документа: 0002694860
Дата охранного документа: 17.07.2019
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
05.09.2019
№219.017.c6fa

Способ получения остеопластического керамического материала на основе фосфата кальция

Изобретение относится к области неорганической химии, а именно к получению материалов на основе стронций-замещенного β-трикальцийфосфата, которые могут быть использованы в качестве тканеинженерных остеопластических материалов для аугментации дефектов трабекулярной костной ткани. На основу из...
Тип: Изобретение
Номер охранного документа: 0002699093
Дата охранного документа: 03.09.2019
15.11.2019
№219.017.e214

Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном...
Тип: Изобретение
Номер охранного документа: 0002706006
Дата охранного документа: 13.11.2019
21.11.2019
№219.017.e46c

Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Способ включает формирование ячейки из слоев функциональных материалов:...
Тип: Изобретение
Номер охранного документа: 0002706417
Дата охранного документа: 19.11.2019
Showing 121-130 of 193 items.
30.03.2019
№219.016.f9c7

Сплав на основе алюминия

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для получения изделий, в том числе сварных конструкций, работающих в коррозионных средах под действием высоких нагрузок, в том числе при повышенных и криогенных температурах....
Тип: Изобретение
Номер охранного документа: 0002683399
Дата охранного документа: 28.03.2019
10.04.2019
№219.016.ffe2

Способ автоматического устранения анодных эффектов

Изобретение относится к области электролитического получения алюминия из расплавов и предназначено для автоматического устранения анодных эффектов в электролизерах с самообжигающимся анодом. Техническим результатом является увеличение надежности гашения, снижение времени гашения анодного...
Тип: Изобретение
Номер охранного документа: 0002285755
Дата охранного документа: 20.10.2006
10.04.2019
№219.017.0313

Устройство для сбора и удаления газов из алюминиевого электролизера

Изобретение относится к цветной металлургии, и в частности к устройству для сбора и удаления газов из алюминиевого электролизера при получении алюминия электролизом. Устройство содержит балку-коллектор с двойными вертикальными стенками и газоходными каналами переменного сечения, высота которых...
Тип: Изобретение
Номер охранного документа: 0002316620
Дата охранного документа: 10.02.2008
10.04.2019
№219.017.031c

Устройство для компенсации магнитного поля, наведенного соседним рядом последовательно соединенных электролизеров большой мощности

Изобретение относится к производству алюминия методом электролиза расплавленных криолитовых солей в электролизерах большой мощности при поперечном расположении их в корпусе электролиза, в частности к устройству для компенсации магнитного поля. Устройство включает внутренний и внешний...
Тип: Изобретение
Номер охранного документа: 0002316619
Дата охранного документа: 10.02.2008
10.04.2019
№219.017.0344

Способ обжига подины алюминиевого электролизера с обожженными анодами

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к способам обжига подины алюминиевого электролизера с обожженными анодами. Способ обжига подины алюминиевого электролизера с обожженными анодами включает покрытие подины, выполненной из...
Тип: Изобретение
Номер охранного документа: 0002318920
Дата охранного документа: 10.03.2008
10.04.2019
№219.017.03b9

Устройство для сбора и удаления газов из алюминиевого электролизера

Изобретение относится к устройству для сбора и удаления выделяющихся газов из алюминиевого электролизера с обожженными анодами, оснащенного системой автоматической подачи сырья с пробойниками. Устройство содержит балку-коллектор с верхним и нижним поясами жесткости и вертикальными двойными...
Тип: Изобретение
Номер охранного документа: 0002385975
Дата охранного документа: 10.04.2010
10.04.2019
№219.017.05c0

Катодное устройство электролизера для получения алюминия

Изобретение относится к катодному устройству электролизера для получения алюминия. Катодное устройство содержит футерованный катодный кожух, опирающийся на фундамент через промежуточную опорную раму, состящую из отдельных секций, причем на концах крайних секций выполнено не менее четырех...
Тип: Изобретение
Номер охранного документа: 0002321683
Дата охранного документа: 10.04.2008
10.04.2019
№219.017.07d5

Способ получения порошка тугоплавкого металла

Изобретение относится к порошковой металлургии, в частности получению высокочистых наноразмерных порошков тугоплавких металлов различного гранулометрического состава и микроструктуры, применяемых в производстве танталовых и ниобиевых конденсаторов и иных изделий и полупроводников. В способе...
Тип: Изобретение
Номер охранного документа: 0002401888
Дата охранного документа: 20.10.2010
19.04.2019
№219.017.321d

Способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода. В способе в процессе электролиза измеряют потенциал анода...
Тип: Изобретение
Номер охранного документа: 0002457286
Дата охранного документа: 27.07.2012
23.04.2019
№219.017.36ad

Способ переработки угольной пены электролитического производства алюминия

Изобретение относится к способу переработки угольной пены. Способ включает обратную флотацию угольной пены водой с разделением ее на хвосты флотации и флотационный криолит, который после сгущения и фильтрации возвращают на электролитическое производство, выщелачивание хвостов флотации с...
Тип: Изобретение
Номер охранного документа: 0002685566
Дата охранного документа: 22.04.2019
+ добавить свой РИД