×
29.12.2017
217.015.fa06

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Использование: для контроля тепловых характеристик полупроводниковых приборов и интегральных схем. Сущность изобретения заключается в том, что разогревают полупроводниковое изделие путем подачи на вход (на определенные выводы) полупроводникового изделия, подключенного к источнику питания, последовательности прямоугольных импульсов напряжения заданной амплитуды и длительности с частотой следования , измеряют среднюю за период следования прямоугольных импульсов напряжения мощность P, потребляемую полупроводниковым изделием, разность фаз между входным импульсным напряжением и импульсным напряжением на выходе (на выходных выводах) полупроводникового изделия преобразуют в напряжение U(t), в заданные моменты времени t значения напряжения U(t) запоминают и значения переходной тепловой характеристики полупроводникового изделия в моменты времени t определяют по формуле где K - относительный температурный коэффициент времени задержки сигнала в полупроводниковом изделии, а U(0) - значение напряжения U(t) в начале нагрева полупроводникового изделия, то есть при t≈0. Технический результат: обеспечение возможности повышения точности измерения переходной тепловой характеристики полупроводниковых изделий. 2 ил.

Изобретение относится к технике измерения тепловых характеристик полупроводниковых изделий и может быть использовано для измерения переходных тепловых характеристик полупроводниковых приборов и интегральных схем как на этапах их разработки и производства, так и на входном контроле предприятий-потребителей или при выборе режимов эксплуатации.

Ключевой задачей контроля тепловых свойств полупроводниковых изделий ( ППИ) является определение параметров их тепловой эквивалентной схемы, по которым можно рассчитать температуру активной области (p-n-перехода) ППИ в любом заданном режиме работы изделия. В приближении одномерной тепловой схемы ППИ (см. Давидов П.И. Тепловые режимы работы полупроводниковых приборов. М.: Радио и связь, 1967. - 157 с.) задача сводится к определению набора значений тепловых сопротивлений (RTi) и теплоемкостей (CTi) или тепловых постоянных времени (τTi=RTi⋅CTi) отдельных элементов и слоев материалов, составляющих конструкцию ППИ. Указанные параметры могут быть определены по переходной тепловой характеристике (ПТХ) H(t) ППИ, то есть по изменению температуры Δθn(t) активной области ППИ при его саморазогреве ступенчатой электрической мощностью заданной величины P0: H(t)=Δθn(t)/P0.

Известен способ измерения ПТХ ППИ с p-n-переходами (см. IC Thermal Measurement Method - Electrical Test Method (Single Semiconductor Device) EIA/JEDEC JESD51-1 standard // http://www.jedec.org/download/search/jesd51-1.pdf), состоящий в том, что на изделие с внешнего источника подают ступеньку электрической греющей мощности заданной величины, в процессе разогрева изделия в определенные моменты времени ti на короткий временной интервал (длительностью до нескольких десятков микросекунд) греющую мощность отключают, с помощью внешнего источника тока через контролируемый p-n-переход пропускают малый ток в прямом направлении и измеряют температурочувствительный параметр (ТЧП) - прямое падение напряжения на p-n-переходе - температурный коэффициент KU которого известен, приращение температуры Δθn(ti) p-n-перехода в момент времени ti определяют по изменению ТЧП

,

где Up-n(0) - падение напряжения на p-n-переходе до разогрева изделия, Up-n(ti) - падение напряжения на p-n-переходе в момент времени ti.

Этот метод реализован, в частности, в установке T3Ster - Thermal Transient Tester (см. T3Ster - Thermal Transient Tester // www.mentor.com/micred).

