×
26.08.2017
217.015.eace

Результат интеллектуальной деятельности: Аппарат для обработки газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Аппарат для обработки газа содержит корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой. Корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала. Штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла. Кривизна криволинейных канавок выполнена по линии циклоида как брахистохрона с профилем в виде «ласточкиного хвоста». Криволинейные канавки соединены с круговой канавкой, которая связана с устройством удаления загрязнений. Изобретение позволяет обеспечить постоянство аэродинамического сопротивления аппарата и соответственно нормированные энергозатраты на обработку газа при длительной эксплуатации. 6 ил.

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью.

Известен аппарат для обработки газа (см., патент РФ на полезную модель №62033, МПК В01D 53/18, В01D 46/26, опубл. Бюл. № 9, 27.03.2007), содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, причем штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла.

Недостатком является возрастающая энергоемкость при длительной эксплуатации аппарата для обработки газа, определяемого работой в условиях тепловлажностных воздействий, когда наблюдается интенсивное разрушение вала фильтрующего барабана при наблюдаемом во время вращения переменном контакте как с воздухом повышенного влагосодержания, так и с потоком монодисперсной влаги с зеркала абсорбирующей жидкости, с наличием локальной кавитации, обусловленной воздействием разряжения, возникающего при внезапном расширении на входе обрабатываемого потока в корпусе из штуцера входа газа, имеющего форму суживающегося сопла.

Известен аппарат №152749, МПК В01D53/18, опубл. 20.06.15), содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, причем штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, отличающийся тем, что наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки.

Недостатком является возрастание энергозатрат при поступлении газа, насыщенного мелкодисперсными твердыми и каплеобразными частицами, в корпус через штуцер входа, выполненного в форме суживающегося сопла, и последующем уменьшении выходного его сечения за счет накопления загрязнений как в полостях криволинейных канавок, так и во внутреннем его объеме, что способствует увеличению аэродинамического сопротивления штуцера входа газа.

Технической задачей предлагаемого изобретения является поддержание нормированных энергозатрат процесса обработки газа при длительной эксплуатации, путем устранения возрастания аэродинамического сопротивления штуцера ввода в виде суживающегося сопла при насыщении потока мелкодисперсными каплеобразными и твердыми частицами загрязнений за счет отдаления их и последующего удаления перед поступлением в корпус аппарата для обработки газа.

Технический результат по поддержанию постоянства нормированных энергозатрат достигается тем, что аппарат для обработки газа, содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, при этом кривизна криволинейных канавок выполнена по линии циклоида как брахистохрона с профилем в виде «ласточкиного хвоста», и соединены с круговой канавкой, которая связана с устройством удаления загрязнений.

На фиг. 1 показан аппарат для обработки газа с барабаном, покрытым наноматериалом, на фиг. 2 - разрез А-А фиг.1, на фиг. 3 – внутренняя поверхность суживающегося сопла с криволинейными канавками, на фиг. 4 – штуцер входа с круговой канавкой и устройство удаления загрязнений, на фиг. 5 – кривизна криволинейной канавки по линии циклоида как брахистохрона, на фиг. 6 – профиль полости в виде «ласточкиного хвоста».

Аппарат для обработки газа состоит из корпуса 1 со штуцером входа 2 и выхода 3 газа, входа 4 и выхода 5 абсорбирующей жидкости, внутри которого на валу 6 установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин 7, покрытых пористой пленкой 8, при этом металлические пластины 7 укреплены на валу 6 посредством ребер 9. В корпусе 1 установлены каплеуловители 10 на одном горизонтальном уровне с осью 11 вала 6. Штуцер входа 2 имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки 12. В корпусе 1 расположены застойные зоны 13.

Наружная поверхность 14 вала фиксирующего барабана выполнена с покрытием из наноматериала 15 в виде стеклообразной пленки 16 (см., например, Киш. А. Кинетика электрохимического растворения металлов. М.: Мир, 1990 - 272 с.).

Кривизна криволинейных канавок 12 выполнена по линии циклоида как брахистохрона 17, а профиль полости 18 каждой криволинейной канавки 12 имеет вид «ласточкиного хвоста», и соединены они с круговой канавкой 19, которая расположена у входного отверстия 20 и связана с устройством удаления загрязнений 21.

