×
26.08.2017
217.015.e4d6

Результат интеллектуальной деятельности: Способ определения пространственной ориентации трещины гидроразрыва

Вид РИД

Изобретение

№ охранного документа
0002626502
Дата охранного документа
28.07.2017
Аннотация: Изобретение относится к горному делу и может быть применено для определения ориентации трещины, полученной в результате гидроразрыва пласта. Способ определения пространственной ориентации трещины гидроразрыва включает проведение гидроразрыва пласта - ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва после проведения ГРП. Перед проведением ГРП в скважину в интервал пласта, подлежащего гидроразрыву, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта, извлекают колонну труб с геофизическим прибором из скважины, производят ГРП с образованием и креплением трещины разрыва проппантом. Причем в процессе крепления трещины проппант закачивают двумя порциями, первой порцией закачивают проппант в 4/5 части от его общей массы, а второй порцией закачивают маркированный проппант, содержащий 0,4 мас.% гадолиния (Gd) в 1/5 части от общей массы проппанта. При этом фракции проппанта одинаковы в обеих порциях. По окончании крепления трещины стравливают давление из скважины и промывают забой скважины от излишков маркированного проппанта, извлекают колонну труб с пакером из скважины, в скважину в интервал пласта с трещиной, закрепленной в призабойной зоне маркированным проппантом, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта и трещины разрыва и определяют пространственную ориентацию трещины гидроразрыва. Технический результат заключается в упрощении технологии определения пространственной ориентации трещины гидроразрыва; повышении надежности и эффективности определения направления пространственной ориентации трещины; сокращении продолжительности процесса реализации способа. 6 ил.

Изобретение относится к проведению гидравлического разрыва пласта и может быть использовано для определения ориентации трещины, полученной в результате гидроразрыва пласта.

Известен способ определения параметров системы трещин гидроразрыва (патент RU №2507396, МПК Е21В 47/14, опубл. 20.02.2014 г., бюл. №5), включающий возбуждение упругих колебаний источником колебаний в скважине, пересекающей трещины гидроразрыва, регистрацию в точках приема по меньшей мере в одной соседней скважине резонансных колебаний, излучаемых системой трещин гидроразрыва при возбуждении в буровой жидкости упругих колебаний, и определение параметров системы трещин по возникающим при этом в трещинах резонансным колебаниям. С целью повышения однозначности определения параметров системы трещин гидроразрыва возбуждение колебаний в скважине и их регистрацию проводят до и после гидроразрыва. При этом для каждой фиксированной пары источник-приемник формируют разностную сейсмическую запись из записей, полученных до и после гидроразрыва. На разностной сейсмозаписи выделяют сигналы, излучаемые системой трещин, и по этим сигналам судят о параметрах трещин. Причем резонансную частоту системы трещин гидроразрыва определяют по максимуму интенсивности возбуждаемых системой трещин колебаний путем изменения частоты в скважине колебаний в пределах от нижней границы диапазона возбуждаемых непрерывных колебаний до верхней границы. Сейсмические колебания, излучаемые системой трещин гидроразрыва, регистрируют в скважинах, расположенных в различных направлениях от скважины, пересекающей трещины гидроразрыва, и по кинематическим и динамическим параметрам зарегистрированных сигналов судят о параметрах системы трещин, причем дополнительно одновременно с регистрацией колебаний в соседней скважине регистрируют колебания в точках приема, расположенных в приповерхностной зоне.

Недостатки способа:

- во-первых, технологическая сложность реализации способа, связанная с тем, что дополнительно одновременно с регистрацией колебаний в соседней скважине регистрируют колебания в точках приема, расположенных в приповерхностной зоне;

- во-вторых, низкая надежность определения пространственной ориентации трещины гидроразрыва, так как направление трещин регистрируют в скважинах, расположенных в различных направлениях от скважины, пересекающей трещины гидроразрыва, и по кинематическим и динамическим параметрам зарегистрированных сигналов судят о параметрах направления трещины, причем если сигнал слабый, то информация будет недостоверной, т.е. направление развития трещины будет определено ошибочно;

- в-третьих, длительность процесса, связанная с регистрацией сигналов о параметрах направления трещины в соседних скважинах.

