×
26.08.2017
217.015.e97d

Результат интеллектуальной деятельности: СПОСОБ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА К ТРАНСПОРТУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту конденсатсодержащего пластового газа. Способ подготовки конденсатсодержащего пластового газа к транспорту на базовой установке трехступенчатой сепарацией включает подачу газового потока на первичную сепарацию, компримирование газового потока и охлаждение его окружающим воздухом, охлаждение газового потока. Газовый поток подают на вторичную сепарацию, вторичное охлаждение газового потока, понижение давления газового потока с охлаждением, затем на окончательную сепарацию. Газ сепарации нагревают газовым потоком после вторичной сепарации, понижают давление газа сепарации с охлаждением, нагревают газ сепарации газовым потоком после первичной сепарации. Газ сепарации выводят из базовой установки, подают жидкую фазу после окончательной сепарации для разделения на газ дегазации, нестабильный конденсат и водометанольный раствор. Газ дегазации подают в газовый поток после понижения давления с охлаждением, смешивают жидкую фазу после вторичной и окончательной сепарации, разделяют смешанную жидкой фазу на газ дегазации низкого давления, нестабильный конденсат и водометанольный раствор. Нестабильный конденсат смешивают и подают для разделения на газ выветривания, нестабильный конденсат и водометанольный раствор. Выводят нестабильный конденсат и водометанольный раствор из базовой установки. Смешивают газ дегазации низкого давления, газ выветривания и газ деэтанизации с установки деэтанизации конденсата, эжектируют смешанный газ в газовый поток, охлаждают газ деэтанизации нестабильным конденсатом, транспортируемым с других установок подготовки газа, и нестабильным конденсатом базовой установки подготовки газа. Техническим результатом является повышение эффективности установки низкотемпературной сепарации за счет предотвращения снижения выхода нестабильного конденсата при совместной подготовке газоконденсатной смеси скважин промысла на базовой установке и газа с установки деэтанизации конденсата. 1 табл., 1 ил.

Изобретение относится к газонефтяной промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса сепарации, и может быть использовано при промысловой подготовке продукции газоконденсатных месторождений.

Известен способ подготовки конденсатсодержащего пластового газа к транспорту на базовой установке подготовки методом низкотемпературной сепарации (НТС) газа в три ступени (см. «Разработка энергосберегающих технологий подготовки газа валанжинских залежей уренгойского месторождения в компрессорный период эксплуатации», Н.А. Цветков, Дисс. на соискание ученой степени к.т.н. - Уфа, 2007, стр. 109), включающий подачу газового потока на установку для первичной сепарации, охлаждение газового потока, подачу газового потока на вторичную сепарацию, вторичное охлаждение газового потока, понижение давления газового потока с охлаждением, подачу газового потока на окончательную сепарацию, нагрев газа сепарации газовым потоком после вторичной сепарации и газовым потоком после первичной сепарации, вывод газа сепарации из установки, смешивание жидкой фазы после первичной и вторичной сепарации, разделение жидкой фазы на газ дегазации, нестабильный конденсат и водометанольный раствор, подачу газа дегазации в газовый поток после понижения давления с охлаждением, подачу жидкой фазы после окончательной сепарации для разделения на газ дегазации низкого давления, нестабильный конденсат и водометанольный раствор, смешивание нестабильного конденсата и вывод его из установки, вывод водометанольного раствора с установки, смешивание газа дегазации низкого давления и газа деэтанизации с установки деэтанизации конденсата и подачу на эжекцию в газовый поток.

Недостатком этого способа является невозможность обеспечения проектных параметров подготовки газа (давление 4,0 МПа и температура минус 30°С в сепараторе третьей ступени) при входных давлениях газоконденсатной смеси на базовой установке менее 5,5 МПа. Кроме этого недостатком этого способа является повышение температуры в низкотемпературных сепараторах базовой установки из-за увеличения в летний период температуры газа деэтанизации, который охлаждается окружающим воздухом в аппаратах воздушного охлаждения. Это приводит к увеличению температуры в сепараторах третьей ступени и снижению выхода нестабильного конденсата. Имеющийся холод нестабильного конденсата базовой установки для охлаждения газа деэтанизации не используется. Также нет возможности использовать холод нестабильного конденсата других установок подготовки газоконденсатной смеси.