Аппарат для обработки газа работает следующим образом. При поступлении по штуцеру 2 входа газа потока, насыщенного мелкодисперсными твердыми и каплеобразными частицами, смесь газа и загрязнений, осуществляя движение по криволинейным канавкам 12, закручивается, и загрязнения под действием центробежных сил заполняют полости 18, где коагулируют, укрупняются и, медленно перемещаясь, закупоривают полости 18. А это дополнительно способствует «витанию» частиц загрязнений во внутреннем объеме штуцера 2 входа.

В результате возрастает аэродинамическое сопротивление штуцера 2 входа газа в корпус 1, что приводит к увеличению мощности привода устройства подачи газа на обработку до 20-25% (см., например, Курчавин В.М., Мезенцев А.П. Экономия тепловой и электрической энергии в поршневых компрессорах. Л.: Энергоатомиздат, 1985 – 80 с., ил.).

Для ускорения перемещения частиц загрязнений по криволинейным канавкам 12 кривизна их выполнена по линии циклоида как брахистохрона 17, тогда частица загрязнений из точки А, соответствующей выходу из штуцера 2, перемещается в полости 18 криволинейной канавки 12 по скорейшему спуску, т.е. в кротчайшее время (см., например, Замечательные кривые, стр. 802 Выгодский М. Я. Справочник по высшей математике. М.: Наука, 1981, 416 с., ил.) к точке В на круговой канавке 19, расположенной у входного отверстия штуцера 2. Скоростной спуск частиц загрязнений устраняет коагуляцию и укрупнение их, следовательно, отсутствует закупоривание полостей 18 криволинейных канавок 12. Кроме того, выполнение профиля полости 18 в виде «ласточкиного хвоста» препятствует «выдуванию» вращающимся потоком газа частиц загрязнений из полостей 18 криволинейных канавок 12 во внутренний объем штуцера 2, что способствовало бы дополнительному возрастанию его аэродинамического сопротивления (см., например, стр. 98. Призматические трубы с треугольным сечением, Цой П.В. Методы расчеты отдельных задач тепломассообмена. М.: Энергия, 1971-284 с., ил.).

Следовательно, выполнение кривизны криволинейных канавок 12 по линии циклоида как брахистохрона 17 с профилем полостей 18 в виде «ласточкиного хвоста» обеспечивает заданное аэродинамическое сопротивление штуцера 2 и, как следствие, поддерживает нормированные энергозатраты при эксплуатации аппарата для обработки газа с различной концентрацией в нем мелкодисперсных каплеобразных и твердых загрязнений.

Перенесение обрабатываемого воздуха повышенного влагосодержания в корпусе 1 сопровождается выделением теплоты гидрации, растворения, разбавления и конденсации, обусловливающим суммарный тепловой эффект сорбции(см., например, Коун А.А., Резенфанд Ф.С. Очистка газа. М.: Химмаш, 1998 - 198 с.). Это приводит интенсивному испарению абсорбционной жидкости, в результате осуществляется контакт с нижней стороны наружной 14 поверхности вала 6, находящийся по мере вращения фильтрующего барабана на пути перемещающегося насыщенного монодисперсной влагой испаряющегося потока. При этом налипающая на наружную 14 поверхность монодисперсная влага коагулирует, укрупняется и коррозирует металл вала 6.

Одновременно на выходе штуцера 2 входа газа в виде суживающегося сопла осуществляется внезапное расширение в корпусе 1 обрабатываемого воздуха повышенного влагосодержания со снижением температуры насыщения пара с последующей конденсацией монодисперсной влаги, налипающей на верхнюю сторону внешней 14 поверхности вала 6 (эффект Джоуля-Томсона, см., например, Нащокин В.В. Техническая термодинамика и теплопередача М.: Высш. Школа, 1980 - 469 с.). В результате пузырьки пара, соприкасаясь с верхней стороной внешней 14 поверхности, сжимаются до высоких давлений и быстро распадаются, приводя к разрушению металла вала 6, т.к. наблюдается явление локальной кавитации.

