×
29.12.2017
217.015.f571

Результат интеллектуальной деятельности: АППРОКСИМАЦИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ДЕФЕКТОВ СПЛОШНОСТИ В ФЕРРОМАГНИТНЫХ ИЗДЕЛИЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений может быть использована для определения геометрических размеров дефектов сплошности в ферромагнитном изделии, а также для разработки алгоритмов программного обеспечения магнитных дефектоскопов. Группа изобретений реализуется в виде устройства, содержащего блок намагничивания, датчики Холла, усилитель, АЦП и блок обработки, где фиксируются и определяются максимальные значения осевой и азимутальной составляющих поля рассеяния дефекта, ширина и длина дефекта. Используя алгоритм и базы данных сигналов от дефектов, определяют параметры дефекта, сигналы которого наиболее близки к измеренным, и эти параметры считают параметрами измеряемого дефекта. Технический результат – повышение точности определения параметров дефектов. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области магнитных неразрушающих методов контроля ферромагнитных изделий. Изобретение может быть использовано для определения геометрических размеров дефектов сплошности в ферромагнитном изделии, а также для разработки алгоритмов программного обеспечения магнитных дефектоскопов.

Существует много приборов оценки [1, 2, 3] геометрических параметров дефектов сплошности аналогичных по устройству, характеристикам и применению. Все эти приборы (например, [3] - прототип) содержат блок намагничивания объекта контроля, первичные преобразователи для регистрации образующихся при этом полей рассеяния дефектов, блок обработки сигналов, индикатор, систему сканирования.

Общим недостатком всех этих приборов является то, что они лишь фиксируют наличие дефектов и только некоторые измеряют их глубину и ширину (имея при этом недостаточную точность и сложность реализации) и не измеряют другие необходимые (как показано на фиг. 1) параметры дефектов, такие как глубина h, ширина m, угол наклона α, протяженность .

Задачами предлагаемого технического решения являются: возможность определения глубины (с необходимой точностью), ширины, угла наклона и протяженности дефектов, разработка устройства и алгоритма работы его программы определения параметров дефекта.

Поставленная задача решается тем, что в известном аппроксимационном способе определения геометрических размеров дефектов сплошности в ферромагнитном изделии, заключающемся в намагничивании объекта контроля и использовании преобразователей типа датчиков Холла, по сигналам которых судят о наличии и размерах дефектов, согласно изобретению используют два ряда преобразователей, расположенных вдоль и поперек направления сканирования, которые измеряют осевую В0 и ортогональную Ва составляющие поля рассеяния дефекта, фиксируют максимальные значения обеих составляющих - В0 max - осевой, Ba max - ортогональной, для осевой составляющей фиксируют длительность Δt интервала времени, когда преобразователь находится над дефектом, и вычисляют ориентировочную длину дефекта l0=Vск⋅Δt, где Vск - скорость сканирования, фиксируют количество n измерителей ортогональной составляющей, в которых сигнал не равен нулю, и вычисляют ориентировочную ширину дефекта ma=n⋅Δ, где Δ - ширина зоны контроля преобразователя, по четырем измеренным параметрам (B0 max, Ba max, Δt, n), используя базу данных сигналов при моделировании дефектов, определяют дефект, сигналы которого наиболее близки к измеренным, и параметры этого дефекта принимают за параметры неизвестного дефекта (m, h, α, l) с учетом ориентировочных значений l0 и ma.

В части устройства поставленная задача решается тем, что известное устройство для реализации аппроксимационного способа определения параметров дефектов сплошности ферромагнитных изделий, содержащее намагничивающее устройство, блок преобразователей для измерения магнитного поля рассеивания дефектов, усилитель сигналов преобразователей, аналого-цифровой преобразователь, блок обработки сигналов, регистрирующее устройство наличия и определения размеров дефектов, сканирующее устройство, согласно изобретению снабжено двумя рядами преобразователей, расположенных вдоль и поперек направления сканирования и измеряющих осевую В0 и ортогональную Ва составляющие магнитного поля, в блоке обработки предусмотрены блоки для измерения максимальных значений осевой B0 max и ортогональной Ba max составляющих поля рассеяния, блоки для измерения длительности интервала времени сигнала осевой В0 составляющей магнитного поля над дефектом, блоки для определения количества преобразователей, фиксирующих ортогональную составляющую магнитного поля, в которых сигнал не равен нулю, регистрирующее устройство содержит также элементы памяти, где хранятся результаты моделирования дефектов различных размеров.

На фиг. 1 изображены дефекты типа трещина и риска и обозначены параметры дефектов. На фиг. 2 представлена блок-схема устройства для магнитной дефектоскопии. На фиг. 3 показан алгоритм метода определения геометрических размеров дефектов.

