×
29.12.2017
217.015.fd90

Система (варианты) и способ охлаждения турбинных лопаток

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002638425
Дата охранного документа
13.12.2017
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к энергетике. Система содержит турбинную лопатку, имеющую по меньшей мере один охлаждающий паз, предназначенный для транспортировки хладагента в направлении потока от внутренней части турбинной лопатки наружу. Охлаждающий паз имеет входное отверстие, соединенное с внутренней поверхностью, и сходящуюся секцию, расположенную ниже по потоку от входного отверстия. Сходящаяся секция имеет первую площадь поперечного сечения, которая уменьшается в направлении потока. Охлаждающий паз также имеет выходное отверстие, расположенное вдоль задней кромки турбинной лопатки. Также представлены вращающаяся лопатка турбины и способ изготовления лопатки. Изобретение позволяет обеспечить лучшую передачу тепла к задней кромке лопатки. 3 н. и 17 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0001] Объект изобретения, раскрытый в настоящем документе, относится к турбомашинам, в частности к охлаждению турбинных лопаток.

[0002] В целом, в газотурбинных двигателях для получения горячих газообразных продуктов сгорания обычно сжигают смесь сжатого воздуха и топлива. Газообразные продукты сгорания могут проходить через одну или несколько ступеней турбины для генерации энергии для нагрузки и/или компрессора. Каждая ступень турбины содержит некоторое количество лопаток, которые приводятся в движение посредством газообразных продуктов сгорания. Для охлаждения турбинных лопаток могут использоваться различные способы охлаждения. К сожалению, существующие способы охлаждения не могут в достаточной степени охлаждать передние или задние кромки лопаток. Кроме того, существующие способы охлаждения могут привести к проблемам при отливке турбинных лопаток.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0003] Ниже приведены известные варианты выполнения, объем которых соответствует первоначально заявленному изобретению. Эти варианты выполнения не ограничивают объем заявленного изобретения; напротив, упомянутые варианты выполнения предназначены лишь для краткого описания возможных вариантов изобретения. Более того, изобретение может включать в себя различные варианты, аналогичные изложенным ниже вариантам выполнения или отличающиеся от них.

[0004] В первом варианте выполнения система содержит турбинную лопатку, содержащую по меньшей мере охлаждающий паз, выполненный с возможностью транспортировки хладагента в направлении потока из внутренней секции в наружную часть турбинной лопатки. Охлаждающий паз имеет входное отверстие, соединенное с внутренней частью, и сходящуюся часть, расположенную ниже по потоку от входного отверстия. Сходящаяся часть имеет первую площадь поперечного сечения, уменьшающуюся в направлении потока. Охлаждающий паз также имеет выходное отверстие, расположенное вдоль задней кромки турбинной лопатки.

[0005] Во втором варианте выполнения система содержит вращающуюся лопатку, которая имеет переднюю кромку, заднюю кромку, стенку стороны повышенного давления и стенку стороны пониженного давления, охлаждающую полость, расположенную между стенкой стороны повышенного давления и стенкой стороны пониженного давления, а также охлаждающие пазы, соединенные с охлаждающей полостью. Охлаждающие пазы обеспечивают возможность прохождения хладагента в направлении потока через заднюю кромку. Каждый из охлаждающих пазов содержит сходящуюся секцию, дозирующую секцию, соединенную со сходящейся секцией, и выходное отверстие, расположенное вдоль задней кромки. Сходящаяся секция имеет первую площадь поперечного сечения, уменьшающуюся в направлении потока. Дозирующая секция имеет вторую площадь поперечного сечения, которая по существу постоянна в направлении потока.

[0006] В третьем варианте выполнения способ включает формирование керамической центральной части турбинной лопатки, вставление центральной части в пресс-форму и отливку турбинной лопатки между центральной частью и пресс-формой, при которой стенка стороны повышенного давления и стенка стороны пониженного давления соединены друг с другом на передней кромке и на задней кромке. Турбинная лопатка содержит несколько охлаждающих пазов, выполненных с возможностью пропускания хладагента в направлении потока через заднюю кромку. В каждом из охлаждающих пазов имеется сходящаяся секция, дозирующая секция, соединенная со сходящейся секцией, и выходное отверстие, расположенное вдоль задней кромки. Сходящаяся секция имеет первую площадь поперечного сечения, которая уменьшается в направлении потока. Дозирующая секция имеет вторую площадь поперечного сечения, которая по существу постоянна в направлении потока.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0007] Эти и другие признаки, аспекты и преимущества настоящего изобретения будут более понятны при ознакомлении с приведенным ниже подробным описанием со ссылкой на прилагаемые чертежи, на которых одинаковые номера позиций обозначают одинаковые элементы на всех чертежах, на которых:

[0008] Фиг.1 представляет собой схему варианта выполнения газотурбинной установки, содержащей турбину, имеющую турбинные лопатки с охлаждающими пазами;

