×
26.08.2017
217.015.e9ff

Результат интеллектуальной деятельности: Способ формирования массива нанопроволок на ступенчатой поверхности CuSi

Вид РИД

Изобретение

Аннотация: Использование: для создания массива упорядоченных ферромагнитных нанопроволок на ступенчатой поверхности CuSi с буферным слоем меди. Сущность изобретения заключается в том, что в условиях сверхвысокого вакуума на предварительно сформированной ступенчатой поверхности силицида меди формируют ровные монокристаллические нанопроволоки заданной ширины осаждением металла под малыми углами наклона в интервале 10°÷30° к плоскости подложки при толщине покрытия металла, равной 20 нм. Технический результат: обеспечение возможности создания массива упорядоченных металлических нанопроволок с заданной геометрией и блочной монокристаллической структурой. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области нанотехнологий, а именно к способу создания массива упорядоченных металлических нанопроволок на ступенчатой поверхности силицида меди (Cu2Si).

Уникальные электрические и механические свойства нанопроволок создают предпосылки для их использования в электронных и электромеханических приборах, а также в качестве элементов новых композитных материалов и биосенсоров [1]. Магнитные нанопроволоки находят широкое применение при создании устройств спинтроники; практический интерес к магнитным нанопроволокам обусловлен проявлением в таких структурах спиновых эффектов [2].

В настоящее время существуют несколько способов роста металлических нанопроволок с помощью специально созданных технологических условий. В лабораториях нанопроволоки чаще всего получают методом эпитаксии, когда кристаллизация вещества происходит только в одном направлении.

Известен способ формирования проводящих нанопроволок меди на поверхности полупроводниковых подложек [3, 4]. Для этого медь осаждают на поверхность кремния Si(111) с формированием буферного слоя силицида меди (Cu2Si) моноатомной толщины при температуре 500°C в условиях сверхвысокого вакуума, после чего при температуре 20°C на атомных ступенях поверхности буферного слоя осаждают не менее 10 слоев меди, которые формируют нанопроволоки эпитаксиальной меди, ориентированные вдоль атомных ступеней подложки.

Недостатком данного метода является то, что получаемые проволоки состоят из наноостровков меди, которые срастаются между собой и содержат большое число дефектов. Нанопроволоки имеют неровные границы, их высота составляет 1-2 нм; это может привести к высоким значениям плотности тока и локальному нагреву в дефектных областях проволок и их последующему разрыву.

Известен способ получения нанопроволок металлов на твердых подложках на основе использования литографической полимерной маски. Окна для осаждения металла получают с помощью атомно-силового микроскопа методом индентирования [5]. По данной методике после формирования на поверхности образца полимерной пленки с окнами нужного размера и формы (литографической маски) на образец напыляется слой металла, толщина которого меньше толщины пленки, после чего маска химически растворяется. При этом на поверхности подложки остается только металл, осажденный через отверстия в маске. Данным методом были приготовлены проволоки Ni на поверхности SiO2 с минимальной шириной 60 нм, толщиной от 6 до 20 нм и длиной до 20 мкм.

Недостаток метода состоит в том, что отсутствует возможность вырастить монокристаллические нанопроволоки металлов с низким содержанием дефектов по сравнению с поликристаллическими наноматериалами.

Наиболее близким к заявляемому техническому решению является способ изготовления массива кобальтовых нанопроволок, выбранный за прототип по существенным признакам и достигаемому результату [6, 7]. Сущность работ состоит в получении массива кобальтовых нанопроволок на оксидированной вицинальной поверхности Si(111), изучении их структуры и магнитных свойств. Массивы кобальтовых нанопроволок шириной (25, 70) нм и толщиной (3 и 1,2) нм изготавливают осаждая кобальт под углом наклона (3°, 2,5°) к плоскости подложки на ступенчатую поверхность оксидированного Si(111) при комнатной температуре. Период и ширина террас ступеней на поверхности Si(111) составляет 110 нм и 85 нм соответственно. Перед осаждением кобальта ступенчатую поверхность Si(111) оксидируют в атмосфере кислорода при температуре 830°C в течение 15 ч. Толщина окисла составляет 110 нм. Показана сильная зависимость толщины нанопроволок от угла наклона осаждаемого материала в пределах 0,5°, что лежит в пределах ошибки измерения. Структура сформированных нанопроволок кобальта является поликристаллической.