Наиболее близким аналогом к предлагаемому техническому решению является способ подготовки конденсатсодержащего пластового газа к транспорту на базовой установке трехступенчатой сепарацией (см. Влияние централизованной насосной станции перекачки конденсата на материально-компонентные балансы подготовки углеводородного сырья валанжинских залежей УНГКМ / А.А. Типугин, И.В. Колинченко / Сборник научных трудов ООО «ТюмеНИИгипрогаз» / ООО «ТюменНИИгипрогаз». - Тюмень, 2013. стр. 243-247), включающий подачу газового потока на первичную сепарацию, компримирование газового потока и охлаждение его окружающим воздухом, охлаждение газового потока, подачу газового потока на вторичную сепарацию, вторичное охлаждение газового потока, понижение давления газового потока с охлаждением, подачу газового потока на окончательную сепарацию, нагрев газа сепарации газовым потоком после вторичной сепарации, понижение давления газа сепарации с охлаждением, нагрев газа сепарации газовым потоком после первичной сепарации, вывод газа сепарации из базовой установки, подачу жидкой фазы после окончательной сепарации для разделения на газ дегазации, нестабильный конденсат и водометанольный раствор, подачу газа дегазации в газовый поток после понижения давления с охлаждением, смешивание жидкой фазы после вторичной и окончательной сепарации, разделение смешанной жидкой фазы на газ дегазации низкого давления, нестабильный конденсат и водометанольный раствор, смешивание нестабильного конденсата и подачу его для разделения на газ выветривания, нестабильный конденсат и водометанольный раствор, вывод нестабильного конденсата из базовой установки, вывод водометанольного раствора из базовой установки, смешивание газа дегазации низкого давления, газа выветривания и газа деэтанизации с установки деэтанизации конденсата, эжекцию смешанного газа в газовый поток.

В этом способе за счет применения дожимной компрессорной станции и аппаратов охлаждения газа обеспечиваются в зимний период оптимальные параметры подготовки газа (давление 4,0 МПа и температура минус 30°С в сепараторе третьей ступени) при входном давлении газа на базовую установку менее 5,5 МПа.

Однако недостатком этого способа также является повышение температуры в низкотемпературных сепараторах базовой установки из-за увеличения в летний период температуры газа деэтанизации, который охлаждается окружающим воздухом в аппаратах воздушного охлаждения, что приводит к снижению выхода нестабильного конденсата. Холод нестабильного конденсата с температурой до минус 15°С базовой установки для охлаждения газа деэтанизации не используется и нет возможности использовать холод нестабильного конденсата с температурой около 0°С других установок подготовки газоконденсатной смеси, который транспортируется рядом с базовой установкой по трубопроводам, проложенным в многолетнемерзлых грунтах.

Целью изобретения является повышение эффективности установки низкотемпературной сепарации за счет предотвращения снижения выхода нестабильного конденсата при совместной подготовке газоконденсатной смеси скважин промысла на базовой установке и газа с установки деэтанизации конденсата путем дополнительного охлаждения в летний период газа деэтанизации нестабильным конденсатом базовой и других установок подготовки газа.

Поставленная цель достигается следующим образом.