Совместное коррозионное и кавитационное воздействие на наружную 14 поверхность вала 6 приводит к разрушению его с последующим ремонтом или заменой и соответственно внеплановым демонтажным работам, а это, как следствие, способствует возрастанию энергозатрат на процесс очистки газа.

Для устранения разрушающего действия коррозии и кавитации на наружную 14 поверхность вала 6 наносится покрытие, выполненное из наноматериала 15 с образованием стеклоподобной пленки 16. В результате не осуществляется налипания как монодисперсных частиц абсорбционной жидкости с нижней стороны, так и конденсирующихся капелек пара с верхней стороны наружной 14 поверхности вала 6. Следовательно, практически отсутствуют коррозийные и кавитационные воздействия, и вал 6 с фильтрующим барабаном эксплуатируется в заданном временном режиме по условию нормативного ремонта или замены.

Обрабатываемый газ с нормативными параметрами по расходу подают в корпус 1 через штуцер входа 2 с криволинейными канавками 12. В результате перемещения потока обрабатываемого газа от входного отверстия штуцера входа 2, выполненного в форме суживающегося сопла, по продольно расположенным криволинейным канавкам 12 он закручивается и в виде вихревого потока (см., например, Меркулов А.П. Вихревой эффект и его использование в технике. Куйбышев, 1969 - 369 с.) поступает в полость очистки газа корпуса 1 аппарата. Наличие вихревого потока в полости корпуса 1 приводит к образованию в застойных зонах 13 микровихрей, в результате чего в застойных зонах 13 ламинарный режим движения газа в пограничном слое (место контакта внутренней поверхности корпуса 1 и обрабатываемого газа) переходит в турбулентный (см., например, А.Д. Альтшуль и др. Аэродинамика и гидравлика. М.: 1975 - 438 с.). В результате весь объем газа, поступающий в корпус 1, участвует в процессе абсорбционной обработки. Обрабатываемый газ по мере перемещения в корпусе 1 воздействует на металлические пластины 7, перпендикулярно расположенные к направлению движения обрабатываемого газа. Так как металлические пластины 7 укреплены на валу 6, то последние начинают вращаться на оси 11. По мере перемещения металлических пластин 7 из горизонтального положения в вертикальное изменяется площадь контакта абсорбирующей поверхности в виде смоченной абсорбирующей жидкостью пленки 8, и, следовательно, осуществляется переменный по времени процесс абсорбционного отделения от газа вредных загрязнений, определяемых абсорбирующей способностью жидкости, находящейся в полости корпуса 1.

Наибольшая интенсивность абсорбционной очистки газа происходит на пористой пленке 8, когда металлическая пластина 7 занимает верхнее вертикальное положение. По мере вращения вала 6 на оси 11 площадь контакта абсорбирующей поверхности пористой пленки 8 вновь уменьшается и очищенный закрученный газ огибает металлическую пластину 7 в застойной зоне 13, находящейся перед штуцером выхода 3 полости корпуса 1, ламинарный режим в пограничном слое преобразуется в турбулентный, в результате весь объем газа, поступающий в корпус 1, участвует в процессе абсорбционной очистки.

Синусоидальный характер абсорбционной очистки газа от вредных частиц обеспечивает высокое качество очистки с минимизацией затрат абсорбирующей жидкости (см., например, Берман Л.Д. О теплообмене при пленочной конденсации движущегося пара//Теплообмен, температурный режим и гидродинамика при генерации пара.- Л.: Наука, 1981. - С. 93-102).

Истощенная в результате контакта с обрабатываемым газом пористая пленка 8 по мере перемещения металлических пластин 7 погружается в абсорбирующую жидкость, где восстанавливается и, выходя из жидкости, зеркало которой находится ниже горизонтального уровня, соответствующего оси 11 вала 6, на величину, определяемую заполнением внутренней полости корпуса 1, и после каплеуловителей 10 вновь переходит в рабочее состояние для последующего контактного взаимодействия с обрабатываемым потоком газа. Процесс обновления абсорбирующей жидкости в корпусе 1 осуществляется или постоянно путем подачи жидкости через штуцер 5 выхода, или периодически по мере необходимости также через штуцеры входа 4 и выхода 5 жидкости.

