×
26.08.2017
217.015.e45c

Результат интеллектуальной деятельности: Способ определения температурного коэффициента скорости ультразвука

Вид РИД

Изобретение

Аннотация: Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала. Сущность способа заключается в том, что в недеформированном и деформированном материале при разных температурах возбуждают упругие волны, определяют скорость их распространения и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Используя полученную аналитическую зависимость, можно определять температурный коэффициент для промежуточных значений температуры и величины пластической деформации, причем деформацию можно определять акустическим способом, измеряя параметр акустической анизотропии, не зависящий от температуры. Технический результат – повышение точности получаемых данных. 1 з.п. ф-лы, 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения температурного коэффициента скорости ультразвука в твердых телах.

Известен способ определения температурного коэффициента скорости ультразвука, заключающийся в измерении изменений с температурой временных интервалов между эхо-импульсами из двух слоев иммерсионной жидкости с образца с фиксированными расстояниями между двумя преобразователями и между одним из преобразователей и ближайшей поверхностью образца (Недбай Александр Иванович. Способ определения температурного коэффициента скорости ультразвука (RU 1742632).

В качестве прототипа выбран способ определения температурного коэффициента скорости ультразвука, заключающийся в том, что в образце возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры; повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. (Авторское свидетельство СССР №325511, кл. G01Н 5/00, 1972 (прототип)).

Недостатком указанных выше способов является то, что в общем случае температурный коэффициент не является константой и зависит от структурного состояния материала, изменяющегося, например, в результате пластического деформирования, поэтому при указанных выше способах определение численного значения температурного коэффициента необходимо было бы производить после каждого акта пластического деформирования, что трудоемко и не всегда осуществимо.

Задачей, на достижение которого направлено данное изобретение, является повышение точности определения скорости распространения упругих волн в твердых телах при различных температурах и величинах пластической деформации.

Технический результат достигается тем, что, как и в прототипе, в образце возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры, повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука.

Новым является то, что температурный коэффициент определяют как минимум для двух значений величины пластической деформации и устанавливают зависимость температурного коэффициента от величины пластической деформации, которую используют в дальнейшем для определения температурного коэффициента при промежуточных значениях величины пластической деформации.

Сущность предлагаемого способа заключается в следующем.

В материале возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры, повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Затем материал деформируют на определенную величину пластической деформации. Затем в деформированном материале возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры, повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука в деформированном материале. Получают зависимость температурного коэффициента скорости ультразвука от деформации.

Для определения величины пластической деформации измеряют время распространения поперечных упругих волн, поляризованных вдоль и поперек оси деформирования. Рассчитывают параметр акустической анизотропии, зависящий от величины пластической деформации и не зависящий от температуры по формуле

где τzx, τzy - время распространения поперечных упругих волн, поляризованных вдоль и поперек оси деформирования.

Расчет пластической деформации производят с помощью выражения:

где ΔА=А-А0, А0 - значение параметра акустической анизотропии в недеформированном образце, А - значение параметра акустической анизотропии, соответствующее текущей величине пластической деформации, kε - коэффициент, определяемый из эксперимента.

Таким образом, предлагаемый способ позволяет учесть влияние температуры и пластического деформирования на температурный коэффициент скорости распространения акустических колебаний в твердых телах, а значит, повысить точность определения скорости распространения упругих волн в твердых телах при различных температурах и величинах пластической деформации.

Пример применения

В образце из алюминиевого сплава возбуждали ультразвуковые продольные и поперечные волны, измеряли скорости их распространения. Затем образец медленно охлаждали и в процессе охлаждения повторно определяли скорости распространения волн. Затем образец подвергали пластическому деформированию при одноосном растяжении на величину 16% и снова при медленном охлаждении определяли скорости распространения ультразвуковых волн. При последующей операции образец подвергали пластическому деформированию при одноосном растяжении на величину 25% и снова при медленном охлаждении определяли скорости распространения ультразвуковых волн. Строили график зависимости изменения скорости распространения продольных волн от изменения температуры (фиг. 1).

Рассчитывали температурный коэффициент скорости ультразвука при различных значениях величины пластической деформации. Зависимость температурного коэффициента скорости ультразвука в алюминиевом сплаве от величины пластической деформации ε можно представить в виде:

Kv=-4.1⋅ε-1.24.

Для каждого значения величины пластической деформации рассчитывали параметр акустической анизотропии по формуле (1). Зная величину пластической деформации и соответствующее значение параметра акустической анизотропии, определили коэффициент kε=-2014. Как показали экспериментальные исследования, параметр акустической анизотропии не зависит от температуры, коэффициент kε не изменяется в процессе нагрева в исследуемом диапазоне температур.

Окончательное выражение для расчета температурного коэффициента скорости ультразвука в алюминиевом сплаве принимает следующий вид:

Kv=8057.4⋅ΔА-1.24.