В способе подготовки конденсатсодержащего пластового газа к транспорту на базовой установке трехступенчатой сепарацией, включающем подачу газового потока на первичную сепарацию, компримирование газового потока и охлаждение его окружающим воздухом, охлаждение газового потока, подачу газового потока на вторичную сепарацию, вторичное охлаждение газового потока, понижение давления газового потока с охлаждением, подачу газового потока на окончательную сепарацию, нагрев газа сепарации газовым потоком после вторичной сепарации, понижение давления газа сепарации с охлаждением, нагрев газа сепарации газовым потоком после первичной сепарации, вывод газа сепарации из базовой установки, подачу жидкой фазы после окончательной сепарации для разделения на газ дегазации, нестабильный конденсат и водометанольный раствор, подачу газа дегазации в газовый поток после понижения давления с охлаждением, смешивание жидкой фазы после вторичной и окончательной сепарации, разделение смешанной жидкой фазы на газ дегазации низкого давления, нестабильный конденсат и водометанольный раствор, смешивание нестабильного конденсата и подачу его для разделения на газ выветривания, нестабильный конденсат и водометанольный раствор, вывод нестабильного конденсата из базовой установки, вывод водометанольного раствора из базовой установки, смешивание газа дегазации низкого давления, газа выветривания и газа деэтанизации с установки деэтанизации конденсата, эжекцию смешанного газа в газовый поток, в отличие от прототипа газ деэтанизации охлаждают нестабильным конденсатом, транспортируемым с других установок подготовки газа, и нестабильным конденсатом базовой установки подготовки газа.

Предлагаемое изобретение поясняется чертежом.

На иллюстрации обозначены следующие элементы:

1 - трубопровод;

2 - сепаратор первой ступени;

3 - трубопровод;

4 - трубопровод;

5 - компрессор;

6 - трубопровод;

7 - аппарат воздушного охлаждения;

8 - трубопровод;

9 - теплообменник «газ-газ»;

10 - трубопровод;

11 - сепаратор второй ступени;

12 - трубопровод;

13 - трубопровод;

14 - теплообменник «газ-газ»;

15 - трубопровод;

16 - эжектор;

17 - трубопровод;

18 - сепаратор третьей ступени;

19 - трубопровод;

20 - трубопровод;

21 - трубопровод;

22 - редуцирующее устройство;

23 - трубопровод;

24 - трубопровод;

25 - трехфазный разделитель;

26 - трубопровод;

27 - трубопровод;

28 - трубопровод;

29 - трехфазный разделитель;

30 - трубопровод;

31 - трубопровод;

32 - трубопровод;

33 - трехфазный разделитель;

34 - трубопровод;

35 - трубопровод;

36 - трубопровод;

37 - трубопровод;

38 - теплообменник «газ-конденсат»;

39 - трубопровод;

40 - трубопровод;

41 - трубопровод;

42 - теплообменник «газ-конденсат»;

43 - трубопровод;

44 - трубопровод.

Конденсатсодержащий газовый поток по трубопроводу 1 подают в сепаратор первой ступени 2 для отделения жидкой фазы. Жидкую фазу из сепаратора первой ступени 2 по трубопроводу 3 отводят в трехфазный разделитель 25 для отделения от нестабильного конденсата газа дегазации и водометанольного раствора. Газовый поток из сепаратора первой ступени 2 по трубопроводу 4 подают в компрессор 5. После сжатия в компрессоре 5 газовый поток подают по трубопроводу 6 в аппарат воздушного охлаждения 7 и далее по трубопроводу 8 для охлаждения в теплообменник «газ-газ» 9. Охлажденный газовый поток по трубопроводу 10 подают в сепаратор второй ступени 11 для отделения жидкой фазы. Жидкую фазу из сепаратора второй ступени 11 по трубопроводу 12 отводят в трехфазный разделитель 29 для отделения от нестабильного конденсата газа дегазации низкого давления и водометанольного раствора. Газовый поток из сепаратора второй ступени 11 по трубопроводу 13 подают в теплообменник «газ-газ» 14. Далее газовый поток поступает по трубопроводу 15 для охлаждения за счет его расширения в эжекторе 16. Охлажденный газовый поток по трубопроводу 17 подают в сепаратор третьей ступени 18 для отделения жидкой фазы. Жидкую фазу из сепаратора третьей ступени 18 по трубопроводу 19 отводят в трехфазный разделитель 29 для отделения от нестабильного конденсата газа дегазации и водометанольного раствора. Газ сепарации из сепаратора третьей ступени 18 по трубопроводу 20 подают для нагревания в теплообменник «газ-газ» 14. Далее газ сепарации по трубопроводу 21 направляют для охлаждения за счет его расширения в редуцирующее устройство 22. Охлажденный газ сепарации поступает по трубопроводу 23 для нагревания в теплообменник «газ-газ» 9 и далее по трубопроводу 24 выводят из базовой установки. Нестабильный конденсат из трехфазного разделителя 25 отводят по трубопроводу 27 в трехфазный разделитель 33 для отделения от нестабильного конденсата газа выветривания и водометанольного раствора. Газ дегазации из трехфазного разделителя 25 направляют по трубопроводу 26 в газовый поток трубопровода 17. Нестабильный конденсат из трехфазного разделителя 29 вводят по трубопроводу 31 в нестабильный конденсат трубопровода 27. Газ дегазации низкого давления из трехфазного разделителя 29 направляют по трубопроводу 30 в эжектор 16. Нестабильный конденсат из трехфазного разделителя 33 подают по трубопроводу 35 в теплообменник «газ-конденсат» 42. Газ выветривания из трехфазного разделителя 33 направляют по трубопроводу 34 в газ дегазации низкого давления трубопровода 30. Водометанольный раствор из трехфазных разделителей 25, 29 и 33 по трубопроводам 28, 32, 36 выводят из установки.