При незначительном увеличении расхода обрабатываемого газа, например, по производственной необходимости, но с соблюдением заданной степени абсорбционной обработки осуществляется поворот металлических пластин 7 в ребрах 9 на угол от 15° до 25° (большему значению увеличения расхода соответствует большее значение угла поворота). В этом случае обрабатываемый газ входит через штуцер 2 и, проходя корпус 1, воздействует на абсорбирующую поверхность металлической пластины 7, частично сходя по ней под углом к плоскости вращения, т.е. усилие на металлическую пластину 7 с возрастанием расхода обрабатываемого газа практически не увеличивается, а время его контакта с абсорбирующей поверхностью пористой пленки 8 остается неизменным, и соответственно качество очистки газа от загрязнений не ухудшается. Величина угла поворота металлических пластин 7 на ребрах 9 от 15° до 25° позволяет при увеличении расхода обрабатываемого газа до 20% поддерживать заданное качество очистки путем постоянной скорости вращения вала 6 (в пределах изменения расхода обрабатываемого газа от нормативного до увеличенного на 20%), т.е. достигается равенство нахождения по времени металлических пластин 7 с пористой пленкой 8 как в режиме контакта с обрабатываемым газом, так и с абсорбирующей жидкостью.

Заполнение корпуса 1 абсорбирующей жидкостью обусловлено необходимостью стекания с пористых пленок 8 абсорбирующей жидкости до перехода металлических пластин 7 в горизонтальное положение, и расположение каплеуловителей 10 на одном горизонтальном уровне с осью 11 вала 6 устраняет возможность захвата обрабатываемым потоком газа каплеобразующих частиц с зеркала абсорбирующей жидкости.

Оригинальность конструктивного решения заключается в том, что при выполнении кривизны криволинейных канавок по линии циклоида как брахистохрона с профилем в виде «ласточкиного хвоста» в штуцере ввода газа, насыщенного мелкодисперсными загрязнениями, обеспечивает постоянство аэродинамического сопротивления аппарата и соответственно нормированные энергозатраты на обработку газа при длительной эксплуатации.

Аппарат для обработки газа, содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, отличающийся тем, что кривизна криволинейных канавок выполнена по линии циклоида как брахистохрона с профилем в виде «ласточкиного хвоста» и канавки соединены с круговой канавкой, которая связана с устройством удаления загрязнений.
Аппарат для обработки газа
Источник поступления информации: Роспатент

Showing 321-330 of 422 items.
02.10.2019
№219.017.cdf2

Устройство для пневматического транспортирования сыпучего материала

Изобретение относится к пневматическому транспортированию сыпучего материала и может быть использовано в строительной, металлургической, химической и других отраслях промышленности. Устройство для пневматического транспортирования сыпучего материала содержит расходный бункер с аэрирующим...
Тип: Изобретение
Номер охранного документа: 0002700648
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cf5d

Теплотрубная матрешка

Изобретение относится к энергомашиностроению и может быть использовано для транспортировки тепловой энергии по тепловым трубам. Теплотрубная матрешка включает в себя n тепловых труб, вставленных друг в друга, каждая из которых состоит из цилиндрического корпуса, заглушенного с одного торца...
Тип: Изобретение
Номер охранного документа: 0002700811
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d090

Система оборотного водоснабжения

Изобретение относится к области энергетики. Система оборотного водоснабжения содержит теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором,...
Тип: Изобретение
Номер охранного документа: 0002700988
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.d13c

Газораспределительная станция

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Технической задачей предлагаемого изобретения является обеспечение эффективной эксплуатации газораспределительной станции при поддержании нормированных параметров по...
Тип: Изобретение
Номер охранного документа: 0002700842
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d154

Способ утилизации полимерных компонентов коммунальных и промышленных отходов и устройство для его осуществления

Изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации полимерных компонентов коммунальных и промышленных отходов, а именно производства элементов строительных конструкций. Техническим результатом является повышение надежности и эффективности...
Тип: Изобретение
Номер охранного документа: 0002700862
Дата охранного документа: 23.09.2019
03.10.2019
№219.017.d1c6

