×
29.12.2017
217.015.fd23

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СМЕШАННОГО УРАН-ПЛУТОНИЕВОГО ОКСИДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиохимической технологии и может быть использовано в процессах производства смешанного оксидного ядерного топлива и переработки отработавшего ядерного топлива. Сущность изобретения заключается в укрупнении зерна осадка путем интеграции в его состав органического компонента при осаждении пероксидных соединений урана и плутония в присутствии аминокислоты, использовании в восстановительном процессе продуктов термического разложения аминокислоты с полным их удалением в газовую фазу в результате термообработки в газовом потоке, содержащем пары муравьиной кислоты. Изобретение позволяет упростить и повысить безопасность технологического процесса. 11 з.п. ф-лы, 1 табл.

Изобретение относится к радиохимической технологии и может быть использовано в процессах переработки отработавшего ядерного топлива (ОЯТ) и производства смешанного оксидного ядерного топлива.

Совместное выделение урана и плутония из азотнокислых растворов в осадок с последующей термической обработкой полученных смесей обеспечивает высокую степень однородности компонентов топливной композиции. При этом диоксиды урана и плутония образуют непрерывный ряд твердых растворов.

Известен способ получения твердых растворов оксидов актинидов [RU 2494479 C1, опубл. 27.09.2013], включающий смешение нитратных растворов актинидов с муравьиной кислотой, сушку и прокаливание, отличающийся тем, что сушку смешанного раствора осуществляют при температуре не выше 140°C, а образовавшуюся смесь формиатов прокаливают при температуре 400-450°C. Недостатками способа являются: взрывопожароопасность смеси на основе концентрированной муравьиной кислоты, значительные потери урана с маточными растворами, необходимость использования высококонцентрированных растворов при упаривании, наличие в конечном продукте пылящей фракции, обусловленное тонкодисперсным характером получаемых порошков смешанных оксидов.

Известен способ получения оксидного ядерного топлива [Патент RU 2069393 C1, опубл. 20.11.1996], включающий осаждение пероксида урана или соосаждение пероксидов урана и плутония из азотнокислых растворов, прокаливание осадка до оксида урана или смешанных оксидов урана и плутония, отличающийся тем, что пероксидное осаждение проводят в присутствии поверхностно-активного вещества полиакриламида, который в виде 0,5-1,0% мас. водного раствора добавляют в перекись водорода из расчета 2-10 мг на 1 г урана или на 1 г урана и плутония, и прокаливание осадка пероксидов проводят по стадиям: 2-3 ч при 110-130°C, 2-3 ч при 140-160°C и 2-3 ч при 630-650°C при скорости подъема температуры до 110-130°C и до 140-160°C равной 4-5°C/мин, до 630-650°C равной 10-12°C/мин.

Конечной формой урана в индивидуальном или смешанном оксиде является закись-окись урана. Для получения смешанного оксида (U,Pu)O2 требуется дополнительная восстановительная прокалка при температуре выше 800°C в аргон-водородной смеси.

По поставленной задаче и технической сущности этот способ является наиболее близким к заявляемому и выбран в качестве прототипа.

Вместе с тем экспериментальная проверка способа-прототипа выявила ряд его существенных недостатков:

1. Наличие в осадке высокомолекулярного поверхностно-активного вещества (полиакриламида) приводит к повышенному содержанию углерода в конечном продукте.

2. В технологическом процессе требуется дополнительная стадия восстановительной прокалки с применением водорода.

3. Одновременное присутствие в маточном растворе таких трудно разлагаемых соединений, как нитрат аммония (аммиак используют для корректировки кислотности исходного раствора) и полиакриламид создает проблемы при его утилизации.

Техническим результатом предлагаемого изобретения является упрощение, повышение безопасности технологического процесса и повышение качества продукта - смешанного оксида (U,Pu)O2.

