×
26.08.2017
217.015.e7d6

Результат интеллектуальной деятельности: Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Вид РИД

Изобретение

Аннотация: Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с реактором с образованием общего газового пространства, газовый контур с реактором откачивают на высокий вакуум, открывают сообщение между масс-спектрометром и газовым контуром, посредством масс-спектрометра стабилизируют ионный ток массовых чисел 18, 28 или 32, задают температуру и давление, при которых необходимо провести измерения, исследуемый образец приводят в равновесие с газовой фазой, перекрывают сообщение реактора с газовым контуром, из газового контура откачивают кислород природного изотопного состава и напускают обогащенный изотопом кислород О, посредством масс-спектрометра записывают зависимости ионного тока для массовых чисел 32, 34, 36 от времени, устанавливают постоянный поток между газовым контуром и масс-спектрометром, после этого открывают реактор и начинают процесс исследований с помощью изотопного обмена. При этом в качестве исследуемого образца в кварцевый реактор помещают электрохимическую ячейку, разделяющую общее газовое пространство на две части, и после установления равновесия электрохимической ячейки с газовой фазой, перекрывают сообщение реактора с одной из частей разделенного газового пространства, а из оставшейся его части откачивают кислород природного изотопного состава и напускают туда обогащенный изотопом кислород О, причем в момент открытия сообщения реактора с одной из частей разделенного газового пространства, на электроды электрохимической ячейки подают напряжение. Изобретение направлено на исследование кинетики межфазного обмена в системе «газ – электрохимическая ячейка» с использованием метода изотопного обмена в условиях поляризации электродов. 1 з.п. ф-лы, 5 ил.

Изобретение относится к электрохимии твердых кислород - ионных электролитов и может быть использовано для исследования кинетики межфазного обмена в системе «газ – электрохимическая ячейка» с использованием метода изотопного обмена в условиях поляризации электродов, т.е. в условиях, приближенных к реальным условиям работы электрохимических устройств.

Наиболее близким к заявляемому способу является способ измерения скорости межфазного обмена кислорода, коэффициента диффузии кислорода и вкладов трех типов обмена кислорода, описанный в RU 144462, публ. 09.04.2014. В этом способе для исследования кинетики взаимодействия кислорода газовой фазы с исследуемыми оксидными материалами используют метод изотопного обмена кислорода с анализом газовой фазы. Важной особенностью данного способа является возможность изучения перераспределения неметалла в системе «твердое тело – газ» в условиях химического или адсорбционно – десорбционного равновесия. Исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с реактором с образованием общего газового пространства, газовый контур с реактором откачивают на высокий вакуум, открывают сообщение между масс-спектрометром и газовым контуром, посредством масс-спектрометра стабилизируют ионный ток массовых чисел 18, 28 или 32, задают температуру и давление, при которых необходимо провести измерения, исследуемый образец приводят в равновесие с газовой фазой, перекрывают сообщение реактора с газовым контуром, из газового контура откачивают кислород природного изотопного состава и напускают обогащенный изотопом кислород 18О, посредством масс-спектрометра записывают зависимости ионного тока для массовых чисел 32, 34, 36 от времени, устанавливают постоянный поток между газовым контуром и масс-спектрометром, после этого открывают реактор и начинают процесс исследований с помощью изотопного обмена.

Данный способ позволяет рассчитать значения скорости межфазного обмена кислорода (rH), коэффициента диффузии кислорода (D0) и вкладов трех типов обмена кислорода (r0, r1, r2), характеризующие кинетику взаимодействия кислорода газовой фазы с оксидными материалами. Данный метод позволяет исследовать электродные процессы в электрохимических ячейках на основе твердых кислород - ионных электролитов в условиях адсорбционно – десорбционного равновесия, однако, в реальных условиях использования электрохимических устройств в системе «электрод – электролит» возникает поляризация электродов, влияние которой может привести к изменению механизма электродного процесса.

Задача настоящего изобретения заключается в создании способа исследования кинетики межфазного обмена в системе «газ – электрохимическая ячейка» с использованием метода изотопного обмена в условиях, приближенных к реальным условиям работы электрохимических устройств.

