×
29.12.2017
217.015.fe80

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в химическом синтезе. Интегрированный мембранно-каталитический реактор представляет собой полый цилиндрический корпус, в нижней части которого расположены входной патрубок для подачи сырья и патрубок с карманом для термопары, а в верхней части расположен отводной патрубок и пористый керамический каталитический конвертер, закрепленный с помощью отвинчивающейся крышки, причем с отводным патрубком соединены газовая линия для вывода ультрачистого водорода, газовая линия для вывода синтез-газа и остальных продуктов и газовая линия для ввода газа-носителя. При этом кталитический конвертер изготовлен из материала, полученного самораспространяющимся высокотемпературным синтезом из шихты состава, мас.%: Ni - 45, Al - 5, CoO - 50, и восстановленного в токе водорода и представляет собой трубку с глухим верхним концом, в центральном канале которого установлена водородселективная мембрана на основе палладийсодержащего сплава в виде скрученной в спираль тонкостенной трубки с возможностью вывода через нее ультрачистого водорода в отводной патрубок. Изобретение обеспечивает получение ультрачистого водорода с высоким выходом и синтез-газа в одной установке и в одном процессе. 2 н. и 4 з.п. ф-лы, 2 ил., 8 табл., 47 пр.
Реферат Свернуть Развернуть

Изобретение относится к области получения перспективных энергоносителей, более конкретно к способу получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано в получении топливных элементов, полупроводников, химическом синтезе.

Ультрачистым называют водород чистотой 99,999% и выше с ограниченным содержанием таких примесей, как кислород и азот.

Ультрачистый водород является необходимым для работы твердополимерных топливных элементов (ТПТЭ), а также в производстве полупроводников, где предъявляются жесткие требования к чистоте водорода. В последнее время повышенное внимание уделяется возможностям его получения из возобновляемого сырья. Тем не менее, на данный момент наиболее распространенным способом получения водорода является паровая конверсия природного газа. Однако высокая энергоемкость самой реакции и сложная система очистки водорода от примеси монооксида углерода, являющегося каталитическим ядом для платиносодержащих мембран ТПТЭ, значительно удорожают стоимость водорода.

Синтез-газ имеет ценность как сырье для химической промышленности - для проведения реакции Фишера-Тропша, для получения метанола, высших спиртов, уксусной кислоты, аммиака, ацетона, ацетальдегида, этиленоксида, этиленгликоля, диметилового эфира, бензина.

По этой причине компактные интегрированные мембранные реакторы (ИМР), в которых в рамках одной конструкции объединены стадия каталитического риформинга и селективного извлечения водорода и синтез-газа на палладийсодержащей мембране, представляют большой практический интерес.

Для обеспечения высокой производительности, селективности и устойчивой работы компактных ИМР в них должны использоваться катализаторы нового типа. Традиционно в процессах риформинга используются нанесенные никелевые катализаторы, промотирование которых различными металлами может существенно улучшить их характеристики.

Так, известен аппарат для получения водорода высокой чистоты по заявке WO 2004/022480.

Аппарат представляет собой объединенные устройство для беспламенного распределенного сжигания и мембранного парового риформинга или реактор для парового риформинга испаряемых углеводородов (в том числе метанола) с получением Н2 и CO2 с минимальным количеством СО и минимальным количеством СО в потоке Н2. Беспламенное распределенное сжигание повышает тепловую эффективность и возможность загрузки для парового риформинга. Реактор может содержать множество камер для беспламенного распределенного сжигания и множество водородселективных, проницаемых для водорода мембранных трубок. Трубки контактируют со слоем катализатора, который содержит перегородки, выбранные из кольцевых прокладок и дисков или обрезанных дисков. Катализатор по примерам содержит никель на пористом глиноземе. Сырье и полученные при реакции газы протекают через реактор радиально или по оси. Реакция происходит при 200-700°С и 1-200 бар.

В этом аппарате не получают синтез-газ, но только водород чистотой более 99%. Эта степень чистоты недостаточна для того, чтобы применять полученный водород как ультрачистый.