Недостатком данного способа является то, что вследствие поликристаллической структуры получаемые кобальтовые нанопроволоки содержат большое количество структурных дефектов (например, межзеренных границ) в отличие от монокристаллических проволок.

Задачей, поставленной и решаемой заявляемым способом, является создание массива упорядоченных металлических нанопроволок с заданной геометрией и блочной монокристаллической структурой на ступенчатой поверхности силицида меди Cu2Si.

Технический результат, достигаемый при реализации предлагаемого изобретения, - возможность контролируемого формирования на ступенчатой поверхности Cu2Si упорядоченных массивов металлических нанопроволок толщиной 12±2 нм с блочной монокристаллической структурой.

Поставленная задача решается способом формирования массива упорядоченных металлических нанопроволок, включающим осаждение в условиях сверхвысокого вакуума металла (Me) (кобальта, никеля, пермаллоя, меди, золота, железа) под малыми углами наклона 10°÷30° к плоскости подложки на ступенчатую поверхность подложки Cu2Si, при скорости осаждения Me 0,3±0,05 нм/мин и толщине покрытия 20±0,05 нм. Толщина покрытия - толщина осажденного материала, который регистрирует кварцевый измеритель толщин.

При этом, если осаждать Me под углом наклона 10° к плоскости ступенчатой поверхности подложки, формируют упорядоченный массив блочных монокристаллических нанопроволок шириной 35±2 нм.

При осаждении Me под углом наклона 20° к плоскости ступенчатой поверхности подложки формируют упорядоченный массив блочных монокристаллических нанопроволок шириной 45±2 нм.

При осаждении Me под углом наклона 30° к плоскости ступенчатой поверхности подложки формируют упорядоченный массив блочных монокристаллических нанопроволок шириной 65±2 нм.

Отличительный признак заявляемого способа формирования массива металлических нанопроволок на ступенчатой поверхности Cu2Si:

- формируют массив упорядоченных нанопроволок, осаждая Me под малым углом наклона в интервале (10°÷30°) к плоскости предварительно подготовленной ступенчатой поверхности подложки Cu2Si.

Предлагаемый способ поясняется схемой и изображениями, приведенными на фиг. 1-3:

- на фиг. 1 приведена схема, на которой показана геометрия расположения подложки относительно источника осаждения в заявляемом способе формирования массива металлических нанопроволок на ступенчатой поверхности Cu2Si: (а) - ступенчатая поверхность Cu2Si; (б) - осаждение Me на ступенчатую поверхность Cu2Si под выбранным углом наклона;

- на фиг. 2 приведены результаты исследования поверхности подложки с металлическими нанопроволоками, сформированными при осаждении кобальта под углом наклона 10° к плоскости ступенчатой поверхности Cu2Si: (а) - изображение, полученное методом дифракции быстрых электронов (ДБЭ); (б) - изображение, полученное методом сканирующей электронной микроскопии (СЭМ);

- на фиг. 3 приведены результаты исследования поверхности подложки с металлическими нанопроволоками, сформированными при осаждении кобальта под углом наклона 20° к плоскости ступенчатой поверхности Cu2Si: (а) - изображение, полученное методом дифракции быстрых электронов (ДБЭ); (б) - изображение, полученное методом сканирующей электронной микроскопии (СЭМ).

Заявляемый способ формирования массива упорядоченных металлических нанопроволок на поверхности подложки Si(111), покрытой слоем силицида меди, реализуют в два этапа. Схематично они показаны на фиг. 1(a) - получение ступенчатой поверхности Cu2Si; (б) - формирование массива упорядоченных металлических нанопроволок методом осаждения под разными углами к плоскости ступенчатой поверхности Cu2Si.