[0009] Фиг.2 представляет собой вид в аксонометрии варианта выполнения турбинной лопатки, имеющей охлаждающие пазы;

[0010] Фиг.3 представляет собой разрез варианта выполнения турбинной лопатки, имеющей охлаждающие пазы, по линии 3-3, показанной на Фиг.2;

[0011] Фиг.4 представляет собой радиальный вид в разрезе варианта выполнения турбинной лопатки, имеющей охлаждающие пазы, по линии 4-4, показанной на Фиг.2;

[0012] Фиг.5 представляет собой вид в аксонометрии варианта выполнения охлаждающего паза, вдоль линии 5-5, показанной на Фиг.3;

[0013] Фиг.6 представляет собой радиальный вид в разрезе варианта выполнения центральной части, используемой для изготовления турбинной лопатки с охлаждающими пазами.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0014] Ниже описаны один или несколько отдельно взятых вариантов выполнения настоящего изобретения. Для краткости описания упомянутых вариантов выполнения в описании изобретения могут не приводиться все признаки практического осуществления. Следует иметь в виду, что в ходе такого практического осуществления, например, при техническом расчете или при проектировании, для достижения конкретных целей конструкторов, таких как соответствие системным и промышленным требованиям, требуется принятие различных решений, зависящих от конкретной модели реализации проекта, которые могут отличаться друг от друга. Кроме того, следует учитывать, что такая проектно-конструкторская работа может быть сложной и длительной, однако для обычных специалистов, использующих преимущество данного раскрытого изобретения, она является стандартной процедурой при конструировании, отладке и изготовлении.

[0015] При введении элементов в различных вариантах выполнения настоящего изобретения формы единственного числа и слово «указанный» означают, что предусмотрен один или несколько таких элементов. Термины «содержащий», «включающий» и «имеющий» имеют охватывающий характер и означают, что помимо перечисленных элементов могут иметься дополнительные элементы.

[0016] Как описано далее, в некоторых вариантах выполнения настоящего изобретения предлагается турбомашина, которая содержит лопатки (например, вращающиеся лопатки или аэродинамические секции лопаток) с улучшенными аэродинамическими характеристиками, повышенной износоустойчивостью и/или большей долговечностью. В частности, турбомашиной может быть турбина, например, газовая турбина или паровая турбина, имеющая турбинные лопатки. В других вариантах выполнения турбомашиной может быть компрессор или другая турбомашина. В одном варианте выполнения турбинная лопатка может иметь охлаждающий паз, выполненный с возможностью переноса хладагента. Например, хладагент может протекать через турбинную лопатку для обеспечения конвективного охлаждения и/или пленочного охлаждения поверхностей турбинной лопатки. Охлаждающий паз может иметь входное отверстие, расположенное в турбинной лопатке, сходящуюся секцию, соединенную с входным отверстием, дозирующую секцию, соединенную со сходящейся секцией, и выходное отверстие, расположенное в задней кромке турбинной лопатки. В некоторых вариантах выполнения сходящаяся секция может иметь первую площадь поперечного сечения, которая уменьшается от расположенной выше по потоку стороны охлаждающего паза к расположенной ниже по потоку стороне. Другими словами, сходящаяся секция сужается от расположенной выше по потоку стороны охлаждающего паза к расположенной ниже по потоку стороне. Дозирующая секция может иметь вторую площадь поперечного сечения, которая по существу постоянна от расположенной выше по потоку стороны охлаждающего паза к расположенной ниже по потоку стороне.

[0017] Сужение сходящейся секции может привести к увеличению скорости хладагента, протекающего через охлаждающий паз. Это увеличение скорости хладагента может привести к повышению теплопередачи вблизи расположенной ниже по потоку стороны охлаждающего паза, снижая, тем самым, температуру вблизи расположенной ниже по потоку стороны задней кромки турбинной лопатки и повышая ее долговечность. В других вариантах выполнения способ может включать формирование по существу сплошной керамической центральной части аэродинамической секции лопатки, вставление центральной части в пресс-форму и отливку аэродинамической секции лопатки соединенных друг с другом на передней кромке и задней кромке стенки стороны повышенного давления и стенки стороны пониженного давления. Лопатка может иметь пазы, проходящие от задней кромки аэродинамической секции лопатки. Кроме того, каждый из указанных охлаждающих пазов может иметь сходящуюся секцию, дозирующую секцию, соединенную со сходящейся секцией, и выходное отверстие, расположенное в задней кромке. Первая площадь поперечного сечения сходящейся секции может уменьшаться от расположенной выше по потоку стороны охлаждающего паза, к расположенной ниже по потоку стороне, а вторая площадь поперечного сечения дозирующей секции может оставаться по существу постоянной от расположенной выше по потоку стороны охлаждающего паза до распложенной ниже по потоку стороны. Сходящаяся форма охлаждающего паза отливки увеличивает прочность отливки, снижая, тем самым, количество трещин в отливке. Таким образом, может быть повышена износоустойчивость и/или долговечность турбинных лопаток.