Газ деэтанизации с установки деэтанизации (условно не показана) конденсата подают по трубопроводу 37 в теплообменник «газ-конденсат» 38. Нестабильный конденсат с других установок (условно не показаны) подают по трубопроводу 40 в теплообменник «газ-конденсат» 38. Выводят из теплообменника «газ-конденсат» 38 нестабильный конденсат по трубопроводу 41, а газ деэтанизации по трубопроводу 39 направляют в теплообменник «газ-конденсат» 42. Выводят нестабильный конденсат из теплообменника «газ-конденсат» 42 по трубопроводу 44 из установки. Подают газ деэтанизации по трубопроводу 43 в газ дегазации низкого давления трубопровода 30.

Для оценки эффективности предложенного способа по сравнению с прототипом в программной системе «ГазКондНефть» были проведены технологические расчеты различных вариантов работы базовой установки подготовки газоконденсатной смеси УКПГ-2В Уренгойского месторождения, на которую поступает газ деэтанизации с установок деэтанизации конденсата УДК-1,2 завода по подготовке конденсата к транспорту ЗПКТ.

На три технологические линии базовой установки УКПГ-2В со скважин подавали конденсатсодержащий газовый поток с расходом 7,8 млн м3/сут. Давление на входе в установку составляло 4,0 МПа, а температура 18°С. После компрессора 5 и аппарата воздушного охлаждения 7 давление и температура составляли соответственно 7,5 МПа и температура 5, 10, 15, 20, 25°С. В сепараторе третьей ступени 18 поддерживались давление 4,0 МПа. Поверхность теплообмена теплообменников «газ-газ» 9, 14 принята равной 1290 м2, а коэффициент теплопередачи 190 Вт/(м2⋅К). Для обеспечения подачи газа сепарации с базовой установки на вторую ступень рядом расположенной дожимной компрессорной станции (условно не показана) давление на редуцирующем устройстве 22 понижалось до 3,0 МПа. Газ деэтанизации поступал на базовую установку с давлением 3,6 МПа и температурой 5, 10, 15, 20, 25°С, соответствующей температуре потока газа после аппарата воздушного охлаждения 7. При реализации предлагаемого технического решения охлаждение газа деэтанизации конденсатом других установок подготовки газа (УКПГ-1АВ, 8В) осуществлялось в шести теплообменниках «газ-конденсат» 38 с поверхностью теплообмена 200 м2 и коэффициентом теплопередачи 300 Вт/(м2⋅К). Расход нестабильного конденсата составлял 6520,4 т/сут. Давление и температура конденсата на входе в теплообменник «газ-конденсат» 38 составляли соответственно 2,5 МПа и плюс 5°С. Охлаждение газа деэтанизации конденсатом базовой установки подготовки газа осуществлялось в двух теплообменниках «газ-конденсат» 42 с поверхностью теплообмена 300 м2 и коэффициентом теплопередачи 300 Вт/(м2⋅К). Расход нестабильного конденсата зависел от температуры в низкотемпературных сепараторах и изменялся в интервале 1075,04-1605,89 т/сут. Давление и температура нестабильного конденсата на входе в теплообменник «газ-конденсат» 42 составляли соответственно 2,5 МПа и минус 14°С.