Наиболее близким по технической сущности и достигаемому результату является способ определения пространственной ориентации трещины гидроразрыва (а.с. №1629521, МПК Е21В 47/10, опубл. 23.02.1991 г., бюл. №7), включающий возбуждение вблизи устья скважины поперечной сейсмической волны, после проведения гидроразрыва измерение расположенными на поверхности земли приемниками амплитуд волнового поля, по которым определяют пространственную ориентацию трещины гидроразрыва. Дополнительно возбуждают поперечную волну до проведения гидроразрыва, ориентируют приемники вдоль линии поляризации возбуждаемой волны и измеряют амплитуду волнового поля. Изменяют направление поляризации на угол α, повторяют возбуждение волны и измерение амплитуды волнового поля n раз до момента n⋅α>180°, а пространственную ориентацию трещины гидроразрыва определяют по величине разности амплитуд, измеренных при одинаковом направлении поляризации волны, возбужденной до и после гидроразрыва.

Недостатки способа:

- во-первых, сложность реализации способа, связанная с возбуждением вблизи устья скважины поперечной сейсмической волны, а также дополнительной одновременно с регистрацией колебаний в соседней скважине регистрацией колебаний в точках приема, расположенных в приповерхностной зоне;

- во-вторых, низкая надежность определения пространственной ориентации трещины гидроразрыва, так как приемники амплитуд волнового поля, по которым определяют пространственную ориентацию трещины, расположены на поверхности земли и могут иметь нечеткий сигнал, особенно в скважинах с глубиной до 2000 м, в связи с чем определить направление ориентации трещины будет невозможно;

- в-третьих, низкая эффективность способа, обусловленная тем, что направление пространственной ориентации трещины гидроразрыва определяют расчетным путем по величине разности амплитуд, измеренных при одинаковом направлении поляризации волны, возбужденной до и после гидроразрыва, причем ошибка в расчете может указать иное направление пространственной ориентации трещины гидроразрыва, чем то направление, в котором она сориентирована в действительности;

- в-четвертых, продолжительность технологического процесса, связанная с многократными повторениями возбуждения волны и измерения амплитуды волнового поля n раз до момента n⋅α>180°,что увеличивает трудозатраты на реализацию способа.

Техническими задачами изобретения являются упрощение технологии реализации способа, а также повышение надежности и эффективности определения направления пространственной ориентации трещины, сокращение продолжительности процесса реализации способа.

Поставленные задачи решаются способом определения пространственной ориентации трещины гидроразрыва, включающим проведение гидроразрыва пласта - ГРП, с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва после проведения ГРП.

Новым является то, что перед проведением ГРП в скважину в интервал пласта, подлежащего гидроразрыву на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта, извлекают колонну труб с геофизическим прибором из скважины, производят ГРП с образованием и креплением трещины разрыва проппантом, причем в процессе крепления трещины проппант закачивают двумя порциями, первой порцией закачивают проппант в 4/5 части от его общей массы, а второй порцией закачивают маркированный проппант, содержащий 0,4% мас. гадолиния (Gd64157,25) в 1/5 части от общей массы проппанта, при этом фракции проппанта одинаковы в обеих порциях, по окончании крепления трещины стравливают давление из скважины и промывают забой скважины от излишков маркированного проппанта, извлекают колонну труб с пакером из скважины, в скважину в интервал пласта с трещиной, закрепленной в призабойной зоне маркированным проппантом, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта и трещины разрыва и определяют пространственную ориентацию трещины гидроразрыва.

На фиг. 1, 3, 4 схематично и последовательно изображены этапы реализации способа.

На фиг. 2 представлен график-развертка по периметру ствола скважины при вращении колонны труб с геофизическим прибором до проведения ГРП.

На фиг. 5 представлен график-развертка по периметру стола скважины при вращении колонны труб с геофизическим прибором после проведения ГРП.

На фиг. 6 в сечении А-А показано направление пространственной ориентации трещины.

Предлагаемый способ реализуют следующим образом.

В скважину 1 (см. фиг. 1) в интервал пласта 2, подлежащего гидроразрыву, на колонне труб 3 спускают геофизический прибор 4.