[0018] Со ссылкой теперь на чертежи, Фиг.1 иллюстрирует блок-схему варианта выполнения газотурбинной установки 10, имеющей турбинные лопатки 22 с охлаждающими пазами. Установка 10 содержит компрессор 12, камеры 14 сгорания с топливными форсунками 16 и турбину 18. Топливные форсунки 16 направляют жидкое топливо и/или газообразное топливо, например, природный газ или синтез-газ, в камеры 14 сгорания. В камерах 14 сгорания происходит воспламенение и сжигание топливно-воздушной смеси, а затем горячие сжатые газообразные продукты 20 сгорания (например, отработанные газы) поступают в турбину 18. Турбинные лопатки 22 соединены с рабочим колесом 24, которое соединено также с несколькими другими элементами всей газотурбинной установки 10, как показано на чертеже. Когда газообразные продукты 20 сгорания проходят через лопатки 22 в турбине 18, турбина 18 приводится во вращение, заставляя рабочее колесо 24 вращаться вокруг оси 25 вращения. В результате газообразные продукты 20 сгорания выходят из турбины 18 через выходное отверстие 26.

[0019] В проиллюстрированном варианте выполнения компрессор 12 содержит лопатки 28. Расположенные в компрессоре 12 лопатки 28 соединены с рабочим колесом 24 и вращаются в силу того, что рабочее колесо 24 приводится во вращение турбиной 18, как описано выше. Вращающиеся в компрессоре 12 лопатки 28 превращают воздух, поступающий из воздухозаборника, в сжатый воздух 30, который направляется в камеры 14 сгорания, топливные форсунки 16 и другие узлы газотурбинной установки 10. При этом в форсунках 16 сжатый воздух и топливо могут быть смешаны для получения соответствующей топливно-воздушной смеси, которая сжигается в камерах 14 сгорания для получения газообразных продуктов сгорания 20, предназначенных для приведения в действие турбины 18. Кроме того, рабочее колесо 24 может быть соединено с нагрузкой 31, которая может приводиться в действие путем вращения рабочего колеса 24. В качестве нагрузки 31 может использоваться любое соответствующее устройство, способное вырабатывать электроэнергию в результате вращения вала газотурбинной установки 10, например, энергоустановка или внешняя механическая нагрузка. Нагрузка 31 может включать электрогенератор, пропеллер самолета и так далее. При дальнейшем обсуждении дается ссылка на различные направления, например, на осевое направление или ось 32, радиальное направление или ось 34 и окружное направление или ось 36 турбины 18.

[0020] Фиг.2 представляет собой вид в аксонометрии варианта выполнения турбинной лопатки 22. В проиллюстрированном варианте выполнения лопатка 22 содержит концевую часть 50 и хвостовик 52. Хвостовик 52 лопатки 22 может быть соединен с рабочим колесом 24 турбины 18. Кроме того, лопатка 22 может иметь поверхность 54 концевой части лопатки. Кроме того, лопатка 22 имеет переднюю кромку 58 и заднюю кромку 60. Как показано на Фиг.2, передняя кромка 58 и задняя кромка 60 проходят в основном в радиальном направлении 34 от поверхности 54 концевой части лопатки в направлении хвостовика 52. Кроме того, газы 62 могут проходить в осевом направлении 32 к передней кромке 58 лопатки 22. Лопатка 22 также имеет выпуклую стенку 64 стороны повышенного давления и вогнутую стенку 66 стороны пониженного давления, которые соединены вместе на передней кромке 58 и задней кромке 60. Хорда 67, показанная на Фиг.2, представляет собой базовую линию, проходящую от передней кромки 58 до задней кромки 60 и соединяющую приблизительные средние точки между стенкой 64 стороны повышенного давления и стенкой 66 стороны пониженного давления. Лопатка 22 имеет отверстия 68 охлаждающих пазов, расположенные вдоль задней кромки 60. Отверстия 68 могут находиться в проточном сообщении с внутренней охлаждающей полостью 70, расположенной внутри лопатки 22. Например, полость 70 может находиться во внутренней секции турбинной лопатки 22. Охлаждающая полость 70 направляет хладагент через отверстия 68 охлаждающих пазов на наружную часть лопатки 22 для охлаждения турбинной лопатки. В качестве хладагента может использоваться воздух или любой другой хладагент, обеспечивающий охлаждение внутри газотурбинной установки 10. Как показано на Фиг.2, отверстия 68 расположены полностью в пределах (или непосредственно вдоль) задней кромки 60. То есть отверстия 68 не расположены ни на стенке 64 стороны повышенного давления, ни на стенке 66 стороны пониженного давления. Задняя кромка 60 может получать незначительное конвективное охлаждение от охлаждающей полости 70 благодаря расстоянию между задней кромкой 60 и охлаждающей полостью 70. Таким образом, отверстия 68 обеспечивают непосредственное охлаждение задней кромки 60, благодаря расположению отверстий 68 непосредственно на задней кромке 60.