Одним из вариантов могут стать Ni-Co-содержащие пористые керамические каталитические конвертеры, приготовленные методом самораспространяющегося высокотемпературного синтеза, представляющего собой перспективный и малозатратный способ приготовления высокоактивных структурированных систем, содержащих высокодисперсные наноразмерные каталитические компоненты.

Известен пористый мембранно-каталитический модуль, описанный в патенте RU 2325219, представляющий собой продукт термического синтеза уплотненной методом вибропрессования высокодисперсной экзотермической смеси никеля и алюминия, содержащий в мас. %: никель 55,93-96,31, алюминий 3,69-44,07, который может содержать карбид титана в количестве 20 мас. % по отношению к массе модуля.

Для увеличения активности каталитической системы в процессе получения синтез-газа пористый керамический мембранно-каталитический модуль может содержать каталитическое покрытие, включающее La и MgO, или Се и MgO, или La, Се и MgO, или ZrO2, Y2O3 и MgO, или Pt и MgO, или W2O5 и MgO в количестве 0,002-6 мас. % по отношению к массе модуля.

В патенте также предложен способ получения синтез-газа путем конверсии смеси метана и углекислого газа, в котором конверсию ведут при температуре 450-700°С и давлении 1-10 атм в фильтрационном режиме на предложенном пористом керамическом мембранно-каталитическом модуле при скорости подачи смеси метана и углекислого газа через модуль, равной 500-5000 л/дм3⋅ч, причем отношение метана к углекислому газу в исходной смеси составляет от 0,5 до 1,5.

Этот способ не позволяет получить чистый, тем более ультрачистый, водород. Другими недостатками устройства и способа являются низкая удельная производительность по синтез-газу и невысокая конверсия сырья (20-50%о), которая объясняется высокой термодинамической устойчивостью углеводородного сырья - метана - и применением высоких температур и, как следствие, высоким коксообразованием. Отношение Н2/СО в полученном синтез-газе варьируется в пределах 1,03-1,72, и превышение этого отношения сопряжено с повышением коксообразования, которое может достигать 79,5%.

Наиболее близким к предложенному (прототипом) являются интегрированный мембранно-каталитический реактор для получения синтез-газа и водорода и способ получения синтез-газа и водорода по патенту US 6599491. Реактор содержит паровой реформер, в который подают углеводород, например, природный газ, или низший спирт, и пар (воду), и разделительный блок, содержащий полупроницаемые мембраны, для получения относительно чистых потоков СО и водорода. Часть полученного синтез-газа могут выводить, а часть обрабатывать в конвертере СО и/или разделительном блоке для выделения CO2, СО и Н2. В первом режиме СО-конвертер изолирован, и отделенный СO2 подают на синтез метанола или возвращают в реформер. Во втором режиме в реформер подают низший спирт, синтез метанола останавливают и его изолируют из остатка установки. Во втором режиме СО предпочтительно возвращают в реформер и/или конвертер СО, чтобы увеличить получение водорода. Реактор работает при умеренных температурах - от 600°С.

Однако в известной установке получают водород недостаточной чистоты - лишь около 95 мас.%.

Из уровня техники неизвестно получение синтез-газа и ультрачистого водорода совместно в одной установке.

Задачей изобретения является разработка интегрированного мембранно-каталитического реактора, позволяющего получать ультрачистый водород с высоким выходом и синтез-газ в одной установке и в одном процессе.

Поставленная задача решается тем, что интегрированный мембранно-каталитический реактор для совместного получения синтез-газа и ультрачистого водорода представляет собой полый цилиндрический корпус, в нижней части которого расположены входной патрубок для подачи сырья и патрубок с карманом для термопары, а в верхней части находится отводной патрубок и с помощью отвинчивающейся крышки закреплен пористый керамический каталитический конвертер из материала, полученного самораспространяющимся высокотемпературным синтезом из шихты состава, мас.%: Ni - 45, Al - 5, Co3O4 - 50, и восстановленного в токе водорода, представляющий собой трубку с глухим верхним концом, в центральном канале которого установлена водородселективная мембрана на основе палладийсодержащего сплава в виде скрученной в спираль тонкостенной трубки с возможностью вывода через нее ультрачистого водорода в отводной патрубок, причем с отводным патрубком соединены газовая линия для вывода ультрачистого водорода, газовая линия для вывода синтез-газа и остальных продуктов и газовая линия для ввода газа-носителя.