Недостатком указанного способа измерения ПТХ является значительная погрешность измерения ТЧП - прямого падения напряжения на контролируемом p-n-переходе - сразу же после выключения греющей мощности из-за влияния паразитных переходных электрических процессов, возникающих в p-n-переходе ППИ при переключении ПНИ из режима нагрева в измерительный режим (см., например, Сергеев В.А., Юдин В.В. Измерение тепловых параметров полупроводниковых изделий с применением амплитудно-импульсной модуляции греющей мощности // Измерительная техника. - 2010. - №6. - С.32-39). Для снижения этой погрешности измерение ТЧП необходимо проводить через некоторое время задержки после выключения греющей мощности, за которое электрический переходный процесс в основном завершится; за это время температура p-n-перехода может заметно измениться. При этом постоянная времени релаксации электрических процессов заранее неизвестна, сильно зависит от величины греющей мощности и может значительно отличаться от образца к образцу.

Технический результат - повышение точности измерения переходной тепловой характеристики полупроводниковых изделий.

Технический результат достигается тем, что в известном способе, состоящем в разогреве полупроводникового изделия потребляемой электрической мощностью известной величины и в измерении в определенные моменты времени в процессе разогрева полупроводникового изделия температурочувствительного параметра с известным температурным коэффициентом, по изменению которого рассчитывают приращение температуры активной области полупроводникового изделия, греющую мощность задают путем подачи на вход (на определенные выводы) полупроводникового изделия, подключенного к источнику питания, последовательности прямоугольных импульсов напряжения заданной амплитуды и длительности с частотой следования , измеряют среднюю за период следования прямоугольных импульсов напряжения мощность Pnom, потребляемую полупроводниковым изделием, разность фаз между входным импульсным напряжением и импульсным напряжением на выходе (на выходных выводах) полупроводникового изделия преобразуют в напряжение Uτ(t), в заданные моменты времени ti значения напряжения Uτ(t) запоминают и значения переходной тепловой характеристики полупроводникового изделия в моменты времени ti определяют по формуле

,

где Kτ - относительный температурный коэффициент времени задержки сигнала в полупроводниковом изделии, а Uτ(0) - значение напряжения Uτ(t) в начале нагрева полупроводникового изделия, то есть при t0≈0.

В основе предложенного способа лежат два процесса: разогрев ППИ поглощаемой электрической мощностью и изменение времени τзад задержки сигнала в ППИ с ростом температуры. Время задержки сигнала в ППИ практически всех классов в той или иной степени зависит от температуры; причем для многих классов ППИ τзад линейно растет с увеличением температуры в диапазоне рабочих температур. В частности, относительный температурный коэффициент времени задержки распространения сигнала в логических элементах КМОП цифровых интегральных схем (ЛИС) составляет величину порядка 0,2-0,3%/°С и является практически постоянным в диапазоне от 0 до 100°С (см., например, Зельдин Е.А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре. - Л.: Энергоатомиздат, 1986, стр. 75).

При подаче на вход ППИ периодической последовательности импульсов напряжения задержка распространения сигнала в ППИ приведет к появлению разности фаз между входными и выходными импульсами напряжения: . Преобразуя эту разность фаз в напряжение любым известным способом (см., например, А.с. №1337811 СССР G01K 25/00 Преобразователь разности фаз в напряжение / A.M. Фиштейн. - Опубл. 15.09.1987, бюл. 34), получим напряжение Uτ(t), линейно зависящее от времени τзад задержки: , где S - крутизна преобразования разности фаз в напряжение.

При постоянной амплитуде и частоте входных импульсов напряжения средняя за период мощность Pnom, потребляемая ППИ, в достаточно широком диапазоне изменения температуры активной области ППИ будет постоянной Pnom≈const. По мере разогрева ППИ потребляемой мощностью время задержки сигнала будет линейно изменяться с ростом температуры Δθn(t): τзад(t)=τзад(0)[1+KτΔθn(t)], τзад(0) - время задержки сигнала в начале нагрева (в момент времени t0=0) и соответственно будет изменяться Uτ(t):

.

Откуда

или .

Измерить значение Uτ(t) в момент времени t0=0 невозможно, поэтому при практической реализации способа вместо Uτ(0) принимается значение напряжения Uτ(t), измеренное в момент времени t0 через некоторый промежуток времени после подачи импульсов на вход ППИ, длительность которого много меньше тепловой постоянной времени кристалла ППИ.

