×
26.08.2017
217.015.eda9

Результат интеллектуальной деятельности: Волоконно-оптический датчик давления

Вид РИД

Изобретение

№ охранного документа
0002628734
Дата охранного документа
21.08.2017
Аннотация: Изобретение относится к измерительной технике и может быть использовано в различных системах контроля и измерения давления. Волоконно-оптический датчик давления, выполненный на основе оптического волокна, содержит корпус, имеющий канал для подвода рабочей среды, оканчивающийся заглушкой, и оптическое волокно с двумя решетками Брэгга и в качестве чувствительного элемента. Заглушка выполнена в виде мембраны, на обратной стороне которой выполнены стойки, в которых жестко закреплено оптическое волокно. Первый участок оптического волокна с решеткой Брэгга расположен между стойками, а второй участок оптического волокна с решеткой Брэгга расположен с обратной стороны стойки. Технический результат – повышение точности измерения. 1 з.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к измерительной технике и может быть использовано в различных системах контроля и измерения давления.

Известна конструкция распределенных оптических датчиков давления и температуры [Патент Российской Федерации №2473874, МПК G01L 11/02, опубл. 2013 г.]. Несущий элемент имеет измерительный участок, содержащий полость и, по меньшей мере, одну геометрическую неоднородность. На несущем элементе в области геометрической неоднородности прикреплен оптический датчик и при приложении давления к участку вблизи геометрической неоднородности создается концентрация напряжения на несущем элементе. Датчики подвергаются деформации, вызванными концентрациями напряжения, величина деформации коррелируется с давлением, приложенным к несущему элементу. Вблизи оптического датчика давления может быть также введен оптический датчик температуры. В описанном изобретении в качестве несущего элемента используются цилиндрические чувствительные элементы, такие как шланг или полая труба, имеющие одно или несколько геометрических неоднородностей.

Недостатками технического решения являются:

- низкая чувствительность, обусловленная малой величиной деформации решетки Брэгга ввиду малых размеров концентраторов напряжений, ограниченных габаритными размерами и прочностными свойствами чувствительного элемента;

- низкая технологичность, вызванная сложностью изготовления одинаковых геометрических неровностей концентраторов напряжений из-за невозможности точной ориентации поверхности детали в пространстве при производстве датчиков.

Известен микромеханический волоконно-оптический датчик давления [Патент Российской Федерации №2571448, МПК G01L 11/02, G01L 1/24, G01L 9/04, опубл. 2015 г.], содержащий участки ввода и вывода излучения, а также участок, размещенный в пропускном канале корпуса. При этом пропускной канал включает участок для размещения оптического кабеля параллельно основанию корпуса и выполнен в виде паза с рифленой поверхностью в основании. Волокно в пазу прижато к вершинам выступов рифленой поверхности пластинами и выполнено с решетками Брэгга. Пластины выполнены в виде кремниевых кристаллов, на которых сформированы мембраны одинаковой толщины, при этом первая мембрана имеет один квадратный жесткий центр, размещенный в центре, вторая мембрана - два одинаковых квадратных жестких центра, расположенных вдоль участка оптического волокна на расстоянии по обе стороны от центра мембраны.

Недостатками указанного изобретения являются:

- низкая чувствительность, вызванная малым значением суммарной деформации при многократных изгибах оптического волокна в чувствительном элементе, многократные изгибы приводят к уменьшению значения амплитуды оптического сигнала.

- возможность измерения только гидростатического давления.

Наиболее близким по технической сущности к предлагаемому решению является конструкция волоконно-оптического датчика давления [Патент Российской Федерации №2515116, МПК G01L 1/24, опубл. 2014 г.], выбранного в качестве прототипа. Датчик содержит корпус с двумя трубчатыми элементами, имеющими, по меньшей мере, один заглушенный торец, установленными в корпусе. Второй торец первого трубчатого элемента соединен с корпусом и сообщается с каналом для подвода рабочей среды. Второй торец второго трубчатого элемента выполнен открытым и сообщается с внутренней полостью корпуса, в которую пропущено оптическое волокно с двумя решетками Брэгга. Оптическое волокно участками, содержащими решетки Брэгга, прикреплено непосредственно к наружной цилиндрической поверхности трубчатых элементов так, что одна из решеток расположена на первом трубчатом элементе, что позволяет оказывать на нее влияние одновременно двум воздействующим факторам, таким как деформация и температура. Деформация оптического волокна возникает вследствие деформации стенок трубчатого элемента под действием давления рабочей среды, поступающей через подводящий канал. Вторая решетка Брэгга расположена на втором трубчатом элементе таким образом, что на нее воздействует только температура. Обе решетки Брэгга при воздействии внешних факторов приводят к изменению частоты отраженного от нее оптического сигнала.