[0021] Фиг.3 представляет собой осевой разрез варианта выполнения турбинной лопатки 22, по линии 3-3 на Фиг.2. В приведенном далее обсуждении ссылка может быть дана на различные направления, например, продольное направление, или ось 76, и поперечное направление, или ось 78, задней кромки 60 лопатки 22. В проиллюстрированном варианте выполнения охлаждающий паз 80 может быть размещен внутри лопатки 22. Хладагент может протекать к задней кромке 60 в направлении, показанном стрелкой 82. Кроме того, охлаждающий паз 80 может быть расположен симметрично относительно средней линии 84 задней кромки 60. Средняя линия 84 может быть в целом соосна с продольной осью 76 и/или хордой 67. Как показано на Фиг.3, охлаждающий паз 80 может быть соединен с охлаждающей полостью 70, расположенной внутри лопатки 22. Как отмечалось выше, охлаждающая полость 70 или входное отверстие может переносить хладагент в каждый из указанных нескольких пазов 80, расположенных внутри лопатки 22. Конкретно, полость 70 может быть соединена с внутренней секцией турбинной лопатки 22. Каждый паз 80 может содержать несколько секций. Например, сходящаяся секция 88 (или сужающаяся секция) может быть расположена ниже по потоку от охлаждающей полости 70 и быть соединена с ней. Иначе говоря, когда хладагент течет в направлении, указанном стрелкой 82 (т.е. в направлении потока) через сходящуюся секцию 88, паз 80 сходится или сужается. Кроме того, ниже по потоку от сходящейся секции 88 и соединенной с ней может быть расположена дозирующая секция 90. И, наконец, расширяющаяся секция 92 (или расходящаяся секция) может быть соединена с дозирующей секцией 90 и охлаждающим отверстием 68 охлаждающего паза 80. Когда хладагент протекает в направлении стрелки 82 через расширяющуюся секцию 92, охлаждающий паз 80 расширяется или расходится. В некоторых вариантах выполнения расширяющаяся секция 92 может отсутствовать.

[0022] В проиллюстрированном варианте выполнения сходящаяся секция 88 имеет первую площадь поперечного сечения, которая уменьшается от стороны 93 охлаждающего паза 80, расположенной выше по потоку, к стороне 95 паза 80, расположенной ниже по потоку. Другими словами, первая площадь поперечного сечения уменьшается в направлении 82 потока. Например, ширина 94 сходящейся секции 88, расположенной выше по потоку, может быть больше, чем ширина 96, расположенная ниже по потоку 88. То есть сходящаяся секция 88 сужается от стороны 93, расположенной выше по потоку, к стороне 95, расположенной ниже по потоку. Таким образом, скорость хладагента, протекающего в направлении 82, может возрастать на протяжении всей сходящейся секции 88. В проиллюстрированном варианте выполнения ширина 98 дозирующей секции 90 может быть примерно равна или меньше ширины 96 сходящейся секции 88, расположенной выше по потоку. Как показано на Фиг.3, ширина 98 дозирующей секции и, соответственно, вторая площадь поперечного сечения дозирующей секции 98 могут быть неизменными. Другими словами, дозирующая секция 98 и, соответственно, вторая площадь поперечного сечения практически неизменны в направлении 82 потока. Дозирующая секция 90 может быть использована для регулирования скорости потока хладагента, протекающего через охлаждающий паз 80. Например, при меньшей ширине 98 дозирующей секции 90 скорость потока хладагента может уменьшаться. Аналогичным образом, при большей ширине 98 дозирующей секции скорость потока хладагента при прохождении через охлаждающий паз 80 может увеличиваться. Расширяющаяся секция 92 может быть охарактеризована шириной 100, которая может быть больше ширины 98 дозирующей секции. Расширяющаяся секция 92 имеет третью площадь поперечного сечения, увеличивающуюся в направлении 82 потока. Кроме того, расширяющаяся секция 92 может обеспечивать более широкий или более распределенный поток хладагента вдоль задней кромки 60. Охлаждающее отверстие 68 паза может быть ограничено шириной 102, которая может быть больше ширины 100 расширяющейся секции.

