×
26.08.2017
217.015.e79e

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к способам измерения температурного коэффициента линейного расширения (ТКЛР). Согласно заявленному способу измерения температурного коэффициента линейного расширения твердых тел изготавливают одинакового размера образцы из эталонного и исследуемого материала. В трубку дилатометра устанавливают образец из эталонного материала и два упирающихся концами в противоположные поверхности образца толкателя с установленными на их свободных концах возвращающими зеркалами интерферометра. С помощью печи дилатометра нагревают, а потом охлаждают эталонный образец по определенной программе. При этом одновременно замеряют с помощью термопары изменение температуры образца и непрерывно регистрируют общее удлинение системы «эталонный образец - толкатели». В каждый интересующий момент непрерывной регистрации определяют удлинение толкателей путем вычитания расчетного удлинения эталонного образца из общего удлинения системы «эталонный образец - толкатели». Заменяют эталонный образец на исследуемый образец, который нагревают и охлаждают по той же программе, что и эталонный, при этом непрерывно регистрируют общее удлинение системы «исследуемый образец - толкатели». В каждый интересующий момент регистрации определяют удлинение исследуемого образца путем вычитания из общего удлинения системы «исследуемый образец - толкатели» удлинения толкателей, полученные ранее при той же температуре нагрева или охлаждения эталонного образца. По удлинению исследуемого образца и величине температуры его нагрева определяют величину среднего интегрального ТКЛР исследуемого материала. Значения температуры и результаты обработки интерферограмм записывают синхронно в память ПЭВМ. Линейные перемещения толкателей могут регистрироваться с помощью двух индикаторных головок, при этом общее удлинение образца и толкателей определяют как сумму показаний индикаторных головок. Технический результат - снижение погрешностей при измерении ТКЛР исследуемого материала. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к способам измерения температурного коэффициента линейного расширения (ТКЛР).

Известен способ измерения температурного коэффициента линейного расширения материала (пат. РФ №2551694, G01N 25/16, опубл. 27.05.2015), заключающийся в том, что в кварцевую пробирку устанавливают образец и кварцевый толкатель, упирающийся концом в поверхность образца, кварцевую пробирку соединяют с неподвижной осью индикаторной головки через переходник, выполненный из кварца, приводят в контакт со свободным концом толкателя подвижную ось индикаторной головки, нагревают образец до требуемой температуры, фиксируют показания индикаторной головки через необходимые интервалы времени, после достижения установленной температуры прекращают нагрев, записывают показания индикаторной головки при последовательном медленном охлаждении образца, а ТКЛР определяют по формуле αср=ΔL/(L⋅ΔT)+0,55⋅10-6.

Недостатком известного способа является его низкая точность определения ТКЛР, так как не учитывается изменение величины ТКЛР по длине толкателя из-за большого перепада температур, а используемая поправка для учета погрешности от расширения кварцевой пробирки, которое на длине образца не компенсируется расширением кварцевого толкателя, принимается только по усредненному значению ТКЛР кварцевого стекла (0,55⋅10-6), в то время как в обозначенном диапазоне температур нагрева (от 20 до 1050°C) ТКЛР кварцевого стекла существенно изменяется. Кроме того, не учитываются погрешности, возникающие из-за температурных деформаций элементов индикаторной головки, переходника и деталей их крепления.

Наиболее близким к предлагаемому является способ измерения температурного коэффициента линейного расширения материала (Аматуни А.Н. Методы и приборы для определения температурных коэффициентов линейного расширения материалов - М.: Издательство стандартов, 1972 - с. 96-99), который выбран в качестве прототипа. Известный способ измерения ТКЛР твердых тел путем сравнения относительных удлинений исследуемого материала и эталонного материала с известным ТКЛР заключается в том, что в дилатометре устанавливают исследуемый образец и выполненный из эталонного материала толкатель, упирающийся концом в поверхность образца, нагревают и охлаждают образец по определенной программе, замеряют одновременно изменение температуры образца и удлинение исследуемого материала относительно удлинения эталонного материала, равного длине образца, определяют удлинение образца путем коррекции измеренной величины удлинения на расчетную величину удлинения эталонного материала, равного длине образца, а по удлинению образца и величине температуры его нагрева в каждый интересующий момент определяют величину ТКЛР исследуемого материала.