Устройство для акустического контроля за состоянием пчелиной семьи

Изобретение относится к области пчеловодства и может найти применение при практической работе на индивидуальных и коллективных пасеках. Устройство для акустического контроля за состоянием пчелиной семьи содержит внешний съёмный конденсаторный микрофон с электропитанием, источник питания,...
Тип: Изобретение
Номер охранного документа: 0002701812
Дата охранного документа: 01.10.2019
03.10.2019
№219.017.d1cd

Трубчатые наноструктуры оксида меди (ii) и электрохимический способ их получения

Использование: для производства наноструктурированных порошков трубчатых наночастиц оксида меди (II), применяемых в качестве катализаторов горения углеродных топливных (энергонасыщенных) составов. Сущность изобретения заключается в том, что трубчатые наноструктуры оксида меди (II) имеют форму и...
Тип: Изобретение
Номер охранного документа: 0002701786
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d271

Слоевой пластинчатый термоэлектрогенератор

Изобретение относится к области теплоэнергетики. Изобретение представляет собой слоевой пластинчатый термоэлектрогенератор, содержащий термоэлектрическую секцию, состоящую из термоэлектрических преобразователей, выполненных из соединенных между собой у кромок пластин металлов М1 и М2, крайние...
Тип: Изобретение
Номер охранного документа: 0002701883
Дата охранного документа: 02.10.2019
05.10.2019
№219.017.d298

Санитарная приставка для теплогенераторов систем автономного теплоснабжения

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов теплогенераторов крышных котельных и систем квартирного отопления от вредных примесей. Технический результат: повышение надежности и эффективности санитарной приставки. Санитарная приставка для...
Тип: Изобретение
Номер охранного документа: 0002702043
Дата охранного документа: 03.10.2019
05.10.2019
№219.017.d2a3

Триггерный синхронный r-s триггер на полевых транзисторах

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Оно, в частности, может быть применено в блоках вычислительной техники, выполненных с использованием R-S триггеров. Технический результат: повышение нагрузочной способности триггерного синхронного R-S триггера...
Тип: Изобретение
Номер охранного документа: 0002702051
Дата охранного документа: 03.10.2019
Showing 231-234 of 234 items.
27.06.2020
№220.018.2be7

Система гелиотеплохладоснабжения

Технической задачей предлагаемого изобретения является энергосберегающее обеспечение комфортных параметров воздуха в малоэтажных зданиях при длительной эксплуатации в изменяющихся погодно-климатических, в том числе и суточных, воздействиях окружающей среды, путем снижения тепловых потерь...
Тип: Изобретение
Номер охранного документа: 0002724642
Дата охранного документа: 25.06.2020
20.05.2023
№223.018.65a7

Теплица с полной утилизацией сбросных газов

Предлагаемое изобретение относится к теплоэнергетике и сельскому хозяйству, в частности к теплице с полной утилизацией сбросных газов, содержащей зону обработки, соединенную с транзитным газоходом и состоящую из соединенных последовательно через отводной газоход, вентилятора, камеры окисления,...
Тип: Изобретение
Номер охранного документа: 0002748056
Дата охранного документа: 19.05.2021
21.05.2023
№223.018.68f3

Универсальная термоэлектрическая приставка

Изобретение относится к теплоэнергетике. Технический результат - повышение надежности и эффективности универсальной термоэлектрической приставки. Для этого предложена универсальная термоэлектрическая приставка, включающая вертикальный отбортованный с боковых сторон контактный лист, выполненный...
Тип: Изобретение
Номер охранного документа: 0002794747
Дата охранного документа: 24.04.2023
19.06.2023
№223.018.8228

Устройство для измерения прочности бетона

Изобретение предназначено для измерения прочности бетона и содержит ударник и пьезоэлектрический датчик, электроды которого подключены к входам фильтра высоких частот, выход которого соединен со входами измерителя частоты и измерителя коэффициента затухания, снабжено пригрузом изменяемой массы,...
Тип: Изобретение
Номер охранного документа: 0002797126
Дата охранного документа: 31.05.2023
+ добавить свой РИД