[0023] Как показано на Фиг.3, сходящаяся секция 88 может быть ограничена длиной 104, дозирующая секция 90 может быть ограничена длиной 106, а расширяющаяся секция 92 может быть ограничена длиной 108. В проиллюстрированном варианте выполнения длина 104 расширяющейся секции больше длины 106 дозирующей секции. В некоторых вариантах выполнения соотношение длины 104 сходящейся секции к длине 106 дозирующей секции может составлять приблизительно от 1,1:1 до 10:1, от 2:1 до 8:1 или от 4:1 до 6:1. Большая длина 104 сходящейся секции позволяет постепенно увеличивать скорость протекания хладагента через сходящуюся секцию 88 для обеспечения лучшей передачи тепла к задней кромке 60. Длина 106 дозирующей секции и ширина 98 дозирующей секции могут быть использованы для регулирования скорости потока хладагента, выходящего из охлаждающего паза 80. Длина 108 расширяющейся секции может быть выбрана для равномерного распределения хладагента по задней кромке 60. При этом, несмотря на то, что охлаждающий паз 80 показан симметричным относительно средней линии 84, в других вариантах выполнения охлаждающий паз 80 может быть расположен не симметрично относительно средней линии 84. Например, охлаждающий паз 80 может быть ориентирован так, чтобы направлять хладагент к стенке 64 стороны повышенного давления или к стенке 66 стороны пониженного давления. Другими словами, в некоторых вариантах выполнения пазы 80 могут быть не полностью сосны продольной оси 76.

[0024] Фиг.4 представляет собой вид в радиальном разрезе варианта выполнения лопатки 22, выполненном по линии, обозначенной 4-4 на Фиг.2. В проиллюстрированном варианте выполнения охлаждающая полость 70 соединяет несколько охлаждающих пазов 80, обеспечивая возможность протекания хладагента через каждый охлаждающий паз 80 в направлении 82. Как показано на Фиг.4, площадь поперечного сечения сходящейся секции 88 уменьшается от стороны 93, расположенной выше по потоку, к стороне 95, расположенной ниже по потоку. Таким образом, сходящаяся секция 88 сужается в двух измерениях, то есть в поперечном направлении 78 и в радиальном направлении 34. При этом сходящаяся секция 88 может иметь высоту 120 выше по потоку и высоту 122 ниже по потоку. Как показано на Фиг.4, высота 120 выше по потоку больше высоты 122 ниже по потоку. То есть сходящаяся секция 88 сужается в радиальном направлении 34 от стороны 93, расположенной выше по потоку, к стороне 95, расположенной ниже по потоку. В некоторых вариантах выполнения высота 120 выше по потоку может быть приблизительно равной ширине 94 выше по потоку, а высота 122 ниже по потоку может быть приблизительно равной ширине 96 ниже по потоку. Другими словами, сходящаяся секция 88 сужается на одинаковую величину в поперечном направлении 78 и радиальном направлении 34. Таким образом, сходящаяся секция 88 может иметь конический канал. В других вариантах выполнения значение высоты 120 выше по потоку может отличаться от значения ширины 94 выше по потоку и/или значение высоты 122 ниже по потоку может отличаться от значения ширины 96 ниже по потоку. Другими словами, в окружном направлении 36 сходящаяся секция 88 может сужаться на величину, отличную от величины сужения в радиальном направлении 34.

[0025] Как показано на Фиг.4, высота 124 дозирующей секции 90 может быть равна или отличаться от ширины 98 дозирующей секции. Кроме того, высота 126 расширяющейся секции 92 может быть равна или отличаться от ширины 100 расширяющейся секции. Наконец, высота 128 устья отверстия 68 может быть равна или отличаться от ширины 102 устья отверстия. В некоторых вариантах выполнения сходящаяся секция 88 может сужаться лишь в одном направлении. Другими словами, сходящаяся секция 88 может сужаться только в поперечном направлении 78 или только в радиальном направлении 34. При этом, как подробно описано ниже, прочность отливки может возрастать, если сходящаяся секция 88 сходится в поперечном направлении 78 и в радиальном направлении 34 или в целом в двух измерениях. Кроме того, хотя паз 80 расположен симметрично относительно средней линии 84 (например, конический паз 80), в других вариантах выполнения паз 80 может быть расположен не симметрично относительно средней линии 84. Например, паз 80 может быть ориентирован для направления хладагента ближе к поверхности 54 концевой части лопатки (например, под углом вверх) или ближе к хвостовику 52 (например, под углом вниз). Другими словами, в некоторых вариантах выполнения пазы 80 могут быть не полностью сосны продольной оси 76.

[0026] Фиг.5 представляет собой вид в аксонометрии варианта выполнения лопатки 22, на котором показано охлаждающее отверстие 68 охлаждающего паза 80. Как показано на Фиг.5, отверстие 68 расположено вдоль средней линии 84 задней кромки 60, которая в целом соосна радиальной оси 34. Кроме того, на виде в аксонометрии лопатки 22, изображенном на Фиг.5, могут быть видны очертания дозирующей секции 90 и отверстия 68. Примеры различных форм отверстия 68 включают круги, овалы, квадраты, прямоугольники, многоугольники и так далее, но не ограничены только ими. В проиллюстрированном варианте выполнения высота 124 дозирующей секции больше ширины 98 дозирующей секции. Точно так же, высота 128 отверстия больше ширины 102 отверстия. В других вариантах выполнения значения высоты 124 и 128 могут быть примерно равными значениям ширины 98 и 102. В других вариантах выполнения значения высоты 124 и 128 могут быть меньше значений ширины 98 и 102. Кроме того, отверстие 68 расположено между стенкой 64 стороны повышенного давления и стенкой 66 стороны пониженного давления. Таким образом, отверстие 68 не доходит до стенки 64 стороны повышенного давления и стенки 66 стороны пониженного давления. Такая конфигурация отверстия 68 может увеличивать количество охладителя, подаваемого на заднюю кромку 60.