Вращением (с устья скважины 1) колонны труб 3 с геофизическим прибором 4 на угол 360°, например, против часовой стрелки, производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта 2.

Геофизический прибор 4 представляет скважинный снаряд нейтронного гамма-каротажа, включающий в себя источник нейтронов и детектор гамма-излучения.

Таким образом, перед проведением ГРП вращают колонну труб 3 (см. фиг. 1 и 2) с геофизическим прибором 4 и замеряют (определяют) нейтронно-поглощающую способность пласта 2 путем чередования импульсов нейтронов и замеров плотности потока нейтронов, т.е. облучают породу пласта 2 кратковременными потоками быстрых нейтронов. По результатам замера строят график (см. фиг. 2) (развертка по периметру ствола скважины на 360°), который в породе пласта 2 (см. фиг. 1 и 2) показывает значение времени жизни нейтронов (t, мкс) в зависимости от азимута (угол, °).

По графику (см. фиг. 2) видно, что время жизни тепловых нейтронов в результате их взаимодействия с исследуемой породой пласта 2 составляет t=56-62 мкс.

Для проведения ГРП в скважину 1 (см. фиг. 3) спускают колонну труб 3 с пакером 5. Производят посадку пакера 5 в скважине 1, при этом пакер 5 находится, например, на расстоянии 1=7 м выше кровли пласта 2. Посадка пакера 5 в скважине 1 обеспечивает герметизацию заколонного пространства 6, что предохраняет стенки скважины 1 от воздействия высокого давления в процессе проведения ГРП и исключает вероятность их повреждения, при этом применяют любой известный пакер, обеспечивающий герметизацию при давлении ГРП, например, максимальном давлении 35,0 МПа.

Далее производят ГРП с образованием трещины и ее крепление проппантом любым известным способом. Сначала производят ГРП с образованием трещины разрыва. Для этого производят закачку жидкости разрыва, например, линейного геля под давлением 28,0 МПа и образуют трещину разрыва 7.

Затем производят крепление трещины 7 закачкой проппанта 8. В процессе крепления трещины 7 проппант закачивают двумя порциями, первой порцией закачивают в 4/5 части проппант 8 от его общей массы, а второй порцией закачивают маркированный проппант 9, содержащий 0,4% мас. гадолиния (Gd64157,25) в 1/5 части от общей массы проппанта, при этом фракции проппанта одинаковы в обеих порциях.

Например, при общей массе проппанта 8, равной 10 т: первой порцией закачивают проппант 8, например, фракции 20/40 меш в количестве 10 т⋅4/5=8 т в любой известной жидкости-носителе, например, сшитом геле.

Затем крепят трещину 7 (см. фиг. 3) закачкой второй порции маркированного проппанта 9, той же фракции 20/40 меш в сшитом геле в 1/5 части от общей массы проппанта, т.е. 10 т⋅1/5=2 т, содержащего 0,4% мас. гадолиния (Gd64157,25), т.е. с добавлением 2000 кг⋅(0,4%/100%)=8 кг гадолиния (Gd64157,25). Итого, второй порцией закачивают 2000 кг+8 кг=2008 кг маркированного проппанта 9.

По окончании крепления трещины 7, т.е. закачки второй порции маркированного проппанта 9 стравливают давление из скважины 1. Распакеровывают пакер 5 и, например, обратной промывкой, т.е. подачей промывочной жидкости в заколонное пространство 6 промывают забой скважины 1 от излишков маркированного проппанта 9 с целью исключения получения недостоверных результатов повторного замера при последующем импульсно-нейтронном каротаже. Извлекают из скважины 1 колонну труб 3 с пакером 5. После чего в скважину 1 (см. фиг. 4) в интервал пласта с трещиной 7, закрепленной в призабойной зоне маркированным проппантом 9, на колонне труб 3 спускают геофизический прибор 4.

Вращением колонны труб 3 с геофизическим прибором 4 на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта 2 и трещины 7 и определяют пространственную ориентацию трещины гидроразрыва. По результатам замера строят график (см. фиг. 5) (развертка по периметру ствола скважины на 360°), который в породе пласта 2 и трещине 7 показывает значение времени жизни нейтронов (t, мкс) в зависимости от азимута (угол, °). Повышается надежность определения пространственной ориентации трещины гидроразрыва, так как геофизический прибор спущен непосредственно в интервал пласта, а не размещен на устье скважины, что повышает точность получаемых данных.