Палладийсодержащий сплав предпочтительно содержит 94 мас.% Pd и 6 мас.% Ru.

Поставленная задача также решается тем, что с помощью интегрированного мембранно-каталитического реактора осуществляют способ совместного получения синтез-газа и ультрачистого водорода, по которому органическое сырье подают через входной патрубок в корпус реактора на наружную поверхность указанного конвертера, осуществляют паровой риформинг органического сырья в синтез-газ при температуре 250-850°С и давлении 1-7 атм, а затем мембранную сепарацию через указанную водородселективную мембрану, сдувку выделенного ультрачистого водорода потоком инертного газа-носителя и вывод синтез-газа, остальных продуктов и непрореагировавшего сырья через отводной патрубок и газовую линию для вывода синтез-газа и остальных продуктов.

В качестве органического сырья используют метан, или низший спирт (например, метанол или этанол), или его простой эфир (например, диметиловый эфир), или продукты ферментации биомассы.

В качестве инертного газа-носителя могут использовать, например, аргон.

На Фиг. 1 показана конструкция пористого керамического конвертера.

На Фиг. 2 показана конструкция интегрированного мембранно-каталитического реактора в целом.

Элементы устройства интегрированного мембранно-каталитического реактора на Фиг. 2:

1 Корпус реактора

2 Крышка реактора

3 Прижимная гайка

4 Пористый керамический каталитический конвертер

5 Отводной патрубок

6 Палладийсодержащая водородселективная мембрана

7 Карман термопары

8 Входной патрубок

9 Газовая линия для ввода газа-носителя

10 Газовая линия для вывода ультрачистого водорода

11 Газовая линия для вывода продуктов (синтез-газа и остальных продуктов)

В качестве риформера органического сырья в водородсодержащий газ (синтез-газ и ультрачистый водород) в реакторе используют термоустойчивые (более 1000°С) пористые керамические каталитические конвертеры, приготовленные методом самораспространяющегося высокотемпературного синтеза (СВС) из смеси порошков Ni (ПНЭ-1, ООО НПФ «Материалы-К»), содержащего Al (АСД-4, СТО 436138-006-006), введенный плазмохимическим способом, и Co3O4 (окись кобальта чистая, ГОСТ 4467-79, ООО «Спектр-Хим»). Соотношение компонентов шихты составляет, мас.%: Ni - 45, Al - 5, CO3O4 - 50. Экспериментально установлено, что данный состав проявляет неаддитивный эффект в процессах риформинга органического сырья.

Готовый образец пористого керамического каталитического конвертера, изображенного на Фиг. 1, представляет собой трубку, у которой верхний конец заглушен для обеспечения принудительной диффузии газов через рабочую поверхность цилиндра от наружной стенки к внутренней. У нижнего конца находится прижимная гайка для герметичной стыковки конвертера с цилиндром реактора через графитовую прокладку. Центральный канал конвертера предназначен для ввода и установки в нем водородселективной палладийсодержащей мембраны, а также для вывода из реактора непрореагировавшего сырья и неотфильтрованных продуктов реакции, а также вывода ультрачистого водорода.

В качестве надежного селективного мембранного элемента с удовлетворительной водородной проводимостью в ИМР предпочтительно используют трубки на основе сплава 94% Pd - 6% Ru, обладающие малым термическим расширением, повышенной прочностью и устойчивостью к отравлению каталитическими ядами.

Характеристики пористого керамического каталитического конвертера приведены в таблице 1.

Температура в конвертере не должна превышать 900°С, давление - 15 атм.