[0027] Фиг.6 представляет собой вид в радиальном разрезе варианта выполнения центральной части 150, используемой для изготовления лопатки 22. В одном варианте выполнения лопатки 22, или аэродинамические части, могут быть изготовлены путем отливки центральной части 150. Например, центральная часть 150 может быть изготовлена путем введения жидкого вещества, такого как керамическая суспензия и графитовая суспензия, в пресс-форму центральной части (не показана). Затем жидкое вещество нагревают с целью формования твердой керамической центральной части 150 лопатки. Далее, центральная часть 150 аэродинамической части лопатки может быть подвешена в пресс-форме аэродинамической части лопатки (не показана), горячий воск введен в форму аэродинамической части лопатки для охватывания центральной части 150 лопатки. Затем горячий воск затвердевает и образует восковую аэродинамическую часть лопатки с керамической центральной частью 150, находящейся в подвешенном состоянии в аэродинамической части лопатки. После этого восковую модель аэродинамической части лопатки с керамической центральной частью 150 повторно погружают в керамическую суспензию для формирования керамической оболочки снаружи восковой модели аэродинамической части лопатки. Затем часть 150, восковую модель и оболочковую форму нагревают до повышенной температуры с целью удаления воска для формирования отливной формы с керамической частью 150 в середине. После этого расплав выливают в полую отливную форму. Расплав занимает место восковой модели лопатки и формирует металлическую аэродинамическую часть 22 лопатки с керамической центральной частью 150, остающейся на своем месте. Затем аэродинамическую часть 22 лопатки охлаждают и керамическую центральную часть 150 удаляют.

[0028] Как показано на Фиг.6, внутренняя часть 152 центральной части 150 может соответствовать охлаждающей полости 70, а удлиненные части 154 могут соответствовать охлаждающим пазам 80. Пространства 156 между удлиненными частями 154 могут соответствовать структурам, расположенным между охлаждающими пазами 80 турбинной лопатки 22. Концы 158 удлиненных частей 154 могут соответствовать самому узкому концу или расположенной ниже по потоку стороне 95 сходящейся секции 88 лопатки 22. При этом дозирующая секция 90 и расширяющаяся секция 92 могут быть выполнены в лопатке 22 после удаления центральной части 150 путем высверливания или вырезания. Сходящаяся секция 160 удлиненных частей 154 может соответствовать сходящейся секции 88 охлаждающего паза 80 лопатки 22. Высота 162 выше по потоку может соответствовать высоте 120 выше по потоку, а высота 164 ниже по потоку может соответствовать высоте 122 ниже по потоку сходящейся секции 88 лопатки 22. Как показано на Фиг.6, часть удлиненной части 154, прикрепленная к внутренней части 152, т.е. основание 166 удлиненной части, шире концов 158 удлиненных частей 154. При этом, благодаря повышенной прочности оснований 166 удлиненных частей, удлиненные части 154 менее подвержены растрескиванию или отрыванию от внутренней части 152 при изготовлении лопатки 22.

[0029] Как уже говорилось выше, варианты выполнения лопаток 22 включают охлаждающий паз 80, способствующий увеличению ресурса лопатки 22. При этом лопатки 22 могут содержать охлаждающие пазы 80, имеющие входное отверстие 70, сходящуюся секцию 88, соединенную с входным отверстием 70, дозирующую секцию 90, соединенную со сходящейся секцией 88, и выходное отверстие 68, расположенное на задней кромке 60 турбинной лопатки 22. Первая площадь поперечного сечения сходящейся секции 88 уменьшается от расположенной выше по потоку стороны 93 охлаждающего паза к расположенной ниже по потоку его стороне 95. Вторая площадь поперечного сечения дозирующей секции 90 может быть практически неизменной от расположенной выше по потоку стороны 93 охлаждающего паза к распложенной ниже по потоку его стороне 95. Пазы 80 способствуют интенсивному охлаждению лопатки и регулированию расхода, наряду с улучшением процесса изготовления. Таким образом, геометрическая конфигурация охлаждающего паза, расположенного на задней кромке турбинных лопаток 22, способствует увеличению ресурса турбинных лопаток 22 с экономической точки зрения и с точки зрения надежности. Иллюстративные варианты выполнения лопаток 22 подробно описаны выше. Лопатки 22 могут быть размещены на вращающихся поверхностях газотурбинной установки 10, например, на рабочем колесе, на неподвижных поверхностях, например, на статоре, или же на рабочем колесе и статоре. Описанные выше охлаждающие пазы 80 не ограничиваются их использованием с турбинными лопатками 22 конкретных вариантов выполнения, приведенных в данном документе, напротив, пазы 80 могут быть использованы независимо и раздельно от других элементов рабочего колеса или статора, описанных в настоящем документе.