Указанный технический результат достигается в способе получения смешанного уран-плутониевого оксида, согласно которому исходный уран-плутониевый раствор нейтрализуют аминокислотой до pH~2, осаждают пероксидные соединения урана и плутония при одновременной подаче на осаждение пероксида водорода и аминокислоты и поддержании pH в интервале значений 2÷4, отделяют осадок от маточного раствора и направляют на термообработку, проводимую при 750-850°C и скорости нагрева 0,4-35°C/мин в атмосфере аргона или углекислого газа, содержащих пары муравьиной кислоты, отделенный маточный раствор, содержащий избыток аминокислоты, упаривают и возвращают на обработку азотнокислого раствора урана и плутония или, при накоплении в маточном растворе нежелательных примесей, разлагают избыток аминокислоты пероксидом водорода при пропускании раствора через зернистый слой твердофазного катализатора с последующей утилизацией в качестве жидкого радиоактивного отхода (ЖРО).

Процесс получения смешанных оксидов протекает следующим образом.

Аминокислота (преимущественно глицин, NH2CH2COOH), являясь амфотерным электролитом, нейтрализует азотную кислоту за счет взаимодействия с аминными группами. Нейтрализацию проводят до требуемых значений pH. Одновременно в растворе происходит комплексообразование с участием карбоксильных групп и катионов металлов с последующим, после добавления пероксида водорода, осаждением нерастворимых пероксоглицинатных комплексов урана и плутония.

Избыток глицина оказывает коагулирующее действие на структуру осадка, что позволяет получать осадки с размером частиц 5-65 мкм (преобладающе 10-22 мкм), количественно седиментирующие, легко отделяемые фильтрованием и высушиваемые на перегородке до степени, позволяющей передавать осадок на термообработку.

Продукты термического разложения комплексов содержат восстановительные агенты и диоксид углерода, что позволяет получить при температуре 650°C смешанный диоксид (U,Pu)O2, а в интервале температур 750-850°C происходит декарбонизация твердой фазы по реакции C+CO2→2CO.

Декарбонизация интенсифицируется введением в газовый поток муравьиной кислоты, генерирующей при разложении высокоактивный диоксид углерода по реакции HCOOH→CO2+H2.

Получаемый смешанный диоксид (U,Pu)O2 обладает хорошей текучестью, гомогенностью на уровне твердого раствора UO2-PuO2, требуемой насыпной плотностью и направляется в качестве мастер-продукта на производство оксидного плутонийсодержащего топлива различного назначения (РЕМИКС, МОКС для реакторов на тепловых и быстрых нейтронах).

Маточный раствор упаривают с одновременным разложением пероксида водорода и возвращают на обработку исходного азотнокислого раствора. При накоплении в маточном растворе нежелательных примесей, в частности радионуклидов, раствор корректируют по содержанию пероксида водорода и азотной кислоты и пропускают через слой биметаллического цирконий-платинового катализатора при температуре 75-95°C.

В предварительных экспериментах были определены оптимальные условия осуществления отдельных стадий и операций предлагаемого способа.

Концентрация урана и плутония в исходном азотнокислом растворе - до 200 г/л по сумме металлов; концентрация азотной кислоты - до 0,8 моль/л.

Для корректировки кислотности исходного раствора используют раствор аминокислоты с концентрацией до 2 моль/л. Возможно применение сухой аминокислоты.

Для осаждения применяют раствор пероксида водорода с концентрацией 20-34%. Расход пероксида водорода составляет 0,32-0,34 граммов на 1 грамм суммы металлов. Осаждение проводят при непрерывной подаче осадителя со скоростью 0,2-6,5% об/мин при температуре 10-30°С.

В процессе осаждения поддерживают значение pH водной фазы в диапазоне 2-4 добавлением вспомогательного потока аминокислоты (периодическим или непрерывным).

Процесс осаждения завершают при отсутствии изменения значения рН после добавления последней порции осадителя.

Осадок с маточным раствором выдерживают при перемешивании в течение 0,5-3 часов (стадия «созревания» осадка).

Жидкую и твердую фазы разделяют фильтрованием. При необходимости осадок промывают раствором глицина с концентрацией до 2 моль/л. Осадок высушивают на фильтре и передают на термообработку.