В процессах риформинга активной фазой никель-кобальтовых катализаторов является металл. Как указано выше, для приготовления пористого керамического каталитического конвертера используется оксид кобальта (II, III), необходимый для формирования прочной структуры образца с развитой поверхностью, поэтому каждый новый приготовленный конвертер перед началом работы необходимо восстанавливать в токе водорода в течение 6 ч, со скоростью подачи 4500 ч-1, при температуре 650°С. Контроль степени восстановления ведут по накоплению воды в сепараторе.

Интегрированный мембранно-каталитический реактор (ИМР), устройство которого представлено на Фиг. 2, представляет собой полый цилиндрический корпус (1), изготовленный из жаропрочной стали марки 23Х20Н18, имеющий отвинчивающуюся крышку (2), с внутренней стороны которой при помощи прижимной гайки (3) через графитовую прокладку (не обозначена) закрепляется пористый керамический каталитический конвертер (4). Через отводной патрубок (5) во внутренний канал конвертера (4) вводят палладийсодержащую мембрану (6) в виде тонкостенной трубки, скрученной в спираль для увеличения рабочей поверхности, необходимая для селективного отвода ультрачистого водорода из зоны реакции. Для контроля температуры в реакторе термопару (не обозначена) вставляют в специальный карман (7) патрубка (позиция не обозначена). Рядом с ним находится входной патрубок (8) для ввода сырья в конвертер (4).

Реактор работает следующим образом. Через входной патрубок (8) в корпус реактора (1), на наружную поверхность конвертера (4) подают органическое сырье - газообразное (например, метан или метансодержащий газ) или жидкое (например, этанол или диметиловый эфир). Осуществляют паровой риформинг сырья при температуре 250-850°С и давлении 1-7 атм и мембранную сепарацию, выводя через мембрану (6). Во внутренний канал трубки (6) по газовой линии (9) подают газ-носитель аргон, который нужен для сдувки отфильтрованного водорода с внутренней стенки спирали мембраны, интенсифицируя, таким образом, процесс сепарации, пермеат (ультрачистый водород) выводят по газовой линии (10). Через отводной патрубок (5) и газовую линию (11) из ИМР выводят остальные неотфильтрованные газообразные продукты, в том числе синтез-газ, и непрореагировавшее сырье. Обогрев реактора осуществляют электрической печью (не показана), нагрев которой регулируют температурным процессором. Температуру внутри реактора контролируют термопарой, установленной в карман термопары (7). Выбор предпочтительных температуры и давления из заявленных интервалов зависит от состава исходного сырья.

Основные параметры ИМР приведены в табл.2.

ИМР может работать как в режиме экстрактора (т.е. с селективным выделением водорода на палладийсодержащей мембране в виде спирали), так и в режиме контактора (т.е. в традиционном проточном режиме, при этом входной и отводной патрубок Pd-Ru мембраны перекрывается).

Нижеследующие примеры иллюстрируют, но не ограничивают изобретение.

Примеры 1-10

В примерах 1-10 проводят процесс парового риформинга метана (ПРМ) в интегрированном мембранно-каталитическом реакторе в режиме контактора и экстрактора при следующих условиях: Т=400-800°С, СН4/H2O=1/2, Wвход=24 л/ч, Рреакт.=2 атм. Результаты примеров 1-10 приведены в таблице 3.

При повышении температуры реакции с 400 до 850°С наблюдается увеличение конверсии метана. Показано, что при проведении процесса в режиме экстрактора конверсия метана выше, чем в режиме контактора при аналогичных условиях, за счет извлечения водорода из реакционной зоны. Оптимальным является интервал температур 650-850°С, в котором достигаются высокие значения конверсии метана и потоки выделенного водорода с чистотой СН2=99,999%.

Из Таблицы 3 следует, что с повышением температуры падает соотношение Н2/СО на выходе из реактора (в полученном синтез-газе), что связано с интенсификацией процесса выделения ультрачистого водорода с помощью Pd-Ru мембраны.

Примеры 11-14

Показано влияние давления в реакторе на процесс ПРМ при проведении риформинга в режиме контактора и экстрактора при следующих условиях: Т=700°С, СН4/H2O=1/2, Wвход=24 л/ч, Рреакт.=2-5 атм. Результаты примеров 11-14 приведены в таблице 4.