[0030] В приведенном описании для раскрытия сущности изобретения использованы примеры, в том числе лучший вариант выполнения, которые дают возможность специалисту в данной области техники применить изобретение на практике, в том числе изготовлять и использовать различные устройства и системы и осуществлять содержащиеся в изобретении способы. Патентоспособный объем изобретения, определенный пунктами формулы изобретения, может включать другие примеры, используемые специалистами в данной области техники. Другие упомянутые примеры находятся в пределах объема изобретения в случае, если в них имеются элементы конструкции, не отличающиеся от буквальных формулировок пунктов формулы изобретения, или же если они включают в себя равноценные элементы конструкции, имеющие незначительные отличия от буквальных формулировок пунктов формулы изобретения.


Система (варианты) и способ охлаждения турбинных лопаток
Система (варианты) и способ охлаждения турбинных лопаток
Система (варианты) и способ охлаждения турбинных лопаток
Система (варианты) и способ охлаждения турбинных лопаток
Источник поступления информации: Роспатент

Showing 81-90 of 353 items.
10.07.2015
№216.013.5bfc

Устройство для регулирования суммарной осевой нагрузки паровой турбины (варианты) и паровая турбина

Изобретение относится к энергетике. Устройство для регулирования суммарной осевой нагрузки паровой турбины, содержащей ступенчатый вращающийся вал, причём первый канал для протечки проточно соединяет первую ступень секции турбины с уплотнительным приспособлением около ступенчатого участка на...
Тип: Изобретение
Номер охранного документа: 0002555089
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5cb7

Герметизация микроотверстий в металлических покрытиях, полученных химическим восстановлением

Изобретение относится к способу герметизации микроотверстий в металлическом покрытии, полученном химическим восстановлением, включающему нанесение на подложку путем химического восстановления слоя металлического покрытия, содержащего дефекты в виде микроотверстий, допускающих гидравлическое...
Тип: Изобретение
Номер охранного документа: 0002555276
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f57

Щеточное уплотнение

Щеточное уплотнение, проходящее в окружном направлении, расположенное между неподвижным и вращающимся компонентами механизма и в процессе эксплуатации механизма имеющее область повышенного давления на впускной стороне и область пониженного давления на выпускной стороне, содержит щетинки,...
Тип: Изобретение
Номер охранного документа: 0002555948
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6081

Усовершенствование механической обработки пластинчатого ротора

Изобретение относится к конструкции ротора электрической машины, такой как генератор. Техническим результатом является устранение электрического контакта между пластинами из-за заедания, когда совмещенная с клином поверхность (550) собранного ротора должна быть дополнительно механически...
Тип: Изобретение
Номер охранного документа: 0002556246
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6342

Способ регулирования уровня воды в барабане теплоутилизационной парогенераторной установки (варианты) и теплоутилизационная парогенераторная установка

Способ предназначен для регулирования уровня воды в барабане теплоутилизационной парогенераторной установки для энергоустановки с комбинированным циклом. Указанный способ включает определение оптимального уровня воды в барабане во время запуска теплоутилизационной парогенераторной установки на...
Тип: Изобретение
Номер охранного документа: 0002556957
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6d05

Способ снижения выбросов со в потоке газообразных продуктов сгорания и промышленные установки для осуществления этого способа

Изобретение относится к снижению выбросов СО в потоках газообразных продуктов сгорания и промышленным установкам для осуществления этого способа. Способ включает выработку потока газообразных продуктов сгорания, охлаждение потока газообразных продуктов сгорания с использованием теплообменника,...
Тип: Изобретение
Номер охранного документа: 0002559467
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f71

Топливное сопло (варианты)

Изобретение относится к энергетике. Топливное сопло имеет первый топливный канал, проходящий к нижней по потоку области смешивания, первый воздушный канал, проходящий от наружной области сопла к нижней по потоку области смешивания, и второй топливный канал, проходящий в указанный первый...
Тип: Изобретение
Номер охранного документа: 0002560099
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72f2

Способ измерения на основе структурированного света

В способе определения расстояния до объекта используется видеоизмерительное устройство, включающее первый излучатель света и второй излучатель света, при этом первый излучатель света может испускать свет через отверстие по меньшей мере с одним тенеобразующим элементом. Способ включает захват по...
Тип: Изобретение
Номер охранного документа: 0002560996
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.73f8

Установка, содержащая компонент энергетической установки, и установка, содержащая компонент теплоутилизационной парогенераторной установки

Энергетическая установка с комбинированным циклом содержит компонент (66) с внутренним объемом (68), предназначенный для размещения конденсата пара или отработанного газа газовой турбины. Вокруг внешней поверхности компонента (66) энергетической установки с комбинированным циклом расположен...
Тип: Изобретение
Номер охранного документа: 0002561263
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.744b