Блок-схема предлагаемого устройства для определения геометрических размеров дефектов сплошности в ферромагнитных изделиях, содержит последовательно соединенные блок намагничивания 1, объект контроя 2, преобразователи для измерения осевой составляющей В0 магнитного поля рассеивания дефекта 3, усилитель 4, АЦП в канале В0 5, преобразователи для измерения ортогональной составляющей Ва 6, усилитель 7, АЦП в канале Ва 8, систему сканирования 9, блок измерения максимального значения В0 max 10, блок измерения Δt длительности сигнала В0 11, блок измерения максимального значения сигнала Ва max 12, блок измерения количества n преобразователей канала Ва, где сигнал не равен нулю.

Предлагаемое устройство (фиг. 2) содержит преобразователи для измерения двух ортогональных составляющих магнитного поля рассеяния дефекта (в случае цилиндрического ОК - осевая B0 и азимутальная Ва компоненты). Если скорость сканирования в направлении оси V0, а длительность импульса B0 фиксируемого в блоке обработки Δt, то длина (фиг. 1) дефекта l0=V0×Δt.

Фиксацию Ва производят ряд расположенных в направлении компоненты Ва преобразователей, протяженность зоны чувствительности в этом направлении - Δ. Таким образом, если в n преобразователях этого ряда фиксируется сигнал Ва, то ширина (фиг. 1) дефекта ma=n×Δ. Кроме того, в блоке обработки фиксируются максимальные значения B0 max и Ba max.

Для определения глубины дефекта h и угла его наклона α (фиг. 1) было проведено в программной среде ANSYS моделирование зависимости сочетаний параметров сигналов от сочетаний параметров дефектов (m, h, α, l) для объектов, электрофизические параметры которых соответствуют параметроам контролируемых объектов. По результатам составлена обширная база данных для всех практически возможных сочетаний параметров дефектов, разработан алгоритм и составлена программа (фиг. 3) определения всех параметров дефекта,наиболее соответствующего полученному сочетанию параметров сигналов. Параметры модели соответствуют условиям проведения процедуры магнитного контроля реальных объектов. Структурная схема предлагаемого устройства изображена на фиг. 2. Функционирование алгоритма ясно из фиг. 3. Производится последовательное исключение вариантов, для которых хотя бы один из параметров сигналов не соответствует измеренным.

Способ положен в основу работы дефектоскопа по структурной схеме на фиг. 2. Работает устройство следующим образом.

Блок намагничивания 1 доводит объект контроля 2 (или его участок) до состояния, близкого техническому насыщению. Потоки рассеяния дефектов регистрируют магниточувствительные преобразователи 3, 6, например датчики Холла, сигналы которых усиливаются усилителями 4, 7 и через АЦП 5,8 поступают в блоки обработки 10-13, где согласно предлагаемому способу, изложенному выше, фиксируются и определяются максимальные значения осевой и азимутальной составляющих B0 max и Ba max поля рассеяния дефекта, длительность Δt сигнала В0, количество n преобразователей и с использованием алгоритма (фиг. 3) и базы данных сигналов от дефектов (хранящейся в памяти) определяют параметры дефекта, сигналы которого наиболее близки к измеренным, и эти параметры (дефекта) считают параметрами измеряемого дефекта. Эти данные поступают на регистрирующее устройство 14, в котором из хранящихся в памяти вариантов сигналов дефектов выбирают по алгоритму, согласно фиг. 3, наиболее близкий вариант, параметры дефекта данного варианта (l, m, h, α) принимают за параметры измеряемого дефекта. Количество преобразователей выбирается таким, чтобы избежать при контроле пропуска дефектов.

Источники информации

1. Р.В. Загидулин и др. Патент РФ №1777067 «Способ определения параметров поверхностного дефекта типа трещины на ферромагнитном объекте». БИ №43, 1992.

2. О.А. Булычев и др. Патент РФ №1810809 «Способ определения ширины трещины в ферромагнитном изделии». БИ №15, 1993.

3. Неразрушающий контроль. В 5 кн. Кн. 3. Электромагнитный контроль: практическое пособие. В.Г. Герасимов, А.Д. Покровский, В.В. Сухоруков / Под. ред. В.В. Сухорукова. - М.: Высшая школа, 1992. - 128 с.


АППРОКСИМАЦИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ДЕФЕКТОВ СПЛОШНОСТИ В ФЕРРОМАГНИТНЫХ ИЗДЕЛИЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
АППРОКСИМАЦИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ДЕФЕКТОВ СПЛОШНОСТИ В ФЕРРОМАГНИТНЫХ ИЗДЕЛИЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
АППРОКСИМАЦИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ДЕФЕКТОВ СПЛОШНОСТИ В ФЕРРОМАГНИТНЫХ ИЗДЕЛИЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
АППРОКСИМАЦИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ДЕФЕКТОВ СПЛОШНОСТИ В ФЕРРОМАГНИТНЫХ ИЗДЕЛИЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 171-180 of 211 items.
01.07.2020
№220.018.2d6a