На первом этапе подготавливают ступенчатую структуру поверхности Cu2Si. Формирование идеально ровных ступеней высотой 12±2 нм и шириной 150±50 нм осуществляют по методике, разработанной и описанной авторами заявляемого изобретения - патент на изобретение «Способ формирования упорядоченных структур на поверхности полупроводниковых подложек» №2593633 (заявка №2015118114 от 14.05.2015).

На втором этапе под малым углом наклона (10°÷30°) к плоскости подложки на ступенчатую поверхность Cu2Si осаждают Me.

При этом, если осаждать Me под углом наклона 10° к плоскости ступенчатой поверхности подложки, формируют упруго напряженный упорядоченный массив металлических нанопроволок шириной 35±2 нм с блочной монокристаллической структурой (фиг. 2, осаждаемый Me-Co) при толщине покрытия Co - 20 нм. Экспериментальным путем установлено, что осаждение Me под малыми углами наклона (10°÷30°) на ступенчатую поверхность подложки Cu2Si приводит к формированию монокристаллических нанопроволок.

При этом период расположения металлических нанопроволок повторяет ступенчатую структуру поверхности Cu2Si. Нанопроволоки образованы из сросшихся между собой плоских островков Me.

Пример 1 демонстрирует, что рост эпитаксиальных нанопроволок Co происходит вдоль направления ступеней и преимущественно совпадает с кристаллографическим направлением подложки Si(111) типа <110>.

Осаждение Me под углом наклона 20° к плоскости ступенчатой поверхности подложки приводит к формированию упруго напряженного упорядоченного массива монокристаллических нанопроволок шириной 45±2 нм с блочной структурой. Период расположения нанопроволок повторяет ступенчатую структуру поверхности Cu2Si. Рост эпитаксиальных нанопроволок наблюдается строго вдоль края ступеней Cu2Si и совпадает с кристаллографическим направлением подложки Si(111) типа <110>, что подтверждается экспериментальным путем в случае осаждения кобальта с толщиной покрытия 20 нм /пример 2, фиг. 3/.

Если осаждать Me под углом наклона 30° к плоскости ступенчатой поверхности подложки, то формируется упруго напряженный упорядоченный массив монокристаллических нанопроволок шириной 65±2 нм с блочной кристаллической структурой.

Осаждение Me под углами наклона в интервале (10°÷30°) на ступенчатую поверхность Cu2Si приводит к формированию ровных упорядоченных монокристаллических нанопроволок.

Осаждение Me под углами наклона меньше 10° на ступенчатую поверхность Cu2Si приводит к формированию извилистых, шероховатых и структурно не сплошных монокристаллических нанопроволок.

При осаждении Me под углами наклона больше 30° на ступенчатую поверхность Cu2Si происходит формирование не упорядоченных и местами сросшихся между собой монокристаллических нанопроволок.

Сопоставительный анализ существенных признаков заявляемого способа с существенными признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки заявляемого способа формирования массива нанопроволок на ступенчатой поверхности кремния Si(111), покрытой слоем силицида меди, в совокупности с известными существенными признаками, обеспечивают заявляемому техническому решению новое техническое свойство, заключающееся в возможности, изменяя угол осаждения металла к плоскости поверхности ступенчатой подложки, формировать посредством самоорганизации структуры в виде ровных упорядоченных монокристаллических нанопроволок, имеющих заданные размеры, зависящие от технологических параметров. Упорядоченный массив металлических нанопроволок, получаемых заявляемым способом, имеет высоту, равную 12±2 нм, и протяженность 3 мм, что соответствует высоте ступеней и ширине поверхности подложки. Массив упорядоченных блочных монокристаллических нанопроволок Co имеет гексагональную плотноупакованную решетку с гладкими краями, что является существенным преимуществом по сравнению с известными образцами в случае их последующего практического применения.