Результаты технологического моделирования по подготовке конденсатсодержащего газового потока и газа деэтанизации в соответствие с прототипом и предлагаемым техническим решением приведены в таблице 1.

В существующей технологии минимальная температура газа после аппарата воздушного охлаждения 7 и газа деэтанизации, при котором обеспечивалась температура минус 30°С в сепараторе третьей ступени 18, составляла 5°С. При увеличении температуры до 25°С температура в низкотемпературных сепараторах 18 возрастала до минус 16,68°С. В результате этого выхода нестабильного конденсата сокращался с 1605,89 до 1075,04 т/сут. и увеличивался объем газа сепарации с 10906,93 до 11277,78 тыс. м3/сут.

В предлагаемой новой технологии температура минус 30°С в сепараторе третьей ступени 18 обеспечивается в интервале температур газового потока и газа деэтанизации от 5 до 25°С. Температура газа деэтанизации после теплообменников составила от минус 0,60 до плюс 0,48°С. Не происходит сокращения выхода конденсата и увеличения выхода газа сепарации.

Таким образом, предлагаемый способ подготовки газоконденсатной смеси скважин и газа деэтанизации УДК-1,2 ЗПКТ на базовой установке УКПГ-2В Уренгойского месторождения обеспечивает эффективную подготовку углеводородов в летний период и предотвращает снижение выхода нестабильного конденсата.

Способ подготовки конденсатсодержащего пластового газа к транспорту на базовой установке трехступенчатой сепарацией, включающий подачу газового потока на первичную сепарацию, компримирование газового потока и охлаждение его окружающим воздухом, охлаждение газового потока, подачу газового потока на вторичную сепарацию, вторичное охлаждение газового потока, понижение давления газового потока с охлаждением, подачу газового потока на окончательную сепарацию, нагрев газа сепарации газовым потоком после вторичной сепарации, понижение давления газа сепарации с охлаждением, нагрев газа сепарации газовым потоком после первичной сепарации, вывод газа сепарации из базовой установки, подачу жидкой фазы после окончательной сепарации для разделения на газ дегазации, нестабильный конденсат и водометанольный раствор, подачу газа дегазации в газовый поток после понижения давления с охлаждением, смешивание жидкой фазы после вторичной и окончательной сепарации, разделение смешанной жидкой фазы на газ дегазации низкого давления, нестабильный конденсат и водометанольный раствор, смешивание нестабильного конденсата и подачу его для разделения на газ выветривания, нестабильный конденсат и водометанольный раствор, вывод нестабильного конденсата из базовой установки, вывод водометанольного раствора из базовой установки, смешивание газа дегазации низкого давления, газа выветривания и газа деэтанизации с установки деэтанизации конденсата, эжекцию смешанного газа в газовый поток, отличающийся тем, что газ деэтанизации охлаждают нестабильным конденсатом, транспортируемым с других установок подготовки газа, и нестабильным конденсатом базовой установки подготовки газа.
СПОСОБ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА К ТРАНСПОРТУ
Источник поступления информации: Роспатент

Showing 31-40 of 49 items.
26.01.2019
№219.016.b47b

Способ получения достоверных данных о газоконденсатной характеристике пластового газа для залежей, находящихся при аномально высоком пластовом давлении

Изобретение относится к нефтегазовой промышленности, а именно к методам проверки качества промысловой информации о газоконденсатной характеристике, в частности к способам контроля над составом и свойствами пластового газа. Сущность изобретения: при геологоразведочных работах и в процессе...
Тип: Изобретение
Номер охранного документа: 0002678271
Дата охранного документа: 24.01.2019
29.03.2019
№219.016.f585

Десорбер

Изобретение относится к химическому машиностроению, в частности к конструкциям установок для взаимодействия систем газ (пар) - жидкость, предназначенных для процессов абсорбции, ректификации, промывки газов, и может найти применение в химической, нефтехимической, газовой и в других смежных...
Тип: Изобретение
Номер охранного документа: 0002452557
Дата охранного документа: 10.06.2012
29.03.2019
№219.016.f826