По графику (см. фиг. 5) видно, что в месте образования трещины 7, где сконцентрирован маркированный проппант 9, происходит наибольшее поглощение нейтронов, что уменьшает время жизни нейтронов (t, мкс). Поэтому в интервале скопления маркированного пропанта, т.е. в трещине 7 относительно периметра пласта 2 отмечаются пониженные значения времени жизни нейтронов (t, мкс), связанные с наличием гадолиния. Из графика (см. фиг. 4) видно, что время жизни тепловых нейтронов составляет t=38-43 мкс.

По результатам нормировки (развертка по периметру ствола скважины на 360°) (см. фиг. 2) кривой импульсно-нейтронного каротажа пласта 2 (исследование до проведения ГРП) и кривой импульсно-нейтронного каротажа, содержащей гадолиний в трещине 7 (после проведения ГРП) (см. фиг. 5) определяют азимут, в котором отмечается нарушение корреляции между нейтронным каротажем (см. фиг. 2) и нейтронным каротажем с содержанием гадолиния (Gd) (см. фиг. 5), что видно при сопоставлении графиков (см. фиг. 2 и 5).

По графикам (см. фиг. 5) и по сечению А-А трещины 7 в интервале пласта 2 (см. фиг. 6) видно, что пространственная ориентация трещины 7 гидроразрыва находится под углом 90° и 270° по отношению к нейтральной линии (N), от которой начинали поворот колонны труб 3 с геофизическим прибором 4. Такое свойство гадолиния, как поглощение нейтронов, позволяет с помощью импульсно-нейтронного каротажа определить места нахождения маркированного проппанта в интервале ГРП.

Повышается эффективность определения направления пространственной ориентации трещины гидроразрыва (что необходимо для учета взаимодействия скважин) за счет повышения точности замеров в интервале пласта и трещины путем определения времени жизни нейтронов и исключения расчетов разности амплитуд, а это позволяет определить направление максимального напряжения σmax (см. фиг. 6) и более эффективно осуществлять подбор скважин для ГРП. При выполнении предлагаемого способа упрощается технология реализации, так как исключается необходимость возбуждения вблизи устья скважины поперечной сейсмической волны, а также дополнительной регистрации колебаний в соседних скважинах.

В предлагаемом способе измерения проводятся один раз перед проведением ГРП и один раз после проведения ГРП, в связи с чем сокращается продолжительность технологического процесса, связанная, как описано в прототипе, с многократными повторениями возбуждения волны и измерения амплитуды волнового поля n раз до момента n⋅α>180°, что снижает трудозатраты на реализацию способа.

Предлагаемый способ позволяет:

- упростить технологию определения пространственной ориентации трещины гидроразрыва;

- повысить надежность и эффективность определения направления пространственной ориентации трещины;

- сократить продолжительность процесса реализации способа.

Способ определения пространственной ориентации трещины гидроразрыва, включающий проведение гидроразрыва пласта - ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва после проведения ГРП, отличающийся тем, что перед проведением ГРП в скважину в интервал пласта, подлежащего гидроразрыву, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта, извлекают колонну труб с геофизическим прибором из скважины, производят ГРП с образованием и креплением трещины разрыва проппантом, причем в процессе крепления трещины проппант закачивают двумя порциями, первой порцией закачивают проппант в 4/5 части от его общей массы, а второй порцией закачивают маркированный проппант, содержащий 0,4% мас. гадолиния (Gd) в 1/5 части от общей массы проппанта, при этом фракции проппанта одинаковы в обеих порциях, по окончании крепления трещины стравливают давление из скважины и промывают забой скважины от излишков маркированного проппанта, извлекают колонну труб с пакером из скважины, в скважину в интервал пласта с трещиной, закрепленной в призабойной зоне маркированным проппантом, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта и трещины разрыва и определяют пространственную ориентацию трещины гидроразрыва.
Способ определения пространственной ориентации трещины гидроразрыва
Способ определения пространственной ориентации трещины гидроразрыва
Способ определения пространственной ориентации трещины гидроразрыва
Способ определения пространственной ориентации трещины гидроразрыва
Способ определения пространственной ориентации трещины гидроразрыва
Способ определения пространственной ориентации трещины гидроразрыва
Способ определения пространственной ориентации трещины гидроразрыва
Источник поступления информации: Роспатент

