×
26.08.2017
217.015.e447

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССЫ ДВУХФАЗНОГО ВЕЩЕСТВА В ЗАМКНУТОМ ЦИЛИНДРИЧЕСКОМ РЕЗЕРВУАРЕ

Вид РИД

Изобретение

№ охранного документа
0002626303
Дата охранного документа
25.07.2017
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в противопожарной технике для высокоточного определения массы огнетушащего вещества, в частности диоксида углерода, в резервуаре (баллоне) и ее уменьшения вследствие возможной утечки из баллона. Устройство содержит емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок. При этом длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05÷0,25 длины сифонной трубы. При этом датчик массы служит нагрузочным сопротивлением отрезка коаксиальной длинной линии, внутренний и наружный проводники которой на одном ее конце подсоединены к верхним концам, соответственно, сифонной трубы и сосной с ней металлической трубы, а на другом ее конце подключены к электронному блоку. Технический результат заключается в расширении функциональных возможностей устройства. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в противопожарной технике для высокоточного определения массы огнетушащего вещества, в частности диоксида углерода, в резервуаре (баллоне) и ее уменьшения вследствие возможной утечки из баллона.

В различных отраслях промышленности (химической, нефтеперерабатывающей, пищевой и др.) в технологических процессах находят применения однокомпонентные вещества, хранимые в металлических резервуарах (баллонах и т.п.). В зависимости от физических свойств этих веществ, условий, характеризующих хранение данных веществ (значения температуры, давления в резервуаре) возможно нахождение веществ в жидкой, газообразной фазах или в виде двухфазного вещества. В последнем случае между газом и жидкостью имеется граница раздела. Во всех таких случаях имеется необходимость определять с высокой точностью количество (объем, массу) хранимого вещества независимо от его фазового состояния, которое может быть неизвестным (а часто лишь прогнозируемым).

Известны различные устройства для измерения массы двухфазного вещества в металлическом резервуаре (баллоне и т.п.), в котором возможное уменьшение массы газа вследствие его утечки из резервуара определяют путем его взвешивания. Недостатками таких устройств являются их неудобство в эксплуатации, необходимость периодической поверки весов, высокая стоимость и ограниченная область применения, обусловленная невозможностью непрерывного контроля возможной утечки вещества из резервуара. Известные устройства с емкостными уровнемерами (US 5701932 А, 30.12.1997; DE 3731793 А1, 03.03.1989) не являются высокоточными, поскольку применимы лишь при наличии четкой границы раздела жидкой и газовой фаз вещества, что не имеет место в реальных условиях эксплуатации резервуаров, в частности баллонов с огнетушащими веществами.

В цилиндрических резервуарах имеется возможность реализовать такие датчики, используя конструктивные особенности резервуаров. Во многих практических случаях внутри такого резервуара располагается внутри него и вдоль его оси цилиндрическая металлическая труба (сифонная труба), по которой осуществляется выкачивание вещества из резервуара.

Известно также техническое решение (RU 2266464 С2, 10.11.2004; аналог - US 6836217 В2, 28.12.2004). Это устройство имеет замкнутый цилиндрический резервуар (баллон) с двухфазным веществом (диоксидом углерода) и устройство для определения его массы в резервуаре, содержащее емкостный датчик массы, образованный совокупностью металлической сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи другой металлической трубы в качестве второго проводника датчика, а также электронный блока. Недостатком этого устройства является зависимость результатов измерения массы двухфазного вещества от температуры, значительно снижающая точность измерения массы.

Известно также техническое решение (RU 2515074 С1, 10.05.2014), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Это устройство-прототип имеет замкнутый цилиндрический резервуар (баллон) с двухфазным веществом (диоксидом углерода) и устройство для определения его массы в резервуаре, содержащее емкостный датчик массы, образованный совокупностью металлической сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи другой металлической трубы в качестве второго проводника датчика, а также электронный блок. Недостатками этого устройства являются его ограниченные функциональные возможности: датчик в данном случае включается в частотозадающую цепь автогенератора, входящего в состав электронного блока. Электронный блок располагается при этом непосредственно рядом с датчиком, т.к. резервуаром с двухфазным веществом, что не предполагает проведения дистанционных измерений.

Техническим результатом предлагаемого изобретения является расширение функциональных возможностей устройства.