Недостатком этого способа является то, что величину и характер изменения ТКЛР эталонного материала - сапфировых стержней, при нагревании и охлаждении необходимо определять с помощью отдельной установки, что весьма проблематично в виду значительной их длины. Эти сложности вносят погрешности в определение расчетной величины удлинения эталонного материала. При использовании схемы с одним толкателем возникают дополнительные погрешности, связанные с температурными деформациями неподвижной упорной стенки, взаимодействующей с образцом. Отмеченные погрешности оказывают влияние на точность определения величины ТКЛР исследуемого материала. Кроме того, использование длинных сапфировых стержней, изготовленных с высокой точностью, и использование для измерения перемещений нанесенных на сапфировые стержни решеток (сеток) с малым шагом определяет высокую стоимость известного способа.

Задачей изобретения является снижение погрешностей и материальных затрат при измерении температурного коэффициента линейного расширения исследуемого материала.

Поставленная задача решается за счет получения ряда технических результатов. Устраняются погрешности, связанные с воздействием неподвижной упорной стенки, взаимодействующей с образцом, а также погрешности, возникающие из-за высокого градиента температур в звеньях измерительной системы. Используемые образцы эталонного и исследуемого материала имеют небольшие размеры, а их конструктивные параметры (форма, размеры) и параметры установки образца имеют большие допуски, которые не влияют на точность изменений.

Указанные технические результаты достигаются следующим образом.

Изготавливают одинакового размера образцы из эталонного и исследуемого материала. В дилатометре устанавливают эталонный образец и два упирающихся концами в противоположные поверхности образца толкателя с установленными на их свободных концах возвращающими зеркалами интерферометра. Нагревают эталонный образец по определенной программе. В процессе нагрева одновременно замеряют изменение температуры образца и непрерывно регистрируют с помощью интерферометра общее удлинение системы «эталонный образец - толкатели». В каждый интересующий момент непрерывной регистрации определяют удлинение толкателей путем вычитания расчетного удлинения эталонного образца из общего удлинения системы «эталонный образец - толкатели». По достижению наибольшей заданной температуры нагрев прекращают, а регистрацию измеряемых параметров продолжают в процессе охлаждения. Заменяют эталонный образец на исследуемый образец, нагревают и охлаждают исследуемый образец по той же программе, что и для эталонного образца, при этом непрерывно регистрируют общее удлинение системы «исследуемый образец - толкатели». В каждый интересующий момент регистрации определяют удлинение исследуемого образца путем вычитания из общего удлинения системы «исследуемый образец - толкатели» удлинения толкателей, полученные ранее при той же температуре нагрева эталонного образца. По удлинению исследуемого образца и величине температуры его нагрева в каждый интересующий момент определяют величину ТКЛР исследуемого материала.

На фиг. 1 изображена оптико-механическая схема, поясняющая реализацию описываемого способа, на фиг. 2 - оптико-механическая схема в случае измерения линейных перемещений толкателей с помощью индикаторных головок.

Способ осуществляется следующим образом.

Изготавливают одинакового размера образцы 1 из эталонного и исследуемого материала. В трубку 2 дилатометра, выполненную из огнеупорного материала, устанавливают образец 1 из эталонного материала и два упирающихся концами в противоположные поверхности образца 1 толкателя 3 и 4 с установленными на их свободных концах возвращающими зеркалами 5 и 6 интерферометра 7, включающего в себя также лазер 8 и поворотные зеркала 9. С помощью печи 10 дилатометра нагревают эталонный образец 1 по определенной программе. В процессе нагрева одновременно замеряют с помощью термопары 11 изменение температуры образца 1 и непрерывно регистрируют с помощью считывающего устройства 12 интерферометра 7 общее удлинение системы «эталонный образец - толкатели». В каждый интересующий момент непрерывной регистрации определяют удлинение толкателей 3 и 4 путем вычитания расчетного удлинения эталонного образца 1 из общего удлинения системы «эталонный образец - толкатели». По достижению наибольшей заданной температуры нагрев прекращают, а регистрацию измеряемых параметров продолжают в процессе охлаждения. Заменяют эталонный образец на исследуемый образец, нагревают и охлаждают исследуемый образец 1 по той же программе, что и для эталонного образца, при этом непрерывно регистрируют общее удлинение системы «исследуемый образец - толкатели». В каждый интересующий момент регистрации определяют удлинение исследуемого образца 1 путем вычитания из общего удлинения системы «исследуемый образец - толкатели» удлинения толкателей 3 и 4, полученные ранее при той же температуре нагрева эталонного образца. По удлинению исследуемого образца и величине температуры его нагрева в каждый интересующий момент определяют величину среднего интегрального ТКЛР исследуемого материала по формуле