Для этого предложен способ исследования кинетики межфазного обмена в системе «газ – электрохимическая ячейка» с использованием изотопного обмена в условиях поляризации электродов, в котором, как и в способе прототипе, исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с реактором с образованием общего газового пространства, газовый контур с реактором откачивают на высокий вакуум, посредством масс-спектрометра стабилизируют ионный ток массовых чисел 18, 28 или 32, задают температуру и давление, при которых необходимо провести измерения, исследуемый образец приводят в равновесие с газовой фазой, перекрывают сообщение реактора с газовым контуром, из газового контура откачивают кислород природного изотопного состава и напускают обогащенный изотопом кислород 18О, посредством масс-спектрометра записывают зависимости ионного тока для массовых чисел 32, 34, 36 от времени, открывают вакуумный кран между масс-спектрометром и газовым контуром, устанавливают постоянный поток между газовым контуром и масс-спектрометром, после этого открывают реактор и начинают процесс исследований с помощью изотопного обмена.

Заявленный способ отличается тем, что в качестве исследуемого образца в кварцевый реактор помещают электрохимическую ячейку, разделяющую общее газовое пространство на две части, и после установления равновесия электрохимической ячейки с газовой фазой, перекрывают сообщение реактора с одной из частей разделенного газового пространства, а из оставшейся его части откачивают кислород природного изотопного состава и напускают туда обогащенный изотопом кислород 18О, причем в момент открытия сообщения реактора с одной из частей разделенного газового пространства, на электроды электрохимической ячейки подают напряжение.

Способ также отличается тем, что электрохимическую ячейку помещают в кварцевый реактор посредством трубки из электролита, один из торцов которой имеет присоединительный металлический фланец, а к другому вакуумплотно присоединена электрохимическая ячейка в форме таблетки или трубки с электродами, симметрично нанесенными на ее противоположные стороны, при этом фланец размещают между реактором и газовым контуром таким образом, чтобы трубка с электрохимической ячейкой находилась внутри реактора, один из электродов электрохимической ячейки взаимодействовал с одной из частей разделенного газового пространства, другой – с его оставшейся частью, а напряжение на электроды подают через токоподводы, вакуумплотно выведенные через отверстия в присоединительном фланце трубки.

Заявленный способ позволяет исследовать кинетику межфазного обмена кислорода в системе «газ – электрохимическая ячейка» с использованием метода изотопного обмена при наложении разности потенциалов на электроды электрохимической ячейки, что дает возможность напрямую получать значения скорости межфазного обмена кислорода (rH), коэффициента диффузии кислорода (D0) и вкладов трех типов обмена кислорода (r0, r1, r2) в условиях поляризации электродов. Это есть новый технический результат, достигаемый заявленным изобретением.

Изобретение иллюстрируется рисунками, где на фиг. 1 изображена принципиальная схема реализации заявленного способа; на фиг. 2 – конструктивная схема размещения с помощью трубки из электролита электрохимической ячейки, разделяющей газовое пространство; на фиг. 3 – элемент присоединения электрохимической ячейки к торцу трубки из электролита; на фиг. 4 и 5 представлены характерные зависимости доли изотопа кислорода 18O и степени отклонения концентрации молекул 18O2 в газовой фазе от равновесной, показывающие различие в кинетике взаимодействия кислорода газовой фазы с электрохимической ячейкой O2, Pt | YSZ | Pt, O2 в зависимости от поляризации электродов.

Изучение кинетики обмена кислорода заявленным способом проводили в статической циркуляционной установке. Установка содержит газовый контур объемом ~500 мл, по контуру циркулирует кислород, в котором в процессе эксперимента изменяется изотопный состав по трем компонентам: 16O2, 16O18O и 18O2.

Газовый контур 1 через трех-ходовые вакуумные краны 2,3 соединен с кварцевым реактором 4. Через этот реактор осуществляют циркуляцию газа по газовому контуру, сообщающемуся с реактором 4 с образованием общего с ним газового пространства (не показано). Кварцевый реактор 4 через вакуумный кран игольчатого типа 5 соединен с квадрупольным масс-спектрометром 6 марки Agilent 5973N. Вакуумные краны 2,3 и 5 могут перекрывать сообщение газового контура 1 с реактором 4 и с масс-спектрометром 6.