Технический результат - повышение точности измерения ПТХ - достигается за счет исключения паразитных переходных электрических процессов в ППИ, искажающих результат измерения температуры, поскольку в предлагаемом способе операции переключения ППИ из режима нагрева в режим измерения отсутствуют.

На фиг. 1 приведена структурная схема устройства, реализующего предложенный способ. На фиг. 2 представлены эпюры сигналов, поясняющие сущность способа и принцип работы устройства.

Структурная схема устройства для измерения ПТХ предложенным способом приведена применительно к таким классам ППИ, для которых потребляемой мощностью по входным цепям по сравнению с мощностью, потребляемой от источника сигнала, можно пренебречь, например биполярные, полевые и IGBT транзисторы, операционные усилители, КМОП цифровые и аналоговые интегральные схемы и др. В общем случае, при измерении ПТХ ППИ, в зависимости от схемы включения ППИ, следует учитывать также и мощность, потребляемую ППИ от источника сигнала, и мощность, выделяющуюся в нагрузке.

Устройство содержит контролируемое полупроводниковое изделие 1, источник 2 питания с известным выходным напряжением питания Enum, генератор прямоугольных импульсов 3, токосъемный резистор 4 с известным сопротивлением R, преобразователь 5 разности фаз в напряжение, устройство управления 6, управляемый аналого-цифровой преобразователь (АЦП) 7, цифровой вольтметр 8 среднего значения переменного напряжения, вычислитель 9 и индикатор 10.

Устройство работает следующим образом. После подключения контролируемого ППИ 1 к источнику питания 2 через токосъемный резистор 4 по сигналу «Пуск» включается устройство управления 6, а генератор прямоугольных импульсов 3 начинает вырабатывать последовательность прямоугольных импульсов напряжения Uвх(t) (фиг. 2, а) заданной амплитуды и длительности с частотой следования , которые поступают на вход контролируемого ППИ и на один из входов преобразователя разности фаз в напряжение 5, на второй вход которого поступает импульсное напряжение Uвых(t) с выхода ППИ (фиг. 2, б), сдвинутое относительно входного импульсного напряжения на некоторое время задержки (фиг. 2, в), напряжение Uτ(t) с выхода преобразователя 5 разности фаз в напряжение (фиг. 2, г) поступает на вход АЦП 7. В течение TЦ цикла измерения устройство управления 6 в заданные моменты времени ti вырабатывает короткие управляющие импульсы UУ1 (рис. 2, д), которые поступают на управляющий вход АЦП; число N управляющих импульсов определяется требуемым числом точек ПТХ. Значения напряжения, измеренные в моменты времени ti, передаются в вычислитель 9. В некоторый момент времени tk в течение цикла измерения по сигналу устройства управления цифровой вольтметр 8 среднего значения переменного напряжения измеряет среднее за период следования греющих импульсов напряжение на токосъемном резисторе 4 и также передает измеренное значение в вычислитель 9. Вычислитель 9 по известным значениям Enum и R и измеренному значению вычисляет потребляемую ППИ мощность по формуле , - средний за период следования греющих импульсов ток, потребляемый НИИ, затем рассчитывает значение переходной тепловой характеристики ППИ по формуле

и передает массив данных {ti, H(ti)} на индикатор 10, который отображает эту информацию в удобной для оператора форме.

Следует отметить, что время задержки у современных ППИ мало и составляет от нескольких десятков до единиц и даже долей наносекунд. Для снижения погрешности измерения ПТХ предложенным способом рекомендуется выбирать значение близким к верхнему значению рабочей частоты переключения ППИ, а для однозначности преобразования Uτ(t~τзад) длительность импульсов и паузы между ними необходимо выбирать заведомо больше времени задержки сигнала. Так, при времени задержки τзад=10 нс, частоте следования импульсов , длительности импульсов 50 нс и при крутизне преобразования разности фаз в напряжение 2Sπ=20 В получим Ucp=2 В. Такое значение может быть измерено современными АЦП с погрешностью в доли процента за несколько микросекунд. Эти метрологические характеристики не уступают характеристикам прототипа - установки T3Ster.


СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИЗДЕЛИЙ
Источник поступления информации: Роспатент

Showing 51-60 of 237 items.
29.12.2017
№217.015.f360

Устройство для удаления поверхностного слоя нефтесодержащих жидкостей

Изобретение относится к устройствам для удаления поверхностного слоя нефтесодержащих жидкостей и может быть использовано в очистных сооружениях водоснабжения и канализации, в химической, металлообрабатывающей и других отраслях промышленности при очистке технологических, смазочно-охлаждающих...
Тип: Изобретение
Номер охранного документа: 0002637135
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f64d

Устройство для удаления поверхностного слоя нефтесодержащих жидкостей

Изобретение относится к устройствам для удаления поверхностного слоя нефтесодержащих жидкостей и может быть использовано в очистных сооружениях водоснабжения и канализации, в химической, металлообрабатывающей и других отраслях промышленности при очистке технологических, смазочно-охлаждающих...
Тип: Изобретение
Номер охранного документа: 0002637210
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f6a4

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана и алюминия при их соотношении, мас. %: титан 83,5-89,5, алюминий...
Тип: Изобретение
Номер охранного документа: 0002639189
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f719

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана и хрома при их соотношении, мас. %: титан 82,75-87,25, хром 12,75-17,25....
Тип: Изобретение
Номер охранного документа: 0002639192
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f78a

Способ электроэрозионной обработки изделий проволочным электродом-инструментом

Изобретение относится к электроэрозионной обработке (ЭЭО) сложнопрофильных изделий повышенной точности проволочным электродом-инструментом (ЭИ) на электроэрозионных многокоординатных вырезных станках с ЧПУ, дополнительно оснащенных оборудованием для генерации упругих ультразвуковых колебаний...
Тип: Изобретение
Номер охранного документа: 0002639418
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f7a2

Шлифовальный круг

Изобретение относится к металлообработке и может быть использовано при профильном шлифовании заготовок с регулярным островершинным профилем при резьбошлифовании. Рабочая поверхность шлифовального круга имеет четное число участков. Каждый из них профилирован с шагом Р, где Р - шаг профиля...
Тип: Изобретение
Номер охранного документа: 0002639421
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f7dd

Способ работы парового котла

Изобретение относится к области теплоэнергетики. Способ работы парового котла, по которому в топку котла подают воздух и используемый в качестве топлива природный газ, теплоту продуктов сгорания топлива отводят котловой воде и пару, после чего уходящие газы удаляют из котла в атмосферу, из...
Тип: Изобретение
Номер охранного документа: 0002639470
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fa0a

Ранговый сортировщик

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении быстродействия устройства. Ранговый сортировщик содержит: восемь логических ячеек, первый, второй входы i-й (i∈{4,9}) и первый, второй входы j-й (j∈{6,11}) логических ячеек соединены соответственно...
Тип: Изобретение
Номер охранного документа: 0002639646
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fa9e

Шарнирно-рычажный механизм

Изобретение относится к области машиностроения, а более конкретно к шарнирно-рычажным механизмам. Шарнирно-рычажный механизм содержит стойку, ведущий кривошип, ведомое звено, шатун и приспособление для вывода механизма из мертвых положений. Указанное приспособление представляет собой...
Тип: Изобретение
Номер охранного документа: 0002640086
Дата охранного документа: 26.12.2017
19.01.2018
№218.015.ff2f

Автономная генераторная установка на базе асинхронной машины с короткозамкнутым ротором

Изобретение относится к области электротехники и может быть использовано в электроэнергетической отрасли для преобразования механической энергии в электрическую с частотой выходного напряжения, не зависящей от скорости вращения генератора. Устройство содержит асинхронный генератор, на статоре...
Тип: Изобретение
Номер охранного документа: 0002629552
Дата охранного документа: 30.08.2017
Showing 51-60 of 82 items.
29.12.2017
№217.015.f7dd