αср=ΔL/(Lст⋅ΔТ),

где Lст - длина образца при стандартной температуре Тст=20°C;

ΔT=T1-Tст - изменение температуры T1 образца относительно стандартной температуры Тст;

ΔL=Li-Lст - удлинение образца при изменении его температуры на величину ΔT.

Для удобства обработки полученных данных значения температуры и результаты обработки интерферограмм записывают синхронно в память ПЭВМ 13.

При отсутствии возможности использования интерферометра измерение линейных перемещений толкателей 3 и 4 может производиться с помощью двух индикаторных головок 14 и 15, а общее удлинение образца и толкателей определяют как сумму показаний этих индикаторных головок.

Таким образом, за счет горизонтального расположения образца и двух толкателей устраняются погрешности, связанные с температурными деформациями неподвижной упорной стенки, взаимодействующей с образцом. Благодаря калибровке системы «эталонный образец - толкатели» с использованием в качестве эталонного образца стандартной меры ТКЛР (ГОСТ 8.018-2007) с известными характеристиками изменения ТКЛР в требуемом диапазоне температур, определяют зависимость общего удлинения толкателей от температуры. Так как удлинение исследуемого образца получают путем вычитания из общего удлинения системы «исследуемый образец - толкатели» определенного ранее удлинения толкателей, то все погрешности, связанные с большим градиентом температур и сложностью определения температурных деформаций вдоль толкателей, также устраняются. Использование двухсторонней системы измерения и точечного контакта толкателей с образцом позволяет снизить требования к точности изготовления и установки образца, что, в совокупности с небольшими размерами образца, существенно снижает затраты на его изготовление.


СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ
Источник поступления информации: Роспатент

Showing 101-110 of 189 items.
09.06.2018
№218.016.5ac6

Способ отсечения конуса подошвенной воды

Изобретение относится к нефтедобывающей промышленности, в частности к способу отсечения конуса подошвенной воды для ограничения водопритоков в нефтяных скважинах. Способ отсечения конуса подошвенной воды в нефтяных скважинах включает остановку скважину, извлечение внутрискважинного оборудования...
Тип: Изобретение
Номер охранного документа: 0002655490
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b01

Способ изоляции водопритока в нефтедобывающей скважине

Изобретение относится к нефтедобывающей промышленности, в частности к способам проведения водоизоляционных работ в нефтедобывающих скважинах. Способ изоляции водопритока в нефтедобывающей скважине включает глушение скважины, извлечение внутрискважинного оборудования, спуск и установку...
Тип: Изобретение
Номер охранного документа: 0002655495
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5be9

Бетонная смесь

Настоящее изобретение относится к строительным материалам, в частности к литым бетонным смесям, и может быть использовано при изготовлении бетонных и железобетонных конструкций с повышенными показателями прочности и трещиностойкости, а также при бетонировании труднодоступных мест конструкций и...
Тип: Изобретение
Номер охранного документа: 0002655633
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c63

Устройство регистрации, идентификации перенапряжений и оценки остаточного ресурса изоляции погружных электродвигателей

Изобретение относится к области электротехники и внутрискважинного оборудования, а именно может быть использовано для регистрации, идентификации перенапряжений и оценки остаточного ресурса изоляции погружных электродвигателей (ПЭД) в составе установки электрического центробежного насоса (УЭЦН)....
Тип: Изобретение
Номер охранного документа: 0002655948
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5c7f

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало. Луч,...
Тип: Изобретение
Номер охранного документа: 0002655949
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.6007