Недостатками прототипа являются:

- низкая чувствительность и снижение рабочего диапазона датчика ввиду малой деформации решеток Брэгга из-за отсутствия концентраторов напряжений на чувствительном элементе;

- возможность измерения только гидростатического давления;

- уменьшение амплитуды выходного сигнала, вызванной изгибами оптического волокна, вследствие большого расстояния по отношению к диаметру оптического волокна от входов и выходов датчика до поверхности крепления оптического волокна.

Целью изобретения является повышение точности измерения за счет повышения чувствительности датчика давления, повышение технологичности.

Поставленная цель достигается тем, что в волоконно-оптическом датчике давления, выполненным на основе оптического волокна, содержащим корпус, имеющий канал для подвода рабочей среды, оканчивающийся заглушкой, и оптическое волокно с двумя решетками Брэгга в качестве чувствительного элемента, согласно предлагаемому изобретению, заглушка выполнена в виде мембраны, на обратной стороне которой выполнены стойки, в которых жестко закреплено оптическое волокно, причем первый участок оптического волокна с решеткой Брэгга расположен между стойками, а второй участок оптического волокна с решеткой Брэгга расположен с обратной стороны стойки.

Кроме того, согласно предлагаемому изобретению, оптическое волокно расположено с возможностью последовательного соединения датчиков в распределенную сеть.

Выполнение заглушки в виде мембраны, на обратной стороне которой расположены стойки и в которых жестко закреплено оптическое волокно, а также расположение первого участка оптического волокна с решеткой Брэгга между стойками, а второго участка оптического волокна с решеткой Брэгга с обратной стороны стойки, позволяет деформировать первую решетку Брэгга, что приводит к увеличению рабочего диапазона и чувствительности датчика. Вместе с тем приведенное техническое решение упрощает серийное производство датчиков, за счет того, что мембрана и стойки выполнены из одной заготовки в едином технологическом процессе. Данное техническое решение позволяет измерять абсолютное, избыточное или относительное давление.

Выполнение заглушки в виде мембраны позволяет изготавливать датчики для широкого диапазона измерений с высокой точностью, т.к. мембрана обладает наилучшими метрологическими характеристиками и позволяет повысить чувствительность, линейность и другие физические характеристики воспринимающего элемента. Вместе с тем использование мембраны правильной формы «круг» или «квадрат» позволяет с высокой точностью провести расчет ее размеров: диаметра, площади и толщины, что позволит предварительно оценить механические свойства мембраны, и, как следствие, величину деформации решетки Брэгга и ее чувствительность к воздействующему параметру. Кроме того, мембрана обладает прямолинейностью рабочих поверхностей, что делает ее достаточно технологичной в изготовлении и облегчает расчет ее деформации и прогиба по всей площади.

Выполнение стоек на обратной стороне мембраны позволяет перевести механическое напряжение мембраны в перпендикулярную ей плоскость за счет их перемещения в результате прогиба мембраны под действием измеряемой среды.

Закрепление оптического волокна между стойками позволяет растянуть или сжать оптическое волокно, т.е. деформировать его. А с учетом того, что на данном участке находится первая решетка Брэгга, то деформация оптического волокна приводит к пропорциональному изменению длины волны света в решетке Брэгга от воздействующего давления. Расположение второй решетки Брэгга на участке оптического волокна с обратной стороны стойки позволяет убрать вторую решетку Брэгга из зоны деформации оптического волокна, таким образом, на данную решетку воздействует только температура, соответственно значение длины волны света в данной решетке изменяется лишь от одного фактора.

Предложенное техническое решение вместе с тем позволит последовательно подключать волоконно-оптические датчики, построенные на решетке Брэгга, в распределенную сеть.

Совокупность признаков приводит к повышению точности измерения за счет повышения чувствительности датчика давления, и к повышению технологичности.

На фиг. 1 представлен волоконно-оптический датчик давления, который содержит корпус 1, в виде резьбового штуцера, в котором имеется подводящий канал 14, переходящий в приемную полость 2, и оканчивающийся заглушкой 3, выполненной в виде мембраны. На обратной стороне мембраны расположены стойки 4, в отверстиях 10 которых жестко закреплено оптическое волокно 7 с двумя решетками Брэгга 8 и 9 в качестве чувствительного элемента по средствам зажимов 11, через клеевой композит 12 и винтов 13. Кожух 5, крышка 6 и корпус 1 образуют опорную полость. Первый участок оптического волокна с решеткой Брэгга 8 расположен между стойками 4, а второй участок оптического волокна с решеткой Брэгга 9 расположен с обратной стороны стойки 4. Оптическое волокно 7 расположено с возможностью последовательного соединения датчиков в распределенную сеть.