Технический результат достигается тем, что предлагаемое устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре, имеющем расположенную вдоль его продольной оси металлическую сифонную трубу, содержащее емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок, при этом длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05÷0,25 длины сифонной трубы, при этом датчик массы служит нагрузочным сопротивлением отрезка коаксиальной длинной линии, внутренний и наружный проводники которой на одном ее конце подсоединены к верхним концам, соответственно, сифонной трубы и сосной с ней металлической трубы, а на другом ее конце подключены к электронному блоку.

Предлагаемое устройство поясняется чертежом. На фиг. 1 изображена функциональная схема устройства.

Здесь введены обозначения: 1 - резервуар, 2 - сифонная труба, 3 - металлическая труба, 4 - диэлектрическая шайба, 5 - горловина, 6 и 7 - соответственно, внутренний и наружный проводники отрезка коаксиальной длинной линии, входная емкость 8, 9 - электронный блок, 10 - кран, 11 - трубопровод.

Устройство работает следующим образом.

В предлагаемом устройстве датчиком массы двухфазного вещества является сосредоточенное нагрузочное сопротивление отрезка длинной линии (коаксиального кабеля), в частности электрическая емкость Cн. Она образована совокупностью двух соосных проводников - сифонной трубки в качестве внутреннего проводника и металлической трубы в качестве наружного проводника электрической емкости Cн. Выходной характеристикой датчика массы является зависимость резонансной частоты электромагнитных колебаний рассматриваемого отрезка длинной линии от массы М двухфазного вещества в резервуаре.

В эквивалентной схеме рассматриваемого отрезка длинной линии на одном из его концов подключено комплексное нагрузочное сопротивление . В данном случае нагрузочным сопротивлением является сосредоточенная электрическая емкость CН. В случае наличия на конце отрезка длинной линии сосредоточенной электрической емкости CН, оконечная нагрузка длинной линии является реактивным сопротивлением:

Этой нагрузке соответствует равное ей входное сопротивление в точке подключения нагрузки.

Уравнение зависимости резонансной частоты отрезка длинной линии с оконечной нагрузкой в виде датчика с электрической емкостью Cн имеет следующий вид (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 42-50):

Здесь введены следующие обозначения: W - волновое (характеристическое) сопротивление отрезка длинной линии: Cвх - входная емкость отрезка длинной линии; - длина отрезка длинной линии; c=3⋅108 м/с - скорость света.

Величина Cвх обычно имеет малую величину, так что в расчетах ею можно пренебречь. Положив Cвх=0, соотношение (2) примет вид

Суммарная масса М двухфазного вещества в резервуаре определяется следующим соотношением:

где Mж и Mг - масса, соответственно, жидкой и газовой фаз вещества; ρж и ρг - плотность, соответственно, жидкости и газа; Vж и Vг - объем, занимаемый в резервуаре, соответственно, жидкостью и газом, причем Vж+Vг=V0, V0 - объем резервуара.

Для цилиндрического резервуара (4) можно записать так:

где - высота резервуара; z - координата (значение) уровня жидкости в баллоне, отсчитываемая от его дна. При этом не принят во внимание некоторый объем торцевых участков резервуара, который, однако, незначителен по сравнению с объемом всего резервуара.

Для неполярных диэлектрических веществ, включая диоксид углерода (CO2) и другие огнетушащие вещества (SF6, C2F4Br2, C2F5H, C3F7H, ТФМ-18), справедливо соотношение Клаузиуса-Мосотти между плотностью вещества (жидкости, газа) и его диэлектрической проницаемостью (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с.):

В этой формуле ε - диэлектрическая проницаемость вещества, μ - его молекулярная масса, ρ - плотность вещества, α - его молекулярная поляризуемость, N - число Авогадро.

При использовании датчиков на основе отрезков длинных линий и с применением данного соотношения, можно достаточно точно определять массу криогенных веществ в емкостях.

Из соотношения (6) следует, что

Здесь A=4πNα/3μ - постоянная для каждого вещества величина.

С учетом формулы (7) соотношение (5) можно записать в следующем виде:

Для рассматриваемого емкостного датчика можно записать следующее соотношение для эквивалентной нагрузочной емкости Cн:

Здесь C0 - погонная электрическая емкость (т.е. электрическая емкость на единицу длины), εж εг - относительные диэлектрические проницаемости жидкой и газовой фаз огнетушащего вещества, соответственно.