На основании изложенного можно заключить, что совокупность существенных признаков заявляемого изобретения имеет причинно-следственную связь с достигаемым техническим результатом.

Опытным путем установлено, что заявляемый способ формирования массива упорядоченных металлических нанопроволок на ступенчатой поверхности Cu2Si позволяет управлять шириной нанопроволок, ориентированных вдоль направления типа <110> Si. В процессе осаждения Me качество покрытий контролируют методом дифракции быстрых электронов (ДБЭ). Морфологию и геометрические параметры нанопроволок (ширину, высоту и протяженность) определяют с помощью методов сканирующей электронной микроскопии и атомной силовой микроскопии.

Возможность осуществления предлагаемого изобретения подтверждается ниже приведенными примерами.

Пример 1. Формирование массива монокристаллических нанопроволок с блочной кристаллической структурой при осаждении Co под углом наклона 10° к плоскости ступенчатой поверхности подложки

На первом этапе формируют ступенчатую структуру поверхности Cu2Si. Формирование идеально ровных ступеней высотой 12±2 нм и шириной 150±50 нм осуществляют по методике, описанной в патенте на изобретение №2593633 (заявка №2015118114 от 14.05.2015).

На втором этапе осаждают кобальт из эффузионной ячейки со скорость осаждения Co 0,3 нм/мин методом молекулярно-лучевой эпитаксии в условиях сверхвысокого вакуума (5×10-10 Торр) /фиг. 1(б)/. Толщину покрытий контролируют кварцевым измерителем толщин фирмы «Омикрон»; калибровку кварцевого датчика осуществляют посредством методов ДБЭ и СТМ. Структуру сформированных слоев кобальта исследуют в вакууме методом ДБЭ с энергией электронного пучка 15 кэВ и СТМ (напряжение ±2,0 В, туннельный ток 1 нА) производства фирмы «Омикрон». Морфологию поверхности исследуют на воздухе методами сканирующей электронной микроскопии и атомной силовой микроскопии.

В результате осаждения Co под углом наклона 10° к плоскости ступенчатой поверхности подложки формируют упорядоченный массив нанопроволок шириной 35±2 нм, высотой 12±2 нм при толщине покрытия Co - 20 нм. На фиг. 2,а показано изображение, полученное методом дифракции быстрых электронов от кобальтовых нанопроволок. После осаждения кобальта на картинах дифракции наблюдаются размытые рефлексы на просвет от нанопроволок кобальта. Картина дифракции с рефлексами в виде пятен получается от отдельных монокристаллических блоков с малым углом разориентации в плоскости подложки. Теоретический расчет упругих напряжений по картинам дифракции от кобальтовых нанопроволок показывает, что деформация монокристаллических нанопроволок составляет 2%. Это доказывает, что монокристаллический массив нанопроволок Co имеет блочную кристаллическую структуру с упругими напряжениями. Повторяемость дифракционной картины наблюдается через 180 градусов. Расшифровка дифракционной картины от Co нанопроволок показывает, что Co имеет гексагональную плотноупакованную (ГПУ) решетку и ориентируется плоскостью (-12-10):

Таким образом, кристаллографическая ось [0001] в ГПУ решетке Co ориентирована вдоль длинной стороны нанопроволок. Нанопроволоки лежат на поверхности террасы слоя Cu2Si боковой гранью.

На фиг. 2,б показано изображение СЭМ поверхности, содержащей эпитаксиальные нанопроволоки Co. Период расположения нанопроволок повторяет ступенчатую структуру поверхности подложки Cu2Si. Нанопроволоки образованы из сросшихся между собой плоских островков кобальта. Рост эпитаксиальных нанопроволок Co наблюдается вдоль направления ступеней и преимущественно совпадает с кристаллографическим направлением подложки Si(111) типа <110>.