Режим термообработки: нагревание со скоростью 0,4-0,5°С/мин в интервале 40-160°С, 12-35°С/мин в интервале 160-550°С, 0,4-0,5°С/мин в интервале 550-650°С и 8-20°С/мин в интервале 650-750°С. Далее выдержка при 850°С. Продолжительность выдержки определяется загрузкой осадка. Газовая среда в процессе термообработки - аргон или диоксид углерода совместно с продуктами разложения осадка. Для интенсификации декарбонизации смешанного уран-плутониевого диоксида в газовую среду вводят пары муравьиной кислоты в количестве 0,5-3 масс. %. В процессе термообработки пероксидного осадка насыщенный парами муравьиной кислоты газовый поток предварительно нагревают до температуры 600°С. Смешивание газового потока с муравьиной кислотой осуществляют любым приемлемым способом: инжектирование муравьиной кислоты в газовый поток, барботаж газового потока через раствор муравьиной кислоты или пропускание газового потока при заданной температуре через объем газовой фазы над «зеркалом» раствора.

К маточному раствору добавляют пероксид водорода до концентрации 120 г/л и азотную кислоту до концентрации 0,4 моль/л. Введенный при пероксидном осаждении избыток аминокислоты разлагают в динамическом режиме путем пропускания потока маточного раствора, откорректированного по азотной кислоте и пероксиду водорода, со скоростью 2,0-10,0 колоночных объемов/час при температуре 75-95°С через зернистый слой биметаллического катализатора с размером зерна 0,2-0,9 мм и содержанием платины в поверхностном слое гранул 0,01-1% масс.

Пример выполнения

Для сопоставимых экспериментов по получению смешанных уран-плутониевых оксидов по способу-прототипу и предлагаемому способу использовали азотнокислый раствор с концентрацией урана 112 г/л, плутония 30 г/л и 0,6 моль/л азотной кислоты. Раствор содержал также продукты коррозии (ПК - железо, хром, никель, марганец) и радионуклиды рутения, цезия, циркония и редкоземельных элементов (РЗЭ).

Осаждение по способу-прототипу проводили в соответствии с описанием изобретения, по предлагаемому способу в соответствии с условиями ранее выполненных предварительных экспериментов.

При осаждении по способу-прототипу полнота осаждения составила 99,6% (концентрация суммы урана и плутония в маточном растворе составила 0,32 г/л). При осаждении по предлагаемому способу полнота осаждения составила 99,99% (концентрация суммы урана и плутония в маточном растворе составила менее 15 мг/л).

В процессе осаждения были реализованы коэффициенты очистки от ПК и примесных радионуклидов:

способ-прототип: ПК - 1,2⋅102; Ru - 14; Cs - 5⋅102; Zr - 35; РЗЭ - 2⋅102;

предлагаемый способ: ПК - 8,2⋅102; Ru - 1,2⋅102; Cs - 9,9⋅102; Zr - 4,7⋅102; РЗЭ - 8,7⋅102.

После осаждения осадки были отделены от маточных растворов на микрофильтрационной перегородке МФФК-4Г, высушены и направлены на термообработку.

Термообработку, как и процедуру осаждения, осадков проводили в соответствии с описанием изобретения (способ-прототип) и с условиями ранее выполненных предварительных экспериментов (предлагаемый способ).

Газовой средой при термообработке по способу-прототипу были газообразные продукты разложения осадка, при термообработке по предлагаемому способу - аргон (до 600°С) и аргон, содержащий 2,5% масс. муравьиной кислоты.

Рентгенофазовый анализ показал, что в продукте, полученном по способу-прототипу, преобладает структура с ромбической решеткой, характерной для α-фазы и β-фазы закиси-окиси урана. Продукт, полученный по предлагаемому способу, имеет гомофазную структуру с гранецентрированной кубической решеткой типа флюорита, характерную для твердого раствора (U, Pu)O2.

После дополнительной восстановительной прокалки продукта, полученного по способу-прототипу (1000°С, аргон-водородная атмосфера, продолжительность-3 часа), рентгенофазовые характеристики обоих продуктов стали идентичными.