Формулу (9) можно представить так:

Отсюда находим

Подставив значение из (11) в соотношение (8), после преобразований получим

где

Формулу (9) можно записать в следующем виде:

Данная формула выражает линейную зависимость электрической емкости Cн от массы М двухфазного вещества. Измеряя Cн, можно определить М. Коэффициенты a и b являются постоянными величинами для каждого вещества при фиксированной температуре.

С учетом (13) формула (3) принимает следующий вид:

Отсюда находим искомое значение суммарной массы М жидкой фазы и газовой фазы двухфазного вещества в резервуаре:

Если температура непостоянна, то выбирая длину датчика, можно регулировать величину емкости Cн и ее зависимость от температуры, стремясь минимизировать такую зависимость (RU 2515074 C1, 10.05.2014).

В резервуаре 1 с двухфазным веществом - диоксидом углерода, содержащим металлическую сифонную трубу 2, вокруг последней и соосно с ней размещается снаружи другая металлическая труба 3. При этом металлическая сифонная труба 2 и металлическая труба 3 являются, соответственно, потенциальным и экранным электродами коаксиального емкостного датчика массы двухфазного вещества в резервуаре. Жесткость конструкции коаксиального датчика, т.е. соосность металлической трубы 3 и сифонной трубы 2, обеспечивается с помощью нескольких (1÷4) диэлектрических шайб 4 (изготовленных из полиамида или фторопласта), устанавливаемых равномерно вдоль длины датчика (на рисунке показана только одна такая шайба). Резервуар 1 имеет в верхней части горловину 5; через герметичные отверстия в них к верхним концам, соответственно, сифонной трубы 2 и металлической трубы 3 подсоединены, соответственно, внутренний проводник 6 и наружный проводник 7 отрезка коаксиальной длинной линии, противоположные концы которых подсоединены через входную емкость 8 малой величины (несколько пикофарад) к электронному блоку 9. Электронный блок 9 содержит микропроцессор для функциональной обработки информативного сигнала от коаксиального емкостного датчика массы двухфазного вещества. Электронный блок 9 имеет с другой стороны высокочастотный разъем для подсоединения к этому блоку источника питания, последовательного интерфейса, сигнализации предельных значений массы двухфазного вещества. На верхнем конце резервуара имеется кран 10 на трубопроводе 11 для выпуска вещества.

Благодаря наличию отрезка длинной линии с датчиком массы в качестве его оконечной емкостной нагрузки, подключенного к электронному блоку 9 через разделительную (входную) емкость 8, имеется возможность располагать электронный блок устройства удаленно от резервуара с контролируемым двухфазным веществом. Расстояние между электронным блоком и резервуаром определяется как длиной отрезка линии, так и длиной линии между входной емкостью и электронным блоком, которые можно выбирать в широких пределах.

Выбирая же длину датчика, т.е. длину металлической трубы 3, можно регулировать величину емкости Cн и ее зависимость от температуры, стремясь минимизировать такую зависимость. Укорочение длины емкостного датчика можно обеспечить путем укорочения снизу металлической трубы 3 - наружного проводника емкостного датчика; при этом длина датчика соответствует этой укороченной длине металлической трубы 3. Данное укорочение емкостного датчика обеспечивается уменьшением снизу на 0,05÷0,25 длины металлической трубы 3 по сравнению с длиной сифонной трубы 2 (RU 2515074 C1, 10.05.2014). Данные численные значения могут быть уточнены (т.е. заданы в более узком диапазоне) при экспериментальных исследованиях датчика для каждого двухфазного вещества и для конкретной степени заполнения им резервуара.

Таким образом, предлагаемое устройство позволяет измерять массу двухфазного вещества в резервуаре при удаленном расположении электронного блока от резервуара с контролируемым веществом. Данное устройство применимо при наличии в резервуаре как диоксида углерода, так и других двухфазных веществ. Применение данного устройства дает возможность с высокой точностью определять суммарную массу двухфазных однокомпонентных веществ в металлических цилиндрических резервуарах независимо от их фазового состояния.