Спектрофотоколориметр

Изобретение относится к области измерительной техники и касается спектрофотоколориметра. Спектрофотоколориметр содержит источник излучения, фотометрический блок, механически соединенный с блоком юстировки, набор светофильтров, цифровой матричный фотоприемник, подключенный к микропроцессору блок...
Тип: Изобретение
Номер охранного документа: 0002725002
Дата охранного документа: 29.06.2020
03.07.2020
№220.018.2db1

Охлаждаемая стенка токамака

Изобретение относится к охлаждаемой стенке токамака. Стенка содержит поверхность приема теплового потока [1] и прилегающую к ней теплопроводящую зону [2], совместно с кожухом [3] образующую полость сбора пара, игольчатые теплопроводящие элементы [4], расположенные перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002725161
Дата охранного документа: 30.06.2020
04.07.2020
№220.018.2e8d

Способ электронно-лучевого аддитивного получения заготовок

Изобретение относится к способу электронно-лучевого аддитивного получения заготовок. Заготовки получают путем аддитивного электронно-лучевого формообразования из титановой и никелевой проволоки. Устройство, реализующее способ, содержит электронно-лучевую пушку 1, основной электронный луч 2 и...
Тип: Изобретение
Номер охранного документа: 0002725537
Дата охранного документа: 02.07.2020
16.07.2020
№220.018.32ba

Способ идентификации линейного динамического объекта

Изобретение относится к способу идентификации линейного динамического объекта. Для идентификации линейного динамического объекта задают передаточную функцию объекта априорного вида в дробно-рациональной форме, определяют базовую частоту входного испытательного сигнала, в зависимости от базовой...
Тип: Изобретение
Номер охранного документа: 0002726496
Дата охранного документа: 14.07.2020
21.07.2020
№220.018.34f3

Синхронный электрический мотор-генератор для кинетического накопителя энергии

Изобретение относится к электротехнике. Технический результат заключается в улучшении эксплуатационных и удельных характеристик мотор-генератора, что позволяет улучшить его массогабаритные показатели и эффективность. Мотор-генератор для кинетического накопителя энергии содержит симметрично...
Тип: Изобретение
Номер охранного документа: 0002726947
Дата охранного документа: 17.07.2020
21.07.2020
№220.018.3531

Способ интеллектуального информационного поиска и предоставления контекстуальной информации в распределенных хранилищах данных

Изобретение относится к области вычислительной техники. Технический результат заключается в сокращении времени поиска пертинентной информации и повышении быстродействия информационного поиска. Раскрыт способ интеллектуального информационного поиска и предоставления контекстуальной информации в...
Тип: Изобретение
Номер охранного документа: 0002727076
Дата охранного документа: 17.07.2020
22.07.2020
№220.018.3540

Устройство для определения электрической прочности

Изобретение относится к электроизмерительной технике и может быть использовано при проектировании изоляции высоковольтного электрооборудования для определения электрической прочности слоевой изоляции. Устройство для определения электрической прочности содержит электроизоляционный цилиндр,...
Тип: Изобретение
Номер охранного документа: 0002727079
Дата охранного документа: 17.07.2020
22.07.2020
№220.018.354c

Устройство регистрации гистерезисных петель

Изобретение относится к области магнитных измерений и предназначено для регистрации вебер-амперных частных гистерезисных петель электротехнических устройств. Устройство регистрации гистерезисных петель дополнительно снабжено источником постоянного напряжения, последовательно соединенными...
Тип: Изобретение
Номер охранного документа: 0002727071
Дата охранного документа: 17.07.2020
24.07.2020
№220.018.35c7

Рабочее колесо центробежного насоса

Изобретение относится к области машиностроения и может быть использовано в центробежных насосах. Рабочее колесо содержит равномерно распределенные по окружности лопасти (1) толщиной b и с идентичными скелетами профилей (2). Входные кромки (3) лопастей (1) расположены на расстоянии R от оси...
Тип: Изобретение
Номер охранного документа: 0002727275
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.35d8

Когенерационная газотурбинная энергетическая установка

Изобретение относится к области теплоэнергетики, может быть использовано при разработке отопительных газотурбинных энергетических установок для теплоцентрали (ГТУ-ТЭЦ) и направлено на повышение тепловой экономичности при совместном прохождении графиков тепловой и электрической нагрузок....
Тип: Изобретение
Номер охранного документа: 0002727274
Дата охранного документа: 21.07.2020
Showing 71-71 of 71 items.
01.07.2020
№220.018.2d55

Устройство определения степени неоднородности структурного состояния магнитных металлов вихретоковым методом

Изобретение относится к методам неразрушающего контроля и может быть использовано для оценки степени неоднородности поверхностных слоев магнитных металлов, возникающей при закалке, отпуске и воздействии жидких или газообразных агрессивных сред. Предлагаемое устройство содержит генератор...
Тип: Изобретение
Номер охранного документа: 0002725020
Дата охранного документа: 29.06.2020
+ добавить свой РИД