Showing 281-290 of 577 items.
10.05.2018
№218.016.4ccf

Способ установки профильного перекрывателя в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам изоляции зон осложнений при бурении скважин перекрывателями из профильных труб. Способ включает установку профильного перекрывателя в скважине, соединение секций профильных труб, спуск перекрывателя в зону...
Тип: Изобретение
Номер охранного документа: 0002652401
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4cd7

Способ термохимической обработки нефтяного пласта (варианты)

Группа изобретений относится к нефтедобывающей промышленности. Технический результат - направленное термохимическое воздействие на нефтенасыщенные пропластки, подключение в разработку ранее не охваченных нефтенасыщенных, низкопроницаемых зон пласта, увеличение охвата пласта тепловым...
Тип: Изобретение
Номер охранного документа: 0002652238
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4cde

Способ разработки двух объектов разной стратиграфической принадлежности

Изобретение относится к области нефтегазодобывающей промышленности, в частности к разработке многообъектного месторождения. Способ разработки нефтяного месторождения включает бурение наклонно направленных добывающих и нагнетательных скважин, отбор из добывающих скважин и закачку вытесняющего...
Тип: Изобретение
Номер охранного документа: 0002652240
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4cf3

Способ гидравлического разрыва пласта с глинистыми прослоями

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва продуктивного пласта, расположенного между породами-неколлекторами - глинистыми прослоями. Способ включает перфорацию пласта с использованием зарядов большого диаметра и глубокого...
Тип: Изобретение
Номер охранного документа: 0002652399
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d08

Устройство для извлечения клина-отклонителя из горизонтального участка многозабойной скважины

Изобретение относится к области бурения и капитального ремонта скважин и может быть использовано при строительстве боковых стволов из горизонтальной части ранее пробуренных и обсаженных горизонтальных скважин. Устройство включает ствол с крюком под ответную выборку клина-отклонителя,...
Тип: Изобретение
Номер охранного документа: 0002652404
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d16

Способ разработки залежи битуминозной нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - снижение затрат тепловой энергии, увеличение темпов отбора извлекаемых запасов, увеличение добычи нефти в начальный период разработки, снижение риска попадания горизонтальной добывающей скважины в пласты с высокой...
Тип: Изобретение
Номер охранного документа: 0002652245
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d46

Способ разработки нефтяной залежи

Изобретение относится к нефтегазодобывающей промышленности, в частности к методам повышения нефтеотдачи пластов. Способ разработки нефтяной залежи включает отбор нефти через добывающие скважины и закачку рабочего агента через нагнетательные скважины в циклическом режиме с закачкой фиксированным...
Тип: Изобретение
Номер охранного документа: 0002652243
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d58

Способ обработки призабойной зоны скважины для удаления парафиновых асфальто-смолистых веществ

Изобретение относится к нефтедобывающей промышленности, в частности к способам обработки призабойной зоны добывающей скважины или скважины, переведенной в нагнетательную из добывающей скважины, работа которых осложнена выпадением парафиновых асфальто-смолистых веществ (АСВ) в призабойной зоне....
Тип: Изобретение
Номер охранного документа: 0002652236
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d93

Система обустройства месторождения тяжелой нефти и природного битума

Изобретение относится к нефтяной промышленности, в частности к системам нефтепромыслового обустройства при разработке месторождений тяжелых нефтей и природных битумов. Система обустройства месторождения тяжелой нефти и природного битума включает источник пресной воды с трубопроводом пресной...
Тип: Изобретение
Номер охранного документа: 0002652408
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d95

Способ разработки неоднородного нефтяного пласта (варианты)

Изобретение относится к нефтедобывающей промышленности, в частности к способам добычи нефти из неоднородного нефтяного пласта путем регулирования охвата пласта заводнением и перераспределения фильтрационных потоков. По первому варианту предварительно определяют начальную приемистость...
Тип: Изобретение
Номер охранного документа: 0002652410
Дата охранного документа: 26.04.2018
Showing 281-290 of 391 items.
22.09.2018
№218.016.8990

Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Изобретение относится к проведению гидравлического разрыва пласта (ГРП) и может быть применено для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП. Способ включает проведение ГРП с образованием трещины разрыва и определение пространственной...
Тип: Изобретение
Номер охранного документа: 0002667248
Дата охранного документа: 18.09.2018
23.09.2018
№218.016.8a86

Способ многократного гидравлического разрыва пласта в открытом стволе наклонной скважины

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин, вскрывших многопластовую продуктивную залежь нефти с низкими фильтрационно-емкостными свойствами с подошвенной водой в карбонатных породах. Способ включает бурение скважины в продуктивном пласте,...
Тип: Изобретение
Номер охранного документа: 0002667561
Дата охранного документа: 21.09.2018
15.10.2018
№218.016.9214

Способ герметизации эксплуатационной колонны

Изобретение относится к cпособу герметизации эксплуатационной колонны. Техническим результатом является обеспечение герметичной посадки пакера за одну спускоподъемную операцию. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины пакера на посадочном...
Тип: Изобретение
Номер охранного документа: 0002669646
Дата охранного документа: 12.10.2018
27.10.2018
№218.016.96ca

Способ герметизации эксплуатационной колонны

Изобретение относится к нефтедобывающей промышленности, в частности к способам герметизации эксплуатационной колонны. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины пакера на посадочном инструменте, посадку пакера в эксплуатационной колонне ниже...
Тип: Изобретение
Номер охранного документа: 0002670816
Дата охранного документа: 25.10.2018
20.02.2019
№219.016.c07b

Пакер

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для герметичного разобщения пластов. Обеспечивает создание простой, надежной и технологичной конструкции. Пакер включает корпус с центральным каналом, патрубком, имеющим фигурный паз на наружной поверхности, и...
Тип: Изобретение
Номер охранного документа: 0002305750
Дата охранного документа: 10.09.2007
20.02.2019
№219.016.c07e

Пакер

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для герметичного разобщения пластов. Обеспечивает создание простой, надежной и технологичной конструкции. Пакер включает корпус с центральным каналом, патрубком, имеющим фигурный паз на наружной поверхности, и...
Тип: Изобретение
Номер охранного документа: 0002305751
Дата охранного документа: 10.09.2007
20.02.2019
№219.016.c0bd

Ловильное устройство для прихваченного инструмента

Изобретение относится к нефтяной и газовой промышленности, в частности к аварийным инструментам для извлечения труб из скважин. Устройство содержит корпус с захватными элементами, направляющей поверхностью и продольным промывочным отверстием, смещенные вдоль оси корпуса диаметрально...
Тип: Изобретение
Номер охранного документа: 0002368757
Дата охранного документа: 27.09.2009
20.02.2019
№219.016.c109

Способ разработки месторождений высоковязкой нефти

Изобретение относится к способу разработки месторождений высоковязкой нефти. Техническим результатом является повышение эффективности разогревания теплоносителем месторождения высоковязкой нефти, плотность которой в разогретом состоянии ниже плотности теплоносителя, а также снижение тепловых...
Тип: Изобретение
Номер охранного документа: 0002363839
Дата охранного документа: 10.08.2009
20.02.2019
№219.016.c10a

Способ разработки месторождений битума

Изобретение относится к способу разработки месторождений битума. Техническим результатом изобретения является повышение надежности осуществления способа за счет сокращения количества применяемых пакеров, а также повышение эффективности разогревания теплоносителем месторождения высоковязкой...
Тип: Изобретение
Номер охранного документа: 0002363838
Дата охранного документа: 10.08.2009
01.03.2019
№219.016.ccba

Способ одновременно-раздельной эксплуатации многопластовой скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при эксплуатации многопластовых скважин, как для раздельной выработки пластов, так и для одновременной. Обеспечивает снижение затрат на осуществление способа. Сущность изобретения: способ включает селективную...
Тип: Изобретение
Номер охранного документа: 0002338057
Дата охранного документа: 10.11.2008
+ добавить свой РИД