Из таблицы 4 следует, что повышение давления в реакторе снижает значение конверсии метана, что связано со стехиометрией реакции ПРМ:

или

Показано, что с ростом давления значительно увеличивается степень извлечения водорода из системы и поток ультрачистого водорода, что связано с увеличением основной движущей силы массопереноса - разнице давлений на внешней и внутренней стенке Pd-Ru мембраны. Интенсификация процесса извлечения Н2 приводит к снижению соотношения Н2/СО на выходе из реактора.

Примеры 15-23

Показано влияние температуры на основные параметры процесса парового риформинга этанола (ПРЭ) в интегрированном мембранно-каталитическом реакторе в режиме контактора и экстрактора при следующих условиях: Т=200-650°С, EtOH/H2O=1/2, Wвход=9 л/ч, Wгаз-носитель Ar=17 л/ч, Рреакт.=4 атм. Результаты примеров 15-23 приведены в таблице 5.

Из Таблицы 5 следует, что конверсия этанола растет с увеличением температуры и достигает 100% примерно при Т=350°С как в режиме контактор, так и в режиме экстрактор. При этом в интервале Т=550-650°С степень извлечения водорода из системы в режиме экстрактор превышает 50% и суммарный выход водорода из системы увеличивается более чем на 50% по сравнению с режимом реактора контактор. Это связано с увеличением проницаемости Pd-Ru мембраны и более глубокой степенью превращения метана (аналогично примерам 1-10), образующегося по реакциям (3)-(4)

Примеры 24-27

Показано влияние давления на производительность реактора по водороду в режиме экстрактор в процессе ПРЭ при следующих условиях: Т=650°С, EtOH/H2O=1/2, Wвход=9 л/ч, Wгаз-носитель Ar=17 л/ч, Pреакт.=4-7 атм. Результаты примеров 24-27 приведены в таблице 6.

Из таблицы 6 следует, что увеличение давления с 4 до 7 атмосфер позволяет увеличить производительность по ультрачистому водороду, извлекаемому с помощью Pd-Ru мембраны, до 6,3 л/ч. При этом наблюдается незначительное снижение суммарного производимого потока водорода.

Примеры 28-37

В примерах 28-37 показано влияние температуры на основные параметры процесса парового риформинга продуктов ферментации (ПРПФ) биомассы в интегрированном мембранно-каталитическом реакторе в режиме контактор и экстрактор при следующих условиях: Т=200-650°С, Wвход=75 л/ч, Wгаз-носитель Ar=25 л/ч, Рреакт.=6,5 атм. В качестве модельной смеси продуктов ферментации выбирают состав спиртов, получаемый брожением кукурузной биомассы - 11% водный раствор спиртов (95% этанол, 1% пропиловый спирт, 0,9% изо-бутиловый спирт, 3,1%) изо-амиловый спирт). Результаты примеров 28-37 приведены в таблице 7.

Из Таблицы 7 следует, что конверсия спиртов растет с увеличением температуры и достигает 100% примерно при Т=300°С как в режиме контактор, так и в режиме экстрактор. При этом, аналогично процессу ПРЭ, в интервале Т=550-650°С достигаются максимальные значения степени извлечения водорода из системы в режиме экстрактор - выше 30%. Следует отметить, что из-за 9-кратного избытка воды к спирту значение степени извлечения водорода в данном процессе значительно ниже, чем в процессе ПРЭ, где использовался 2-кратный избыток воды.

Примеры 38-47

В примерах 38-47 показано влияние температуры на основные параметры процесса парового риформинга диметилового эфира (ПРДМЭ) в интегрированном мембранно-каталитическом реакторе в режиме контактор и экстрактор при следующих условиях: Т=200-650°С, Wвход=40 л/ч, Рреакт.=5,5 атм., ДМЭ/H2O=1/3. Результаты примеров 38-47 приведены в таблице 8.

Из Таблицы 8 следует, что конверсия ДМЭ растет с увеличением температуры и достигает 100% при Т=400°С в режиме экстрактор и при Т=450°С в режиме контактор. В интервале температур Т=500-650°С достигаются максимальные значения степени извлечения водорода - выше 60%.