На фиг. 2 представлен волоконно-оптический датчик давления, корпус 1 которого предназначен для измерения гидростатического давления методом погружения в измеряемую среду и обладающий меньшими габаритно-массовыми характеристиками.

На фиг. 3 представлен график зависимости отношения толщины мембраны к ее диаметру от воздействующего давления измеряемой среды.

Мембрана выполнена из высококачественной пружинной стали 36НХТЮ и обладает хорошими упругими свойствами, толщина и диаметр мембраны выбирается в зависимости от требуемой чувствительности и величины воздействующего давления. Такое соотношение позволяет получить датчики с чувствительностью 1,5-2 нм к верхнему пределу измерения в диапазоне брэгговских длин волн 1520…1590 нм.

Работа устройства.

Измеряемая среда через канал 14 в корпусе 1 поступает в приемную полость 2 и воздействует на мембрану 3. Под воздействием среды происходит прогиб мембраны, который приводит к перемещению в противоположные, относительно друг друга, стороны стоек 4, приводящие к деформации жесткозакрепленного оптического волокна 7 на участке с первой решеткой Брэгга 8. Деформация участка оптического волокна с первой решеткой Брэгга 8 приводит к изменению отраженной длины волны света в решетке Брэгга. По изменению отраженной длины волны света определяется величина давления относительно опорной полости образованной корпусом 1, кожухом 5 и крышкой 6. Величина давления в опорной полости варьируется от вакуума до значения давления, относительно которого необходимо регистрировать давление. Участок второй решетки Брэгга служит для температурной компенсации.

Таким образом, заявляемое техническое решение повышает точность измерения за счет повышения чувствительности датчика давления и технологичность изготовления.


Волоконно-оптический датчик давления
Волоконно-оптический датчик давления
Волоконно-оптический датчик давления
Волоконно-оптический датчик давления
Источник поступления информации: Роспатент

Showing 11-20 of 26 items.
14.06.2018
№218.016.61dd

Датчик давления тензорезистивного типа с тонкопленочной нано- и микроэлектромеханической системой

Использование: для создания датчика давления с тонкопленочной нано- и микроэлектромеханической системой. Сущность изобретения заключается в том, что датчик давления с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС) содержит корпус, установленную в нем НиМЭМС, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002657362
Дата охранного документа: 13.06.2018
09.08.2018
№218.016.7902

Способ получения пьезокерамического материала

Изобретение относится к технологии пьезоэлектрической керамики и может быть использовано при изготовлении керамики на основе ниобата-цирконата-титаната свинца для ультразвуковых устройств, различных пьезодатчиков. Технический результат изобретения - повышение значений пьезоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002663223
Дата охранного документа: 02.08.2018
22.09.2018
№218.016.88cd

Способ защиты углов кремниевых микромеханических структур при анизотропном травлении

Изобретение относится к области приборостроения и может применяться при изготовлении кремниевых микромеханических чувствительных элементов датчиков, таких как акселерометры, датчики угловой скорости, датчики давления. Изобретение обеспечивает повышение метрологических характеристик...
Тип: Изобретение
Номер охранного документа: 0002667327
Дата охранного документа: 18.09.2018
09.11.2018
№218.016.9b5d

Способ получения рельефа в диэлектрической подложке

Изобретение относится к области приборостроения и может быть использовано при изготовлении микромеханических датчиков, таких как акселерометры, датчики угловой скорости, чувствительные элементы которых выполнены из диэлектрического материала. Способ получения рельефа в диэлектрической подложке...
Тип: Изобретение
Номер охранного документа: 0002672034
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9b5f

Способ формирования областей кремния в объеме кремниевой пластины

Изобретение относится к области приборостроения и может быть использовано при изготовлении кремниевых кристаллов микромеханических приборов, таких как акселерометры, гироскопы, датчики угловой скорости. Способ включает выполнение в объеме кремниевой пластины канавок для формирования кремниевых...
Тип: Изобретение
Номер охранного документа: 0002672033
Дата охранного документа: 08.11.2018
19.01.2019
№219.016.b1bb

Пьезокерамический материал

Изобретение относится к области сегнетомягких пьезокерамических материалов, предназначенных для ультразвуковых устройств, работающих в режиме приема, различных пьезодатчиков. Пьезокерамический материал, включающий оксиды свинца, циркония, титана, стронция, висмута и германия, дополнительно...
Тип: Изобретение
Номер охранного документа: 0002677515
Дата охранного документа: 17.01.2019
14.05.2019
№219.017.51c2