Способ определения удельного и общего количества жидкой водной фазы, поступающей из скважины в промысловый газосборный коллектор

Изобретение относится к горному делу и может быть использовано при исследовании промысловых газосборных коллекторов по определению количества поступающей в них жидкой водной фазы. Способ основан на закачке в начальный участок газосборного коллектора водорастворимого реагента-индикатора заданной...
Тип: Изобретение
Номер охранного документа: 0002460879
Дата охранного документа: 10.09.2012
17.04.2019
№219.017.14e7

Способ поддержания пластового давления нефтяной скважины

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам для добычи нефти из буровых скважин путем создания вторичного давления в пласте с целью вытеснения нефти и поддержания пластового давления с помощью закаченного в пласт газа. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002684791
Дата охранного документа: 15.04.2019
09.05.2019
№219.017.4a53

Отбойник для механических примесей

Изобретение предназначено для улавливания мелкодисперсных, аэрозольных и капельно-жидких частиц, а также механических примесей из газового потока при отрицательных температурах окружающего воздуха и применяется в нефтяной, газовой, химической и других отраслях промышленности. Отбойник для...
Тип: Изобретение
Номер охранного документа: 0002686891
Дата охранного документа: 06.05.2019
17.05.2019
№219.017.531f

Способ эксплуатации обводненных газовых скважин

Изобретение относится к газовой промышленности, в частности к способам эксплуатации обводненных газовых скважин и транспортировке их продукции. Технический результат заключается в увеличении дебита газовой скважины и сокращении расхода ингибитора гидрато- и льдообразования за счет повышения...
Тип: Изобретение
Номер охранного документа: 0002687706
Дата охранного документа: 15.05.2019
27.05.2019
№219.017.61ba

Способ измерения плотности среды

Изобретение относится к технологии прецизионных измерений плотности жидких, газожидкостных и газообразных сред при их перекачивании и хранении. Способ измерения плотности среды, включает взвешивание не заполненного пикнометра, выполненный в виде цилиндра с поршнем внутри и связанный при помощи...
Тип: Изобретение
Номер охранного документа: 0002689284
Дата охранного документа: 24.05.2019
13.06.2019
№219.017.80aa

Стенд для испытаний и зарядки газлифтных клапанов

Изобретение относится к нефтяной промышленности, предназначено для настройки и зарядки газлифтных клапанов азотом и их испытаний на герметичность повышенным давлением при помощи сжатого воздуха. Стенд для испытаний и зарядки газлифтных клапанов включает камеру давления с гнездом для установки...
Тип: Изобретение
Номер охранного документа: 0002691248
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.83cd

Устройство (эталон) для измерения плотности жидких, газожидкостных и газообразных сред

Изобретение относится к эталонным средствам измерений для прецизионного измерения плотности жидких, газожидкостных и газообразных сред. Устройство (эталон) для измерения плотности жидкости, газожидкостных и газообразных сред включает пикнометр с фиксированным объемом подпоршневой полости,...
Тип: Изобретение
Номер охранного документа: 0002691671
Дата охранного документа: 17.06.2019
13.07.2019
№219.017.b368

Способ утилизации газа из газопровода-шлейфа при подготовке к ремонту или проведению внутритрубной диагностики

Изобретение относится к области газодобывающей промышленности и может быть использовано для перекачки газа при проведении ремонтных и профилактических работ на газопроводах-шлейфах и газосборных коллекторах в системах сбора скважинной продукции на газовых и газоконденсатных месторождениях....
Тип: Изобретение
Номер охранного документа: 0002694266
Дата охранного документа: 11.07.2019
Showing 31-40 of 42 items.
29.03.2019
№219.016.efc4

Способ подготовки углеводородного газа к транспорту

Изобретение относится к газонефтяной промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки продукции газоконденсатных месторождений. Обеспечивает безнасосную подачу нестабильного...
Тип: Изобретение
Номер охранного документа: 0002294430
Дата охранного документа: 27.02.2007
29.03.2019
№219.016.f379