Анализ приведенных примеров показывает, что использование интегрированного мембранного реактора в режиме экстрактор позволяет значительно повышать эффективность процессов риформинга органических субстратов и синтетических топлив в синтез-газ и водород.

На основании примеров №1-10 показано, что использование ИМР в режиме экстрактора повышает значение конверсии метана сравнению с режимом контактора. При этом в примерах №11-14 показано, что увеличение давления с 2 до 5 атм. позволяет увеличить степень извлечения с 35,9% до 65,3% и увеличить общий выход водорода.

В примерах №15-47 показано, что ИМР можно использовать не только для парового риформинга газообразных продуктов, но и для различного жидкого сырья (этанол, продукты ферментации биомассы, ДМЭ) с различными избытками воды. При использовании ИМР в режиме экстрактора быстрее достигаются 100% конверсии субстратов и увеличивается общий выход водорода. На основании примеров №24-27 показано, что увеличение давления в реакторе дает положительный эффект, аналогично процессу переработки газообразных субстратов.

В примерах №1-47 показано, что соотношение Н2/СО на выходе из реактора снижается при интенсификации процесса выделения водорода с помощью Pd-Ru мембраны путем повышения температуры и давления. Так, простым способом - регулировкой температуры - можно достигать получения синтез-газа с требуемым отношением Н2/СО.

Таким образом, предложенная конструкция ИМР и способ производства позволит существенным образом повысить производительность существующих нефтехимических производств, а также способствовать созданию малогабаритных энергетических станций, работающих на основе топливных элементов всех типов, потребляющих синтез-газ и чистый водород.


Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода
Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода
Источник поступления информации: Роспатент

Showing 11-20 of 143 items.
10.11.2013
№216.012.7caa

Способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора

Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на...
Тип: Изобретение
Номер охранного документа: 0002497587
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.822f

Способ получения полиакриламидного гидрогеля

Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ...
Тип: Изобретение
Номер охранного документа: 0002499003
Дата охранного документа: 20.11.2013
27.01.2014
№216.012.9ae2

Способ получения катализатора и способ синтеза олефинов c-c в присутствии катализатора, полученного этим способом

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или...
Тип: Изобретение
Номер охранного документа: 0002505356
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9ddb

Пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы. Пористая каталитическая мембрана представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002506119
Дата охранного документа: 10.02.2014
10.06.2014
№216.012.cc60

Катализатор и способ синтеза олефинов из диметилового эфира в его присутствии

Предлагаемое изобретение относится к области получения катализаторов синтеза низших олефинов, а именно этилена и пропилена, из сырья, не являющегося нефтяным. Катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила с мольным отношением SiO/AlO=37, содержащего...
Тип: Изобретение
Номер охранного документа: 0002518091
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d050

Фармацевтическая композиция

Изобретение относится к фармацевтической промышленности и представляет собой фармацевтическую композицию для перорального применения для снижения уровня глюкозы в крови, содержащую инсулин, водорастворимую органическую кислоту, водорастворимый инертный наполнитель и вспомогательное вещество,...
Тип: Изобретение
Номер охранного документа: 0002519099
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.ddc1

Аддитивный поли(моно(триметилгермил)-замещенный трициклононен), мономер для его получения и способ разделения газовых смесей с помощью мембран на основе аддитивного поли(моно(триметилгермил)-замещенного трициклононена)

Изобретение относится к аддитивному поли(моно(триметилгермил)-замещенному трициклононену) общей структурной формулы: где n=300-2400 (степень полимеризации). Величина средневесовой молекулярной массы M полимера составляет (7.1-57)·10 г/моль и индекс полидисперсности M/M составляет 1.9-2.6....
Тип: Изобретение
Номер охранного документа: 0002522555
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.ddfd

Способ совместной переработки нефтяных фракций и полимерных отходов

Изобретение относится к области химии и может быть использовано в нефтепереработке с целью утилизации наиболее широко распространенных полимерных отходов и с получением из них ценных продуктов нефтепереработки. Способ включает совмещение полимерных отходов и нефтяных фракций, введение...
Тип: Изобретение
Номер охранного документа: 0002522615
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de92