Содержание углерода в смешанном диоксиде, полученном по способу-прототипу, составило 0,07%, в полученном по предлагаемому способу - 9,8⋅10-4%.

Гранулометрические характеристики порошков смешанных диоксидов, полученных по способу-прототипу и по предлагаемому способу, а также показатели текучести порошков оказались весьма близкими.

Обращение с маточным раствором

Маточный раствор от осаждения по способу-прототипу не перерабатывали ввиду отсутствия приемлемого способа переработки. Уран и плутоний были извлечены из маточного раствора после разрушения пероксида водорода щелочным осаждением с добавкой нитрата уранила.

В маточный раствор от осаждения по предлагаемому способу, содержащий 1,42 моль/л глицина, вносили пероксид водорода до концентрации 120 г/л и азотную кислоту до концентрации 0,4 моль/л и пропускали через слой катализатора с соотношением высоты слоя к его диаметру равным 8:1 в условиях, описанных ранее. После обработки концентрация глицина в растворе не превышала 0,01 г/л, что с учетом забалансовых количеств урана и плутония позволяет утилизировать раствор в штатном режиме переработки жидкого радиоактивного отхода среднего уровня активности.

Был выполнен еще один эксперимент по получению смешанного уран-плутониевого диоксида. Отличия этого эксперимента состояли в составе газовой среды при термообработке и в способе утилизации маточника.

В качестве газовой среды использовали диоксид углерода с содержанием муравьиной кислоты 0,5% масс. Маточный раствор упаривали до концентрации глицина 2 моль/л и использовали в дальнейшем в осадительном процессе.

Содержание углерода в смешанном оксиде составило 3,1⋅10-3%.

По всем иным показателям (очистка при осаждении, полнота осаждения, гранулометрический состав и текучесть смешанных оксидов) результаты второго эксперимента практически не отличаются от результатов первого.

Таким образом, предлагаемый способ позволяет получать смешанный уран-плутониевый диоксид с показателями по гранулометрическому составу и текучести, аналогичными получаемым по способу-прототипу.

Однако технологический процесс получения смешанного диоксида существенно упрощается, исключается применение водорода, содержание углерода снижается более чем на порядок, маточный раствор осадительной стадии процесса либо повторно используется, либо легко утилизируется. Перечисленные отличия достаточно полно демонстрируют преимущества предлагаемого способа.

Источник поступления информации: Роспатент

Showing 61-70 of 83 items.
12.10.2019
№219.017.d527

Устройство вихревого размола смешанного ядерного топлива

Изобретение относится к ядерной технике. Устройство содержит аппарат вихревого слоя ABC-150 с индуктором, механизм колебаний, контейнер с титановым стаканом с размещенными в стакане роликами и сепаратором и привод перемещения контейнера. К дну механизма колебаний прикреплен стакан, размещенный...
Тип: Изобретение
Номер охранного документа: 0002702621
Дата охранного документа: 09.10.2019
30.10.2019
№219.017.dbe5

Способ радиационного обследования искусственных водоёмов

Изобретение относится к области радиометрии. Способ радиационного обследования искусственных водоемов содержит этапы, на которых выбирают малоразмерный беспилотный летательный аппарат, содержащий устройство детектирования мощности дозы гамма-излучения, с помощью которого сканируют выбранный...
Тип: Изобретение
Номер охранного документа: 0002704329
Дата охранного документа: 28.10.2019
30.10.2019
№219.017.dbe6

Способ растворения некондиционной таблетированной продукции производства мокс-топлива

Изобретение относится к способам переработки некондиционной таблетированной продукции производства МОКС-топлива до процесса спекания. Способ растворения некондиционной таблетированной продукции производства МОКС-топлива включает раздельное растворение урана и плутония. Некондиционный материал...
Тип: Изобретение
Номер охранного документа: 0002704310
Дата охранного документа: 28.10.2019
24.11.2019
№219.017.e5c0

Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля

Изобретение относится к области получения фторфосфиновых соединений никеля, в частности к способу получения тетракис-(трифторфосфина) изотопно-обогащенного никеля, и может быть использовано в технологии получения бета-вольтаических источников тока. Способ проводят в две стадии c возможностью...
Тип: Изобретение
Номер охранного документа: 0002707035
Дата охранного документа: 21.11.2019
13.12.2019
№219.017.ed65

Способ контроля уплотнения сыпучего материала при создании барьеров безопасности в пункте размещения радиоактивных отходов

Изобретение относится к технологии исследования прочностных свойств твердых материалов путем приложения повторяющихся или пульсирующих усилий и может быть использовано для определения областей образования пустот и величины плотности глиносодержащего барьерного материала при создании барьеров...
Тип: Изобретение
Номер охранного документа: 0002708702
Дата охранного документа: 11.12.2019
24.12.2019
№219.017.f192

Способ переработки высокоактивных отходов с фракционированием радионуклидов

Изобретение относится к области ядерной энергетики. Способ экстракционной переработки высокоактивных отходов с фракционированием радионуклидов включает их нейтрализацию. Фракционирование ТПЭ и РЗЭ с выведением цезиево-стронциевой фракции, последующую экстракцию урана, плутония, нептуния,...
Тип: Изобретение
Номер охранного документа: 0002709826
Дата охранного документа: 23.12.2019
21.01.2020
№220.017.f7a6

Устройство для дистанционной резки металлоконструкций выводимых из эксплуатации ядерных реакторов

Изобретение относится к устройству для дистанционной резки металлоконструкций выводимых из эксплуатации ядерных реакторов. Техническим результатом изобретения является возможность эффективного создания проходок в удаленных друг от друга радиационно загрязненных металлоконструкциях ядерного...
Тип: Изобретение
Номер охранного документа: 0002711285
Дата охранного документа: 16.01.2020
06.02.2020
№220.017.ffb2

Устройство снаряжения тепловыделяющего элемента

Изобретение относится к ядерной технике. Устройство снаряжения тепловыделяющего элемента (твэла) соединено каналом загрузки оболочек с передающим устройством оболочек. Оси каналов загрузки оболочек и выгрузки снаряженного твэла расположены на концах горизонтального диаметра окружности вращения...
Тип: Изобретение
Номер охранного документа: 0002713220
Дата охранного документа: 04.02.2020
09.02.2020
№220.018.011f

Способ бесполостного заполнения реакторных пространств при выводе из эксплуатации уран-графитовых ядерных реакторов

Изобретение относится к технологии вывода из эксплуатации уран-графитовых ядерных реакторов, а именно к технологии создания барьеров безопасности в пунктах захоронения радиоактивных отходов. Cпособ бесполостного заполнения реакторных пространств при выводе из эксплуатации уран-графитовых...
Тип: Изобретение
Номер охранного документа: 0002713742
Дата охранного документа: 07.02.2020
09.02.2020
№220.018.0125

Способ кондиционирования иловых отложений бассейнов выдержки

Изобретение относится к технологии обработки материалов с радиоактивным заражением. Способ кондиционирования иловых отложений бассейнов выдержки включает дозирование порций компонентов цементного компаунда в контейнер, перемешивание цементного компаунда с помощью мешалки, которая приводится во...
Тип: Изобретение
Номер охранного документа: 0002713734
Дата охранного документа: 07.02.2020
Showing 61-70 of 79 items.
19.06.2019
№219.017.8883

Способ реэкстракции плутония из органического раствора трибутилфосфата

Изобретение относится к области регенерации плутония из отработанного ядерного топлива (ОЯТ) водными методами. На операциях отделения плутония от урана и на операции аффинажа плутония в качестве его восстановителя используется карбогидразид CO(NH) в концентрации от 0.2 до 1.0 моль/л. Нижний...
Тип: Изобретение
Номер охранного документа: 0002410774
Дата охранного документа: 27.01.2011
29.06.2019
№219.017.a015

Способ переработки отработавшего ядерного топлива

Заявляемое изобретение относится к области ядерной энергетики, в частности к области переработки отработавшего ядерного топлива (ОЯТ), и может быть использовано в технологических схемах переработки ОЯТ. Сущность изобретения: концентрирование продуктов деления проводят путем упаривания...
Тип: Изобретение
Номер охранного документа: 0002408101
Дата охранного документа: 27.12.2010
10.07.2019
№219.017.ae72