Циркуляционная установка снабжена трех-ступенчатой системой откачки. Откачка на форвакуум осуществляется с помощью вакуумного поста 7 марки MiniTask 2 (Agilent, США), состоящего из мембранного и турбомолекулярного насосов с датчиком на вакуум магнетронного типа. Вакуумный пост позволяет добиться остаточного давления ~10–5 мбар. Третья ступень откачки осуществляется высоко вакуумным магниторазрядным насосом 8 типа НМД 0.16-1, с помощью которого достигается остаточное давление порядка 10–8 мбар.

Для откачки вакуумной системы масс-спектрометра используется насос типа Edwards B2M1.5. Давление на фор-линии масс-спектрометра в рабочем состоянии установки достигает ~10–3 мбар. Для получения высокого вакуума в системе масс-спектрометра используется паромасляный диффузионный насос, достигаемое остаточное давление которого составляет порядка 10–6 мбар. Для ускорения перемешивания газа в контуре использовали циркуляционный насос 9. Давление измеряли с помощью комбинированного датчика 10 Баярда – Альперта – Пирани FRG-720 (Varian, США), позволяющего измерять давление в диапазоне от 10–10 мбар до 1 бар. Напуск газов в контур осуществляли из баллонов с помощью системы напуска 11 типа СНА-2.

Электрохимическая ячейка 12 представляет собой электролит в форме круглой таблетки 13 с симметрично нанесенными на ее противоположные стороны электродами 14 и 15. Электрохимическую ячейку 12 с помощью высокотемпературного стекло-керамического герметика вакуумплотно приклеивали к торцу трубки 16 из электролита, на противоположном торце которой имеется фланец 17 из нержавеющей стали, предназначенный для размещения трубки из электролита 16 в реакторе 4. Фланец 17 размещали между фланцем 18 реактора 4 и фланцем 19 вакуумного крана 2 или 3 таким образом, чтобы трубка 16 с электрохимической ячейкой 12 находилась внутри реактора 4 и разделяла общее газовое пространство контура 1 и реактора 4, на две части, одна из которых образована с участием полости 20 трубки 16 из электролита. С внешней стороны трубки 16 размещены токоподводы 21, которые с целью электрической изоляции вакуумплотно выведены с помощью алундовой трубки через отверстия 22 во фланце 17, герметизированные с помощью эпоксидной смолы.

Трубку 16 с электрохимической ячейкой 12 помещали в реактор 4 при комнатной температуре, проводили откачку газового контура с реактором на высокий вакуум при его прогреве до температуры 100°C с включенным кожухом для исключения в контуре паров воды. После включения масс-спектрометра 6 проводили выдержку около 12 часов для того, чтобы ионный ток массовых чисел 18, 28, 32 стабилизировался.

До начала измерений при заданной температуре и давлении кислорода электрохимическую ячейку привели в равновесие с газовой фазой. Перед напуском в газовый контур изотопнообогащенной смеси при необходимом давлении и температуре эксперимента выдерживали реактор с электрохимической ячейкой в течение не менее 15 ч в атмосфере кислорода природного изотопного состава, в котором доля изотопа кислорода 18O равна 0.02 ат.%. Возможность установления равновесия является одним из основных преимуществ метода изотопного обмена с анализом газовой фазы. Основной критерий установившегося равновесия с газовой фазой — постоянство давления в системе.

В данном примере после установления равновесия электрохимической ячейки 12 с газовой фазой с помощью вакуумного крана 2 перекрывали сообщение реактора 4 с частью разделенного газового пространства, образованного с участием полости 20 трубки 16, а из оставшейся части газового пространства откачивали кислород природного изотопного состава и напускали туда обогащенный изотопом кислород 18О. В момент открытия сообщения реактора 4 с частью разделенного газового пространства, на электроды 14,15 электрохимической ячейки 12 подавали напряжение и посредством масс-спектрометра 6 записывали зависимости ионного тока для массовых чисел 32, 34, 36 от времени. Характерные зависимости доли изотопа кислорода 18O и степени отклонения концентрации молекул 18O2 в газовой фазе от равновесной, показывающие различие в кинетики взаимодействия кислорода газовой фазы с электрохимической ячейкой O2, Pt | YSZ | Pt, O2 в зависимости от поляризации электродов, изображены на фиг. 4 и фиг. 5.

Экспериментально полученные зависимости концентрации 32, 34 и 36 массы (С32, С34, С36) и изменения содержания изотопа кислорода 18O в газовой фазе (α) от времени использовали для расчета значений скорости межфазного обмена кислорода (rH), коэффициента диффузии кислорода (D0) и вкладов трех типов обмена кислорода (r0, r1, r2) с помощью уравнений (1)–(4).