Способ работы парового котла

Изобретение относится к области теплоэнергетики. Способ работы парового котла, по которому в топку котла подают воздух и используемый в качестве топлива природный газ, теплоту продуктов сгорания топлива отводят котловой воде и пару, после чего уходящие газы удаляют из котла в атмосферу, из...
Тип: Изобретение
Номер охранного документа: 0002639470
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fa0a

Ранговый сортировщик

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении быстродействия устройства. Ранговый сортировщик содержит: восемь логических ячеек, первый, второй входы i-й (i∈{4,9}) и первый, второй входы j-й (j∈{6,11}) логических ячеек соединены соответственно...
Тип: Изобретение
Номер охранного документа: 0002639646
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fa9e

Шарнирно-рычажный механизм

Изобретение относится к области машиностроения, а более конкретно к шарнирно-рычажным механизмам. Шарнирно-рычажный механизм содержит стойку, ведущий кривошип, ведомое звено, шатун и приспособление для вывода механизма из мертвых положений. Указанное приспособление представляет собой...
Тип: Изобретение
Номер охранного документа: 0002640086
Дата охранного документа: 26.12.2017
19.01.2018
№218.015.ff2f

Автономная генераторная установка на базе асинхронной машины с короткозамкнутым ротором

Изобретение относится к области электротехники и может быть использовано в электроэнергетической отрасли для преобразования механической энергии в электрическую с частотой выходного напряжения, не зависящей от скорости вращения генератора. Устройство содержит асинхронный генератор, на статоре...
Тип: Изобретение
Номер охранного документа: 0002629552
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0a8a

Способ повышения безопасности транспортного средства при групповых столкновениях

Изобретение относится к средствам пассивной безопасности наземных транспортных средств, работающих в условиях интенсивного движения. Способ заключается в том, что измеряют дистанцию до препятствий спереди и сзади транспортного средства, рассчитывают скорость их сближения, оценивают вероятность...
Тип: Изобретение
Номер охранного документа: 0002632238
Дата охранного документа: 03.10.2017
20.01.2018
№218.016.10cc

Узловое соединение тонкостенных стержней пространственной конструкции

Изобретение относится к строительству, а именно к узловому соединению тонкостенных стержней пространственной конструкции, и может найти применение в оболочках сферической, конической и других пространственных форм сооружений из металлических стержней двутаврового, таврового и швеллерного...
Тип: Изобретение
Номер охранного документа: 0002633713
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.121b

Логический преобразователь

Логический преобразователь предназначен для реализации простых симметричных булевых функций и может быть использован в системах цифровой вычислительной техники как средство преобразования кодов. Технический результат заключается в обеспечении реализации любой из шести простых симметричных...
Тип: Изобретение
Номер охранного документа: 0002634229
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1d47

Шлифовальный круг

Изобретение относится к металлообработке и может быть использовано при профильном шлифовании заготовок с регулярным островершинным профилем при резьбошлифовании. Прерывистая рабочая поверхность шлифовального круга имеет регулярный профиль, например профиль резьбы. Рабочая поверхность...
Тип: Изобретение
Номер охранного документа: 0002640688
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d63

Способ электроэрозионной обработки изделий проволочным электродом-инструментом

Изобретение относится к электроэрозионной обработке (ЭЭО) сложнопрофильных изделий повышенной точности. Способ включает формообразование поверхности изделия на станке с ЧПУ за счет перемещений проволочного ЭИ с коррекцией угла наклона α проволочного ЭИ посредством смещения верхней направляющей...
Тип: Изобретение
Номер охранного документа: 0002640689
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.203c

Логический вычислитель

Изобретение относится к вычислительной технике и может быть использовано для построения средств автоматики, функциональных узлов систем управления и др. Технический результат заключается в упрощении устройства за счет уменьшения числа типов используемых элементов и цены по Квайну. Логический...
Тип: Изобретение
Номер охранного документа: 0002641446
Дата охранного документа: 17.01.2018
+ добавить свой РИД