Пример 2. Формирование упорядоченного массива нанопроволок при осаждении Co под углом наклона 20° к плоскости ступенчатой поверхности подложки

Пример 2 проводят по примеру 1, но кобальт осаждают под углом наклона 20° к плоскости ступенчатой поверхности подложки. В результате формируют упорядоченный массив напряженных блочных монокристаллических нанопроволок шириной 45±2 нм и высотой 12±2 нм. Толщина покрытия Co составляет 20 нм. Структура кобальтовых нанопроволок такая же, как описано в примере 1.

На фиг. 3(б) показано изображение СЭМ поверхности, содержащей монокристаллические нанопроволоки Co. Период расположения нанопроволок повторяет ступенчатую структуру поверхности подложки Cu2Si. Рост эпитаксиальных нанопроволок Со наблюдается строго вдоль края ступеней Cu2Si и совпадает с кристаллографическим направлением подложки Si(111) типа <110>.

Таким образом, экспериментальным путем доказана возможность формирования массива упорядоченных блочных монокристаллических металлических нанопроволок (Me - кобальт, никель, пермаллой, медь, золото, железо) на ступенчатой поверхности Cu2Si в результате осаждения Me под малыми углами наклона (10°÷30°) к плоскости ступенчатой подложки силицида меди.

Разработанный способ формирования массива металлических нанопроволок является перспективным для создания наноструктур на ступенчатой поверхности Cu2Si требуемых размеров, что позволит изготавливать твердотельные электронные приборы и их компоненты, например шины данных для передачи электрического сигнала в наноэлектронике или спин поляризованных фильтров в устройствах спинтроники.

Литература

1. К. Богданов. Нанотехнологий: когда размер имеет значение // Ж. Квант. 3 (2008), 6-12.

2. В.М. Анищик, В.Е. Борисенко, С.А. Жданок, Н.К. Толочко, В.М. Федосюк. Наноматериалы и Нанотехнологии // Мн.: БГУ (2008), 375 с.

3. A.V. Zotov, D.V. Gruznev, О.A. Utas, V.G. Kotlyar, A.A. Saranin. Multi-mode growth in Cu/Si(111) system: Magic nanoclustering, layer-by-layer epitaxy and nanowire formation // Surface Science 602 (2008), 391-398.

4. Патент Российской Федерации №2359356, опубл. 20.06.2009 г.

5. Д.А. Бизяев, А.А. Бухараев, Д.В. Лебедев, Н.И. Нургазизов, Т.Ф. Ханипов. Наночастицы и нанопроволоки никеля, полученные с помощью сканирующей зондовой литографии методом точечного индентирования // Письма в ЖТФ, 38, 14 (2012), 8-15.

6. S.K. Arora, В.J. O'Dowd, С. Nistor, Т. Balashov, В. Ballesteros, A. Lodi Rizzini, J.J. Kavich, S.S. Dhesi, P. Gambardella and I.V. Shvets. Structural and magnetic properties of planar nanowire arrays of Co grown on oxidized vicinal silicon (111) templates // J. Appl. Phys. 111 (2012) 07E342-1-07E342-3.

7. S.K. Arora, B.J. O'Dowd, B. Ballesteros, P. Gambardella and I.V. Shvets. Magnetic properties of planar nanowire arrays of Co fabricated on oxidized step-bunched silicon templates // Nanotechnology 23 (2012) 235702-1-235702-7.


Способ формирования массива нанопроволок на ступенчатой поверхности CuSi
Способ формирования массива нанопроволок на ступенчатой поверхности CuSi
Способ формирования массива нанопроволок на ступенчатой поверхности CuSi
Источник поступления информации: Роспатент

Showing 51-60 of 176 items.
19.01.2018
№218.016.0b00

Винторулевое устройство

Изобретение относится к судостроению и касается конструирования винторулевых устройств. Винторулевое устройство содержит гребной винт, руль и спрямляющие лопатки. Входные кромки пера руля заострены, при этом верхняя и нижняя части входной кромки пера руля отогнуты в разные стороны, а ее средняя...
Тип: Изобретение
Номер охранного документа: 0002632351
Дата охранного документа: 04.10.2017
20.01.2018
№218.016.1181