Способ получения рельефа в диэлектрической подложке

Изобретение относится к области приборостроения и может быть использовано для получения рельефа в диэлектрических подложках, в частности кварцевых, при изготовлении микромеханических приборов. Техническим результатом изобретения является повышение технологичности изготовления кварцевых...
Тип: Изобретение
Номер охранного документа: 0002687299
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51c5

Интегральный преобразователь давления

Использование: для контроля и (или) измерения давления жидкостей и газов. Сущность изобретения заключается в том, что интегральный преобразователь давления содержит кремниевый кристалл n-типа проводимости с плоской рабочей поверхностью и тонкой квадратной мембраной в центре кристалла с обратной...
Тип: Изобретение
Номер охранного документа: 0002687307
Дата охранного документа: 13.05.2019
01.09.2019
№219.017.c5c3

Способ изготовления интегральных преобразователей

Изобретение относится к области приборостроения и может применяться при изготовлении упругих элементов, используемых в конструкциях кремниевых чувствительных элементов микромеханических датчиков - акселерометров, резонаторов, датчиков угловой скорости. Изобретение обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002698486
Дата охранного документа: 28.08.2019
26.10.2019
№219.017.db0d

Способ создания структуры - кремний на изоляторе

Изобретение относится к области приборостроения и может применяться при изготовлении кремниевых чувствительных элементов микромеханических датчиков, таких как датчики давления, акселерометры, датчики угловой скорости. Целью изобретения является улучшение метрологических характеристик...
Тип: Изобретение
Номер охранного документа: 0002704199
Дата охранного документа: 24.10.2019
Showing 1-8 of 8 items.
20.12.2015
№216.013.9b8f

Микромеханический волоконно-оптический датчик давления

Изобретение относится к измерительной технике. Микромеханический волоконно-оптический датчик давления выполнен на основе оптического волокна, содержащего участки ввода и вывода излучения, а также участок, размещенный в пропускном канале корпуса. При этом пропускной канал включает участок для...
Тип: Изобретение
Номер охранного документа: 0002571448
Дата охранного документа: 20.12.2015
13.01.2017
№217.015.6e53

Способ уменьшения температурной погрешности датчика холла

Изобретение относится к измерительной технике, в частности к средствам измерения электрического тока, и может быть использовано в датчиках Холла. Способ заключается в том, что на первый и второй токовые контакты датчика Холла, который используется для измерения тока, подается постоянный ток, а...
Тип: Изобретение
Номер охранного документа: 0002596905
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7e36

Резонансный преобразователь давления

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений. Сущность: преобразователь давления содержит кремниевую мембрану (1), предназначенную для...
Тип: Изобретение
Номер охранного документа: 0002601221
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f24

Способ изготовления микромеханических упругих элементов

Изобретение относится к приборостроению и может быть использовано при изготовлении кремниевых микромеханических датчиков. Сущность изобретения: в способе изготовления упругих элементов из монокристаллического кремния окисляют плоскую круглую пластину с ориентацией базовой поверхности в...
Тип: Изобретение
Номер охранного документа: 0002601219
Дата охранного документа: 27.10.2016
26.08.2017
№217.015.dcee

Пьезокерамический материал

Изобретение относится к области сегнетомягких пьезокерамических материалов, предназначенных для ультразвуковых устройств, работающих в режиме приема, различных пьезодатчиков, а также для устройств монолитного типа, таких как многослойные пьезоэлектрические актюаторы. Материал, включающий оксиды...
Тип: Изобретение
Номер охранного документа: 0002624473
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e05a

Способ изготовления кристаллов микроэлектромеханических систем

Изобретение относится к области приборостроения и может применяться при изготовлении кремниевых кристаллов микроэлектромеханических систем, используемых в конструкциях микромеханических приборов, таких как акселерометры, гироскопы, датчики угловой скорости. В способе изготовления кристаллов...
Тип: Изобретение
Номер охранного документа: 0002625248
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.edb3

Тонкопленочный датчик давления

Изобретение относится к измерительной технике и может быть использовано в тонкопленочных датчиках давления, предназначенных для измерения давления в агрегатах ракетной и космической техники при воздействии широкого диапазона нестационарных температур и повышенных виброускорений. Заявленный...
Тип: Изобретение
Номер охранного документа: 0002628733
Дата охранного документа: 21.08.2017
26.08.2017
№217.015.ee33

Способ формирования монокристаллического элемента микромеханического устройства

Изобретение относится к области приборостроения и могжет быть использованы для изготовления монокристаллических элементов, таких как струны, упругие элементы, технологические перемычки, используемые в конструкциях микромеханических приборов, например, микромеханических акселерометров,...
Тип: Изобретение
Номер охранного документа: 0002628732
Дата охранного документа: 21.08.2017
+ добавить свой РИД