Способ получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания (варианты)

Изобретение относится к способу получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания, в котором взаимодействие глицерина с ацетоном происходит на кислотном катализаторе, причем процесс происходит на гетерогенном катализаторе в одну стадию в...
Тип: Изобретение
Номер охранного документа: 0002522764
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f462

Способ синтеза сополимеров акрилонитрила (варианты)

Настоящее изобретение относится к получению сополимеров акрилонитрила. Описан способ синтеза сополимеров акрилонитрила с производными итаконовой кислоты путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием, отличающийся тем, что нагревание...
Тип: Изобретение
Номер охранного документа: 0002528395
Дата охранного документа: 20.09.2014
Showing 11-20 of 76 items.
10.11.2013
№216.012.7caa

Способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора

Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на...
Тип: Изобретение
Номер охранного документа: 0002497587
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.822f

Способ получения полиакриламидного гидрогеля

Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ...
Тип: Изобретение
Номер охранного документа: 0002499003
Дата охранного документа: 20.11.2013
27.01.2014
№216.012.9ae2

Способ получения катализатора и способ синтеза олефинов c-c в присутствии катализатора, полученного этим способом

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или...
Тип: Изобретение
Номер охранного документа: 0002505356
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9ddb

Пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы. Пористая каталитическая мембрана представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002506119
Дата охранного документа: 10.02.2014
10.06.2014
№216.012.cc60

Катализатор и способ синтеза олефинов из диметилового эфира в его присутствии

Предлагаемое изобретение относится к области получения катализаторов синтеза низших олефинов, а именно этилена и пропилена, из сырья, не являющегося нефтяным. Катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила с мольным отношением SiO/AlO=37, содержащего...
Тип: Изобретение
Номер охранного документа: 0002518091
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d050

Фармацевтическая композиция

Изобретение относится к фармацевтической промышленности и представляет собой фармацевтическую композицию для перорального применения для снижения уровня глюкозы в крови, содержащую инсулин, водорастворимую органическую кислоту, водорастворимый инертный наполнитель и вспомогательное вещество,...
Тип: Изобретение
Номер охранного документа: 0002519099
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.ddc1

Аддитивный поли(моно(триметилгермил)-замещенный трициклононен), мономер для его получения и способ разделения газовых смесей с помощью мембран на основе аддитивного поли(моно(триметилгермил)-замещенного трициклононена)

Изобретение относится к аддитивному поли(моно(триметилгермил)-замещенному трициклононену) общей структурной формулы: где n=300-2400 (степень полимеризации). Величина средневесовой молекулярной массы M полимера составляет (7.1-57)·10 г/моль и индекс полидисперсности M/M составляет 1.9-2.6....
Тип: Изобретение
Номер охранного документа: 0002522555
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.ddfd

Способ совместной переработки нефтяных фракций и полимерных отходов

Изобретение относится к области химии и может быть использовано в нефтепереработке с целью утилизации наиболее широко распространенных полимерных отходов и с получением из них ценных продуктов нефтепереработки. Способ включает совмещение полимерных отходов и нефтяных фракций, введение...
Тип: Изобретение
Номер охранного документа: 0002522615
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de92

Способ получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания (варианты)

Изобретение относится к способу получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания, в котором взаимодействие глицерина с ацетоном происходит на кислотном катализаторе, причем процесс происходит на гетерогенном катализаторе в одну стадию в...
Тип: Изобретение
Номер охранного документа: 0002522764
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f462

Способ синтеза сополимеров акрилонитрила (варианты)

Настоящее изобретение относится к получению сополимеров акрилонитрила. Описан способ синтеза сополимеров акрилонитрила с производными итаконовой кислоты путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием, отличающийся тем, что нагревание...
Тип: Изобретение
Номер охранного документа: 0002528395
Дата охранного документа: 20.09.2014
+ добавить свой РИД