Тесто для производства хлебобулочных изделий

Изобретение относится к пищевой промышленности. Тесто для производства хлебобулочных изделий содержит закваску на основе большой густой ржаной закваски (БГРЗ), муки ржаной и воды, полуфабрикат из растительного сырья и воды, муку пшеничную, подсластитель и соль. Соотношение компонентов в...
Тип: Изобретение
Номер охранного документа: 0002634003
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.11bf

Способ получения антифрикционного покрытия на контактирующих трущихся поверхностях

Изобретение относится к способу получения антифрикционного покрытия на контактирующих трущихся поверхностях и может быть использовано в машиностроении для обработки пар трения, а также при эксплуатации механизмов и машин для продления межремонтного ресурса или во время...
Тип: Изобретение
Номер охранного документа: 0002634100
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.11d0

Способ производства хлебобулочных изделий

Изобретение относится к пищевой промышленности, в частности к хлебопекарной отрасли. Способ производства хлебобулочных изделий включает приготовление закваски на основе большой густой ржаной закваски (БГРЗ), муки ржаной и воды, приготовление полуфабриката на основе растительного сырья и воды,...
Тип: Изобретение
Номер охранного документа: 0002634002
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.11fe

Морская ледостойкая платформа

Изобретение относится к морским мобильным платформам. Морская ледостойкая платформа содержит плиту основания, выполненную с возможностью регулирования ее плавучести, соосно сопряженную с опорной оболочкой, на которой установлено верхнее строение с возможностью вертикального перемещения вдоль...
Тип: Изобретение
Номер охранного документа: 0002634143
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1cc1

Способ определения удельной энергии механического разрушения льда

Изобретение относится к области исследования механических свойств материалов, а точнее к способам (нагружения материала образца) определения энергетических характеристик разрушения льда. Сущность изобретения: осуществляют изготовление образца в виде осесимметричного тела с параллельными верхней...
Тип: Изобретение
Номер охранного документа: 0002640452
Дата охранного документа: 09.01.2018
13.02.2018
№218.016.2091

Способ резки заготовки, выполненной из магния или магниевого сплава

Способ резки материалов лазерным лучом может быть использован в машиностроении для резки магниевых сплавов. В процессе резки из области реза удаляют продукты разрушения посредством газа. В качестве технологического газа используют инертный газ высокой чистоты. Технологический газ подводят...
Тип: Изобретение
Номер охранного документа: 0002641443
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.209b

Способ измерения абсолютного положения конечного звена многозвенного механизма промышленного робота

Изобретение относится к способам управления положением конечного звена многозвенного механизма промышленного робота. При осуществлении способа используют две неподвижные видеокамеры и вычисляют положение звена механизма с использованием уравнений обратной кинематики. При этом за пределами...
Тип: Изобретение
Номер охранного документа: 0002641604
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20c3

Полуфабрикат мясорастительный рубленый

Изобретение относится к пищевой промышленности, в частности к производству комбинированных продуктов, включающих сырье животного и растительного происхождения, и может быть использовано для приготовления полуфабрикатов мясорастительных рубленых. Полуфабрикат содержит мясо котлетное говяжье и...
Тип: Изобретение
Номер охранного документа: 0002641529
Дата охранного документа: 18.01.2018
17.02.2018
№218.016.2bd2

Катушка дифференцирующего индукционного преобразователя тока

Изобретение относится к электротехнике, а именно к конструкции дифференцирующих индукционных преобразователей тока (ДИПТ), и предназначено для измерения тока в проводниках высоковольтных электроэнергетических систем. Катушка охватывает изолятор ввода в какое-либо электрооборудование:...
Тип: Изобретение
Номер охранного документа: 0002643160
Дата охранного документа: 31.01.2018
Showing 51-60 of 66 items.
19.01.2018
№218.016.0b00

Винторулевое устройство

Изобретение относится к судостроению и касается конструирования винторулевых устройств. Винторулевое устройство содержит гребной винт, руль и спрямляющие лопатки. Входные кромки пера руля заострены, при этом верхняя и нижняя части входной кромки пера руля отогнуты в разные стороны, а ее средняя...
Тип: Изобретение
Номер охранного документа: 0002632351
Дата охранного документа: 04.10.2017
20.01.2018
№218.016.1181