Способ определения температурного коэффициента скорости ультразвука
Способ определения температурного коэффициента скорости ультразвука
Источник поступления информации: Роспатент

Showing 51-60 of 66 items.
29.11.2019
№219.017.e77e

Мощный источник нейтронов, использующий ядерную реакцию синтеза, протекающую при бомбардировке нейтронообразующей газовой мишени ускоренными ионами дейтерия

Изобретение относится к устройству получения нейтронов и может быть использовано, как в фундаментальных, так и в прикладных исследованиях: в ядерной физике, спектрометрии, нейтронографии, медицине, системах безопасности, дефектоскопии и т.д. В устройстве используется источник ионов на основе...
Тип: Изобретение
Номер охранного документа: 0002707272
Дата охранного документа: 26.11.2019
05.02.2020
№220.017.fe00

Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка

Изобретение относится к лазерной технике. Твердотельный лазерный усилитель включает основанный на лазерных диодах источник излучения накачки, выступающий в роли волновода для излучения накачки твердотельный активный элемент продолговатой аксиально-симметричной формы с переменным по площади...
Тип: Изобретение
Номер охранного документа: 0002712966
Дата охранного документа: 03.02.2020
08.02.2020
№220.018.006e

Дисковый лазерный неустойчивый резонатор для обеспечения выходного лазерного сигнала с близким к дифракционному качеством пучка

Изобретение относится к лазерной технике. Кольцевой дисковый лазерный неустойчивый резонатор состоит из системы формирования изображения, образованной усилительным узлом и телескопом для увеличения диаметра пучка лазерного излучения, расположенного между усилительным узлом и телескопом зеркала...
Тип: Изобретение
Номер охранного документа: 0002713561
Дата охранного документа: 05.02.2020
25.03.2020
№220.018.0fb0

Изолятор фарадея с компенсацией аксиально-симметричных поляризационных искажений

Изобретение относится к области лазерной техники и касается изолятора Фарадея. Изолятор содержит последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, помещенный в поле, создаваемое магнитной системой, и анализатор. Магнитооптический ротатор выполнен из...
Тип: Изобретение
Номер охранного документа: 0002717394
Дата охранного документа: 23.03.2020
28.03.2020
№220.018.113a

Способ выращивания водорастворимых монокристаллов, использующий кондиционирование раствора

Изобретение относится к технологии выращивания водорастворимых оптических монокристаллов, в частности, группы дигидрофосфата калия (KDP), которые могут быть использованы, например, при изготовлении активных элементов параметрических преобразователей лазерного излучения для квантовой оптики. В...
Тип: Изобретение
Номер охранного документа: 0002717800
Дата охранного документа: 25.03.2020
06.07.2020
№220.018.301a

Источник пучков ионов с высоким током на основе плазмы эцр разряда, удерживаемой в открытой магнитной ловушке

Изобретение относится к области формирования непрерывных сильноточных пучков ионов путем их экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. Устройство содержит магнитную систему для создания магнитного...
Тип: Изобретение
Номер охранного документа: 0002725615
Дата охранного документа: 03.07.2020
11.07.2020
№220.018.3163

Источник интенсивных пучков ионов на основе плазмы эцр разряда, удерживаемой в открытой магнитной ловушке

Изобретение относится к области формирования интенсивных пучков ионов с высокой яркостью путем их экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. Устройство содержит плазменный электрод, выполненный в форме...
Тип: Изобретение
Номер охранного документа: 0002726143
Дата охранного документа: 09.07.2020
12.07.2020
№220.018.31fb

Способ измерения in situ спектра экстинкции прозрачного образца в фотохимическом процессе

Изобретение относится к области измерительной техники и касается способа измерения in situ спектра экстинкции прозрачного образца в фотохимическом процессе. Способ включает в себя облучение оптическим излучением прозрачного образца в рабочем положении в экспериментальной установке, последующий...
Тип: Изобретение
Номер охранного документа: 0002726271
Дата охранного документа: 10.07.2020
12.07.2020
№220.018.31fd

Наземный пассивный микроволновый радиометрический комплекс для измерения высотного профиля температуры нижней и средней атмосферы земли

Изобретение относится к устройствам измерения характеристик атмосферы, позволяет измерять высотный профиль температуры нижней и средней атмосферы с поверхности Земли и представляет собой пассивный наземный комплекс из трех сопряженных с персональным компьютером спектрорадиометров, каждый из...
Тип: Изобретение
Номер охранного документа: 0002726276
Дата охранного документа: 10.07.2020
12.07.2020
№220.018.3211

Изолятор фарадея на постоянных магнитах с высокой напряженностью магнитного поля

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с высокой средней мощностью излучения. Сущность изобретения заключается в том, что изолятор Фарадея на постоянных магнитах с высокой напряженностью магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002726274
Дата охранного документа: 10.07.2020
Showing 31-33 of 33 items.
02.11.2018
№218.016.99ce

Способ неразрушающего контроля поврежденности металлов

Использование: для неразрушающего контроля поврежденности металлов. Сущность изобретения заключается в том, что определяют временные задержки распространения упругой волны, при этом определение временных задержек производят для одного типа объемной упругой волны при разных температурах и...
Тип: Изобретение
Номер охранного документа: 0002671421
Дата охранного документа: 31.10.2018
25.07.2019
№219.017.b90a

Способ контроля толщины изделия из стали

Изобретение относится к ультразвуковой толщинометрии, дополненной измерениями магнитным методом. Способ заключается в том, что измеряют время распространения сдвиговой ультразвуковой волны и процентное содержание магнитной фазы в деформированном материале изделия из стали аустенитного класса и,...
Тип: Изобретение
Номер охранного документа: 0002695327
Дата охранного документа: 23.07.2019
12.04.2023
№223.018.49bb

Способ определения размеров дефекта при ультразвуковом контроле с помощью датчика на фазированной решетке

Использование: для определения размеров дефекта при ультразвуковом контроле с помощью датчика на фазированной решетке. Сущность изобретения заключается в том, что определение размеров дефекта при ультразвуковом контроле с помощью датчика на фазированной решетке основано на анализе S, С или D...
Тип: Изобретение
Номер охранного документа: 0002762780
Дата охранного документа: 22.12.2021
+ добавить свой РИД