Способ эксплуатации залежи углеводородов

Изобретение относится к газодобывающей промышленности, в частности к эксплуатации углеводородных залежей, и может быть использовано на завершающей стадии разработки массивных и пласто-массивных залежей, имеющих покрышку большой толщины и подстилаемых активно внедряющейся в продуктивную часть...
Тип: Изобретение
Номер охранного документа: 0002305755
Дата охранного документа: 10.09.2007
29.03.2019
№219.016.f3d9

Способ определения объема водной фазы в промысловом газопроводе

Изобретение относится к горному делу и может быть использовано при исследовании промысловых газопроводов (шлейфов) на наличие и определение объема жидкости в них. Техническим результатом изобретения является повышение эффективности работ по определению объема водной фазы в промысловом...
Тип: Изобретение
Номер охранного документа: 0002369802
Дата охранного документа: 10.10.2009
29.03.2019
№219.016.f826

Способ определения удельного и общего количества жидкой водной фазы, поступающей из скважины в промысловый газосборный коллектор

Изобретение относится к горному делу и может быть использовано при исследовании промысловых газосборных коллекторов по определению количества поступающей в них жидкой водной фазы. Способ основан на закачке в начальный участок газосборного коллектора водорастворимого реагента-индикатора заданной...
Тип: Изобретение
Номер охранного документа: 0002460879
Дата охранного документа: 10.09.2012
30.03.2019
№219.016.f9fd

Утяжеленный минерализованный буровой раствор для вскрытия продуктивных пластов с аномально высоким пластовым давлением

Изобретение относится к нефтяной и газовой промышленности. Технический результат - сохранение фильтрационно-емкостных свойств и профилактика осложнений при бурении и первичном вскрытии продуктивных пластов в условиях, характеризующихся высокими забойными температурами и аномально высокими...
Тип: Изобретение
Номер охранного документа: 0002683448
Дата охранного документа: 28.03.2019
09.05.2019
№219.017.4a53

Отбойник для механических примесей

Изобретение предназначено для улавливания мелкодисперсных, аэрозольных и капельно-жидких частиц, а также механических примесей из газового потока при отрицательных температурах окружающего воздуха и применяется в нефтяной, газовой, химической и других отраслях промышленности. Отбойник для...
Тип: Изобретение
Номер охранного документа: 0002686891
Дата охранного документа: 06.05.2019
17.05.2019
№219.017.531f

Способ эксплуатации обводненных газовых скважин

Изобретение относится к газовой промышленности, в частности к способам эксплуатации обводненных газовых скважин и транспортировке их продукции. Технический результат заключается в увеличении дебита газовой скважины и сокращении расхода ингибитора гидрато- и льдообразования за счет повышения...
Тип: Изобретение
Номер охранного документа: 0002687706
Дата охранного документа: 15.05.2019
13.07.2019
№219.017.b368

Способ утилизации газа из газопровода-шлейфа при подготовке к ремонту или проведению внутритрубной диагностики

Изобретение относится к области газодобывающей промышленности и может быть использовано для перекачки газа при проведении ремонтных и профилактических работ на газопроводах-шлейфах и газосборных коллекторах в системах сбора скважинной продукции на газовых и газоконденсатных месторождениях....
Тип: Изобретение
Номер охранного документа: 0002694266
Дата охранного документа: 11.07.2019
02.10.2019
№219.017.cb4f

Способ подготовки углеводородного газа к транспорту

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. В способе подготовки углеводородного...
Тип: Изобретение
Номер охранного документа: 0002701020
Дата охранного документа: 24.09.2019
07.06.2020
№220.018.2555

Способ эксплуатации газовой скважины

Изобретение относится к эксплуатации газовых скважин на завершающей стадии разработки и, в частности, к эксплуатации газовых скважин, в которых скорость газового потока недостаточна для выноса жидкости с забоя. По способу газовую скважину снабжают основной лифтовой колонной и концентрично...
Тип: Изобретение
Номер охранного документа: 0002722899
Дата охранного документа: 04.06.2020
+ добавить свой РИД