Бесступенчатая передача с планетарным механизмом с выходом на водило

Изобретение относится к трансмиссиям. Бесступенчатая передача содержит фрикционный вариатор и простой трехзвенный планетарный механизм, состоящий из солнечной шестерни, эпициклического колеса и водила с сателлитами. Входной и выходной валы установлены параллельно. На входном валу закреплен...
Тип: Изобретение
Номер охранного документа: 0002656941
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.6011

Реверсивная (20r20) несоосная 24-х ступенчатая вально-планетарная коробка передач типа 24r28

Изобретение относится к несоосной коробке передач типа 24R28. На входе МКП на двух параллельных валах свободно установлены три ряда шестерен переднего хода и ряд шестерен заднего хода для реверса, простой трехзвенный ПМ, состоящий из водила с сателлитами, которые зацеплены с солнечной шестерней...
Тип: Изобретение
Номер охранного документа: 0002656930
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.602c

Несоосная 24-х ступенчатая вально-планетарная коробка передач

Изобретение относится к машиностроению. Несоосная вально-планетарная коробка передач содержит два вала, на которых свободно установлены два ряда шестерен заднего хода и три пары шестерен прямого хода, простой трехзвенный планетарный механизм, состоящий из водила с сателлитами, которые зацеплены...
Тип: Изобретение
Номер охранного документа: 0002656944
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.6053

Несоосная многоступенчатая вально-планетарная коробка передач с электроинерционным стартером

Изобретение относится к коробкам передач с электроиндукционным стартером. В коробке передач между маховиком и коленчатым валом двигателя расположена двухпозиционная муфта. На входе многоступенчатой коробке передач (МКП) на двух валах свободно установлены четыре ряда шестерен прямого хода, ряд...
Тип: Изобретение
Номер охранного документа: 0002656942
Дата охранного документа: 07.06.2018
25.06.2018
№218.016.65f9

Способ определения оптимальной скорости резания

Способ относится к обработке жаропрочных сплавов на никелевой основе твердосплавным инструментом. По результатам кратковременных испытаний определяют температуру резания, при которой происходит изменение коэффициента сплошности стружки. На графике зависимости температуры резания от скорости...
Тип: Изобретение
Номер охранного документа: 0002658559
Дата охранного документа: 21.06.2018
Showing 81-87 of 87 items.
17.02.2018
№218.016.2cd1

Поршневой насос

Изобретение относится к области насосостроения и предназначено для перекачки жидких тел с возможностью размещения в скважинах. Поршневой насос содержит корпус с всасывающими и напорными клапанами. Внутри корпуса с возможностью вращения и с возможностью взаимного, относительного вдоль оси...
Тип: Изобретение
Номер охранного документа: 0002643881
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2cf1

Способ идентификации установившегося переменного тока в проводнике с помощью замыкающего геркона

Изобретение относится к энергетике, а именно к электроэнергетическим системам, и может быть использовано для построения микропроцессорных устройств защиты от коротких замыканий. Способ идентификации установившегося переменного тока в проводнике с помощью замыкающего геркона и микропроцессора,...
Тип: Изобретение
Номер охранного документа: 0002643680
Дата охранного документа: 05.02.2018
10.05.2018
№218.016.47b3

Способ исследования деформации материала

Изобретение относится к оптическим способам измерения деформаций в области исследования механических свойств материалов, в частности инструментальных сталей и твердых сплавов, путем приложения сжимающих статических нагрузок. В способе исследования деформаций материала полируют одну из боковых...
Тип: Изобретение
Номер охранного документа: 0002650746
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47b7

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре содержит основание с неподвижной...
Тип: Изобретение
Номер охранного документа: 0002650740
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47e0

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, расположенные по ходу его излучения...
Тип: Изобретение
Номер охранного документа: 0002650741
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47f7

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало, с помощью...
Тип: Изобретение
Номер охранного документа: 0002650742
Дата охранного документа: 17.04.2018
09.06.2018
№218.016.5c7f

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало. Луч,...
Тип: Изобретение
Номер охранного документа: 0002655949
Дата охранного документа: 30.05.2018
+ добавить свой РИД