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре, имеющем расположенную вдоль его продольной оси металлическую сифонную трубу, содержащее емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок, при этом длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05÷0,25 длины сифонной трубы, отличающееся тем, что датчик массы служит нагрузочным сопротивлением отрезка коаксиальной длинной линии, внутренний и наружный проводники которой на одном ее конце подсоединены к верхним концам, соответственно, сифонной трубы и соосной с ней металлической трубы, а на другом ее конце подключены к электронному блоку.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССЫ ДВУХФАЗНОГО ВЕЩЕСТВА В ЗАМКНУТОМ ЦИЛИНДРИЧЕСКОМ РЕЗЕРВУАРЕ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССЫ ДВУХФАЗНОГО ВЕЩЕСТВА В ЗАМКНУТОМ ЦИЛИНДРИЧЕСКОМ РЕЗЕРВУАРЕ
Источник поступления информации: Роспатент

Showing 31-40 of 53 items.
27.03.2016
№216.014.c78d

Способ определения положения границы раздела двух веществ в емкости

Изобретение относится к измерительной технике. В заявленном способе определения положения границы раздела двух веществ в емкости, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу раздела, размещают вертикально отрезок длинной линии длиной l,...
Тип: Изобретение
Номер охранного документа: 0002578749
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2e71

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах...
Тип: Изобретение
Номер охранного документа: 0002579359
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4603

Устройство для измерения давления

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком,...
Тип: Изобретение
Номер охранного документа: 0002586388
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.a204

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин, в частности механических величин, геометрических параметров объектов и физических свойств веществ. При реализации способа измерения физической величины с помощью...
Тип: Изобретение
Номер охранного документа: 0002606807
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a7eb

Способ измерения количества каждой компоненты многокомпонентной среды в емкости

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного количества (объема) многокомпонентной среды в емкости, произвольным образом распределенной внутри нее. В частности, оно может быть применено для измерения количества каждой компоненты...
Тип: Изобретение
Номер охранного документа: 0002611210
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8da

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья. Оно может быть применено также при бесконтактном измерении...
Тип: Изобретение
Номер охранного документа: 0002611334
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8e8

Способ измерения состава двухфазного вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002611439
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.ab10

Способ измерения состава трехкомпонентного водосодержащего вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами трехкомпонентного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002612033
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b28a

Способ измерения влагосодержания жидкости

Изобретение относится к электротехнике и может быть использовано для высокоточного измерения влагосодержания различных диэлектрических жидких веществ, в частности нефти и нефтепродуктов, находящихся в емкостях или перекачиваемых по трубопроводам. Способ измерения влагосодержания жидкости...
Тип: Изобретение
Номер охранного документа: 0002614054
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c922

Устройство для измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Оно может быть применено также для измерения диаметра других протяженных металлических изделий (стержней, нитей и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002619356
Дата охранного документа: 15.05.2017
Showing 31-40 of 86 items.
27.03.2016
№216.014.c78d

Способ определения положения границы раздела двух веществ в емкости

Изобретение относится к измерительной технике. В заявленном способе определения положения границы раздела двух веществ в емкости, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу раздела, размещают вертикально отрезок длинной линии длиной l,...
Тип: Изобретение
Номер охранного документа: 0002578749
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2e71

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах...
Тип: Изобретение
Номер охранного документа: 0002579359
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4603

Устройство для измерения давления

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком,...
Тип: Изобретение
Номер охранного документа: 0002586388
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.a204

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин, в частности механических величин, геометрических параметров объектов и физических свойств веществ. При реализации способа измерения физической величины с помощью...
Тип: Изобретение
Номер охранного документа: 0002606807
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a7eb

Способ измерения количества каждой компоненты многокомпонентной среды в емкости

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного количества (объема) многокомпонентной среды в емкости, произвольным образом распределенной внутри нее. В частности, оно может быть применено для измерения количества каждой компоненты...
Тип: Изобретение
Номер охранного документа: 0002611210
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8da

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья. Оно может быть применено также при бесконтактном измерении...
Тип: Изобретение
Номер охранного документа: 0002611334
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8e8

Способ измерения состава двухфазного вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002611439
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.ab10

Способ измерения состава трехкомпонентного водосодержащего вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами трехкомпонентного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002612033
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b28a

Способ измерения влагосодержания жидкости

Изобретение относится к электротехнике и может быть использовано для высокоточного измерения влагосодержания различных диэлектрических жидких веществ, в частности нефти и нефтепродуктов, находящихся в емкостях или перекачиваемых по трубопроводам. Способ измерения влагосодержания жидкости...
Тип: Изобретение
Номер охранного документа: 0002614054
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c922

Устройство для измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Оно может быть применено также для измерения диаметра других протяженных металлических изделий (стержней, нитей и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002619356
Дата охранного документа: 15.05.2017
+ добавить свой РИД