Способ переработки облученного ядерного топлива

Изобретение относится к области радиохимической технологии и может быть использовано для переработки облученного ядерного топлива. Способ переработки ОЯТ включает растворение топлива, экстракцию нитратов урана и актинидов нейтральными фосфорорганическими соединениями, растворенными в...
Тип: Изобретение
Номер охранного документа: 0002366012
Дата охранного документа: 27.08.2009
02.10.2019
№219.017.cb47

Способ изготовления таблетированного топлива для тепловыделяющих элементов ядерных реакторов

Изобретение относится к области атомной энергетики, в частности к способу изготовления таблетированного топлива для тепловыделяющих элементов ядерных реакторов на быстрых и тепловых нейтронах. Способ включает подготовку пресс-порошка, содержащего диоксид урана или диоксид урана и диоксид...
Тип: Изобретение
Номер охранного документа: 0002701542
Дата охранного документа: 27.09.2019
09.10.2019
№219.017.d3ac

Ремикс - топливо ядерно-топливного цикла

Изобретение относится к оксидному уран-плутониевому ядерному РЕМИКС-топливу АЭС с реакторами на тепловых нейтронах. Топливо характеризуется тем, что содержит плутоний, полученный при переработке ОЯТ реакторов типа ВВЭР, в количестве 1-2 мас%. с содержанием изотопа Pu-239 более 51%, обогащенный...
Тип: Изобретение
Номер охранного документа: 0002702234
Дата охранного документа: 07.10.2019
30.10.2019
№219.017.dbe6

Способ растворения некондиционной таблетированной продукции производства мокс-топлива

Изобретение относится к способам переработки некондиционной таблетированной продукции производства МОКС-топлива до процесса спекания. Способ растворения некондиционной таблетированной продукции производства МОКС-топлива включает раздельное растворение урана и плутония. Некондиционный материал...
Тип: Изобретение
Номер охранного документа: 0002704310
Дата охранного документа: 28.10.2019
24.11.2019
№219.017.e5c0

Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля

Изобретение относится к области получения фторфосфиновых соединений никеля, в частности к способу получения тетракис-(трифторфосфина) изотопно-обогащенного никеля, и может быть использовано в технологии получения бета-вольтаических источников тока. Способ проводят в две стадии c возможностью...
Тип: Изобретение
Номер охранного документа: 0002707035
Дата охранного документа: 21.11.2019
24.12.2019
№219.017.f192

Способ переработки высокоактивных отходов с фракционированием радионуклидов

Изобретение относится к области ядерной энергетики. Способ экстракционной переработки высокоактивных отходов с фракционированием радионуклидов включает их нейтрализацию. Фракционирование ТПЭ и РЗЭ с выведением цезиево-стронциевой фракции, последующую экстракцию урана, плутония, нептуния,...
Тип: Изобретение
Номер охранного документа: 0002709826
Дата охранного документа: 23.12.2019
05.02.2020
№220.017.fe81

Способ очистки азотнокислых растворов от америция

Изобретение относится к радиохимической технологии и может быть использовано для очистки от америция рафината экстракционного передела производства смешанного уран-плутониевого топлива. Очистка азотнокислых растворов от америция включает соосаждение америция с оксалатом кальция из растворов,...
Тип: Изобретение
Номер охранного документа: 0002713010
Дата охранного документа: 03.02.2020
09.03.2020
№220.018.0aa3

Способ растворения волоксидированного облученного ядерного топлива

Изобретение относится к процессам растворения облученного ядерного топлива (ОЯТ), конкретно к растворению волоксидированного топлива, состоящего из высокодисперсных частиц. Способ растворения волоксидированного облученного ядерного топлива включает загрузку волоксидированного ОЯТ в...
Тип: Изобретение
Номер охранного документа: 0002716150
Дата охранного документа: 06.03.2020
+ добавить свой РИД