(1)

где rH – скорость межфазного обмена (или скорость гетерообмена), выраженная через количество атомов кислорода, обменивающихся в единицу времени на единице поверхности твердого тела; S – площадь поверхности твердого тела (в нашем случае, электрода); Ng – количество атомов кислорода в газовой фазе; α, α0 и α – доля изотопа кислорода в газовой фазе в текущий, начальный момент времени и после достижения состояния равновесия, соответственно.

(2)

где Z – изменение концентрации молекулы кислорода 18O2 в текущий момент времени по сравнению с равновесной концентрацией, r – общая скорость обмена кислорода; r2 – скорость обмена кислорода по r2-типу (протекает с участием двух атомов кислорода с поверхности оксида); αs – доля изотопа кислорода на поверхности твердого тела.

(3)

(4)

где r0 – скорость обмена кислорода по r0-типу (протекает без участия атомов кислорода с поверхности оксида), r1 – скорость обмена кислорода по r1-типу (протекает с участием одного атома кислорода с поверхности оксида).

Из фиг. 4 и фиг. 5 видно, что на вид и характер зависимостей доли изотопа кислорода 18O и степени отклонения концентрации молекул 18O2 в газовой фазе от равновесной оказывает влияние поляризация электродов. В случае с катодной поляризацией (η < 0) кинетика изотопного обмена в чистом виде соответствует одностадийному механизму обмена кислорода со стадией адсорбции кислорода по r1-типу. При (η ≥ 0) кинетика изотопного обмена соответствует механизму обмена кислорода, включающему стадию диссоциативной адсорбции по r0-типу, причем при отсутствии поляризации стадия диссоциативной адсорбции по r0-типу является скоростьопределяющей.

Таким образом, заявленный способ позволяет исследовать кинетику межфазного обмена в системе «газ – электрохимическая ячейка» с использованием метода изотопного обмена в условиях, приближенных к реальным условиям работы электрохимических устройств.


Способ исследования кинетики межфазного обмена в системе
Способ исследования кинетики межфазного обмена в системе
Способ исследования кинетики межфазного обмена в системе
Источник поступления информации: Роспатент

Showing 51-60 of 96 items.
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2a37

Электрохимический способ нанесения электропроводящего оксидного защитного покрытия интерконнектора

Изобретение относится к технологиям нанесения электропроводного покрытия на интерконнекторы катодной камеры твердооксидных топливных элементов. Способ включает электроосаждение слоя из La и 3d-металлов Mn, Co, Cu, Ni из раствора хлоридов используемых металлов в протофильном протонном...
Тип: Изобретение
Номер охранного документа: 0002643032
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.39a3

Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов,...
Тип: Изобретение
Номер охранного документа: 0002647125
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.4853

Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана

Изобретение может быть использовано при изготовлении электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры. Для синтеза наноразмерного порошкообразного материала на основе скандата лантана смесь решеткообразующих компонентов и допанта нагревают в присутствии...
Тип: Изобретение
Номер охранного документа: 0002651009
Дата охранного документа: 18.04.2018
Showing 51-60 of 63 items.
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2a37

Электрохимический способ нанесения электропроводящего оксидного защитного покрытия интерконнектора

Изобретение относится к технологиям нанесения электропроводного покрытия на интерконнекторы катодной камеры твердооксидных топливных элементов. Способ включает электроосаждение слоя из La и 3d-металлов Mn, Co, Cu, Ni из раствора хлоридов используемых металлов в протофильном протонном...
Тип: Изобретение
Номер охранного документа: 0002643032
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
06.07.2018
№218.016.6cc7

Способ соединения трубчатых топливных элементов

Изобретение относится к технологиям сборки конструкции подблоков трубчатых топливных элементов. Способ включает последовательное соединение топливных элементов, содержащих несущую основу из электролита и нанесенные на нее слои электродов, посредством интерконнектора в виде ступенчатого кольца...
Тип: Изобретение
Номер охранного документа: 0002660124
Дата охранного документа: 05.07.2018
25.10.2018
№218.016.9599

Способ модификации электродных материалов

Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002670427
Дата охранного документа: 23.10.2018
+ добавить свой РИД