Система, работающая по циклу ренкина, и соответствующий способ

Изобретение относится к энергетике. Предложена система, работающая по циклу Ренкина, содержащая нагреватель, выполненный с возможностью осуществления циркуляции рабочей текучей среды при теплообмене с горячей текучей средой для обеспечения испарения указанной рабочей среды. К нагревателю...
Тип: Изобретение
Номер охранного документа: 0002561346
Дата охранного документа: 27.08.2015
Showing 81-90 of 295 items.
20.06.2015
№216.013.5624

Паровая турбина низкого давления

Паровая турбина (105) низкого давления имеет выхлопной патрубок (115). Внутренний корпус (125) опирается непосредственно на балочную стенку (131) фундамента (130) с помощью несущих кронштейнов (180). Благодаря этому исключено влияние перепадов давления в выхлопном патрубке (115), а влияние...
Тип: Изобретение
Номер охранного документа: 0002553582
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56f4

Инструмент в устройстве электрохимической обработки

Изобретение относится к системе для электрохимической обработки заготовки, содержащей анод. Система содержит инструмент, который содержит катод, резервуар, выполненный с возможностью погружения инструмента и заготовки для обработки, систему управления, выполненную с возможностью постепенного...
Тип: Изобретение
Номер охранного документа: 0002553790
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5723

Выпускное устройство для осевой паровой турбины

Выпускное устройство (100) осевой паровой турбины содержит внутренний корпус (116) турбины и конденсатор (140) турбины, установленный ниже выпускного кожуха (121). Выпускной кожух (121) содержит верхний выпускной кожух (122) и нижний выпускной кожух (123) и обеспечивает двойной выпускной тракт...
Тип: Изобретение
Номер охранного документа: 0002553837
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.585c

Паротурбинная энергетическая установка (варианты)

Паротурбинная энергетическая установка содержит турбину (104) высокого давления, турбину (106) среднего давления и три турбины низкого давления. Три турбины низкого давления содержат две турбины (108) низкого давления, образующие двухпоточную турбину (108) низкого давления, и однопоточную...
Тип: Изобретение
Номер охранного документа: 0002554161
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5865

Выпускной патрубок для паровой турбины и способ снижения выпускных потерь в выпускном патрубке паровой турбины

Выпускной патрубок (110) паровой турбины (10) содержит нижний выпускной патрубок (105), направляющую (24) для пара, отверстие (26) конденсатора, пластину (200) выпускного патрубка и внутренний канал (215). Нижний выпускной патрубок (105) присоединен к паровой турбине (10). Направляющая (24) для...
Тип: Изобретение
Номер охранного документа: 0002554170
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5bfc

Устройство для регулирования суммарной осевой нагрузки паровой турбины (варианты) и паровая турбина

Изобретение относится к энергетике. Устройство для регулирования суммарной осевой нагрузки паровой турбины, содержащей ступенчатый вращающийся вал, причём первый канал для протечки проточно соединяет первую ступень секции турбины с уплотнительным приспособлением около ступенчатого участка на...
Тип: Изобретение
Номер охранного документа: 0002555089
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5cb7

Герметизация микроотверстий в металлических покрытиях, полученных химическим восстановлением

Изобретение относится к способу герметизации микроотверстий в металлическом покрытии, полученном химическим восстановлением, включающему нанесение на подложку путем химического восстановления слоя металлического покрытия, содержащего дефекты в виде микроотверстий, допускающих гидравлическое...
Тип: Изобретение
Номер охранного документа: 0002555276
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f57

Щеточное уплотнение

Щеточное уплотнение, проходящее в окружном направлении, расположенное между неподвижным и вращающимся компонентами механизма и в процессе эксплуатации механизма имеющее область повышенного давления на впускной стороне и область пониженного давления на выпускной стороне, содержит щетинки,...
Тип: Изобретение
Номер охранного документа: 0002555948
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6081

Усовершенствование механической обработки пластинчатого ротора

Изобретение относится к конструкции ротора электрической машины, такой как генератор. Техническим результатом является устранение электрического контакта между пластинами из-за заедания, когда совмещенная с клином поверхность (550) собранного ротора должна быть дополнительно механически...
Тип: Изобретение
Номер охранного документа: 0002556246
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6342

Способ регулирования уровня воды в барабане теплоутилизационной парогенераторной установки (варианты) и теплоутилизационная парогенераторная установка

Способ предназначен для регулирования уровня воды в барабане теплоутилизационной парогенераторной установки для энергоустановки с комбинированным циклом. Указанный способ включает определение оптимального уровня воды в барабане во время запуска теплоутилизационной парогенераторной установки на...
Тип: Изобретение
Номер охранного документа: 0002556957
Дата охранного документа: 20.07.2015
+ добавить свой РИД