Тесто для производства хлебобулочных изделий

Изобретение относится к пищевой промышленности. Тесто для производства хлебобулочных изделий содержит закваску на основе большой густой ржаной закваски (БГРЗ), муки ржаной и воды, полуфабрикат из растительного сырья и воды, муку пшеничную, подсластитель и соль. Соотношение компонентов в...
Тип: Изобретение
Номер охранного документа: 0002634003
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.11bf

Способ получения антифрикционного покрытия на контактирующих трущихся поверхностях

Изобретение относится к способу получения антифрикционного покрытия на контактирующих трущихся поверхностях и может быть использовано в машиностроении для обработки пар трения, а также при эксплуатации механизмов и машин для продления межремонтного ресурса или во время...
Тип: Изобретение
Номер охранного документа: 0002634100
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.11d0

Способ производства хлебобулочных изделий

Изобретение относится к пищевой промышленности, в частности к хлебопекарной отрасли. Способ производства хлебобулочных изделий включает приготовление закваски на основе большой густой ржаной закваски (БГРЗ), муки ржаной и воды, приготовление полуфабриката на основе растительного сырья и воды,...
Тип: Изобретение
Номер охранного документа: 0002634002
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.11fe

Морская ледостойкая платформа

Изобретение относится к морским мобильным платформам. Морская ледостойкая платформа содержит плиту основания, выполненную с возможностью регулирования ее плавучести, соосно сопряженную с опорной оболочкой, на которой установлено верхнее строение с возможностью вертикального перемещения вдоль...
Тип: Изобретение
Номер охранного документа: 0002634143
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1cc1

Способ определения удельной энергии механического разрушения льда

Изобретение относится к области исследования механических свойств материалов, а точнее к способам (нагружения материала образца) определения энергетических характеристик разрушения льда. Сущность изобретения: осуществляют изготовление образца в виде осесимметричного тела с параллельными верхней...
Тип: Изобретение
Номер охранного документа: 0002640452
Дата охранного документа: 09.01.2018
13.02.2018
№218.016.2091

Способ резки заготовки, выполненной из магния или магниевого сплава

Способ резки материалов лазерным лучом может быть использован в машиностроении для резки магниевых сплавов. В процессе резки из области реза удаляют продукты разрушения посредством газа. В качестве технологического газа используют инертный газ высокой чистоты. Технологический газ подводят...
Тип: Изобретение
Номер охранного документа: 0002641443
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.209b

Способ измерения абсолютного положения конечного звена многозвенного механизма промышленного робота

Изобретение относится к способам управления положением конечного звена многозвенного механизма промышленного робота. При осуществлении способа используют две неподвижные видеокамеры и вычисляют положение звена механизма с использованием уравнений обратной кинематики. При этом за пределами...
Тип: Изобретение
Номер охранного документа: 0002641604
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20c3

Полуфабрикат мясорастительный рубленый

Изобретение относится к пищевой промышленности, в частности к производству комбинированных продуктов, включающих сырье животного и растительного происхождения, и может быть использовано для приготовления полуфабрикатов мясорастительных рубленых. Полуфабрикат содержит мясо котлетное говяжье и...
Тип: Изобретение
Номер охранного документа: 0002641529
Дата охранного документа: 18.01.2018
17.02.2018
№218.016.2bd2

Катушка дифференцирующего индукционного преобразователя тока

Изобретение относится к электротехнике, а именно к конструкции дифференцирующих индукционных преобразователей тока (ДИПТ), и предназначено для измерения тока в проводниках высоковольтных электроэнергетических систем. Катушка охватывает изолятор ввода в какое-либо электрооборудование:...
Тип: Изобретение
Номер охранного документа: 0002643160
Дата охранного документа: 31.01.2018
+ добавить свой РИД