×
26.08.2017
217.015.e2fc

Результат интеллектуальной деятельности: МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ ФАЗОВЫХ МИКРООБЪЕКТОВ В ПРОИЗВОЛЬНЫХ УЗКИХ СПЕКТРАЛЬНЫХ ИНТЕРВАЛАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологиям количественной фазовой микроскопии и предназначено для измерения пространственного распределения фазовой задержки, вносимой прозрачным микрообъектом, в произвольных узких спектральных интервалах. Способ заключается в том, что прошедшее через микрообъект коллимированное широкополосное оптическое излучение фильтруется и поляризуется с помощью перестраиваемого монохроматора и поляризатора, и затем делится на два идентичных пучка, которые сводятся под углом и направляются на вход 4f-системы, в которой в плоскости промежуточного изображения осуществляется пространственная фильтрация одного из них с выделением в нем узконаправленного излучения в виде плоской волны, далее регистрируется картина их интерференции матричным приемником излучения. Процедура повторяется для всех требуемых спектральных компонент. Технический результат – возможность получения изображений фазовых микрообъектов в произвольных узких спектральных интервалах, упрощение конструкции, уменьшение габаритов. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к технологиям количественной фазовой микроскопии и предназначено для измерения пространственного распределения фазовой задержки, вносимой прозрачным микрообъектом, в произвольных узких спектральных интервалах. Известны устройства количественного морфологического анализа клеток и биотканей, основанные на методах количественной визуализации фазы, в которых регистрируется интерференционное изображение, образованное в результате интерференции опорной световой волны и прошедшей через исследуемый образец объектной волны, а результатом обработки зарегистрированной интерференционной картины является двумерное распределение величины вносимой неоднородным микрообразцом фазовой задержки. Поскольку фазовая задержка пропорциональна оптической длине пути света, прошедшего через исследуемый образец, то есть зависит от его толщины и показателя преломления, то для получения количественной информации о показателе преломления клеток требуется регистрация изображений на нескольких длинах волн. В случае если показатель преломления исследуемого объекта (или вещества) и, как следствие, вносимая им фазовая задержка имеют существенную спектральную зависимость, которая может быть использована в задачах идентификации объекта и анализа протекающих в нем процессов, необходимо измерение на многих длинах волн, в том числе на конкретных, определяемых составом объекта.

Существует несколько подходов к решению задачи регистрации спектральных фазовых изображений, но все они обладают теми или иными недостатками: необходимостью замены фильтров [Y. Park, Т. Yamauchi, W. Choi, R. Dasari, and M.S. Feld, Opt. Lett. 34, 3668 (2009)], перемещения образца из одной иммерсионной среды в другую [В. Rappaz, P. Marquet, Е. Cuche, Y. Emery, С. Depeursinge, and P.J. Magistretti, Opt. Express 13, 9361 (2005)], использования нескольких различных источников излучения [D. Fu, W. Choi, Y.J. Sung, Z. Yaqoob, R.R. Dasari, and M. Feld, Biomed. Opt. Express 1, 347 (2010)] или подвижных элементов и дополнительного дорогостоящего оборудования (спектрометра) [патент US 8837045; Н. Pham, В. Bhaduri, Н. Ding, and G. Popescu, Opt. Lett. 37, 3438 (2012)]. Методы, использующие многоволновой подход, ограничены, как правило, тремя длинами волн и поэтому могут быть использованы для количественного анализа только достаточно простых клеточных структур. Для исследований в более широком диапазоне использовалась система с 6-ю светодиодами (с полосой от 12 до 40 нм), спектр которых полностью охватывал видимый диапазон [V. Dubey, G. Singh, V. Singh, A. Ahmad, and D.S. Mehta, Appl. Opt. 55, 2521-2525 (2016)]. С учетом того, что фоновая засветка, вызванная паразитным рассеянием на элементах системы, пропорциональна спектральной ширине канала, такие достаточно большие значения приводят к снижению контраста регистрируемой интерференционной картины по сравнению с узкополосными аналогами, и, как следствие, к увеличению погрешности восстановления фазы. Кроме того, недостатками этого подхода являются дискретность и ограниченность выбора длин волн, а также использование подвижных элементов, что снижает быстродействие и к тому же требует дополнительной юстировки схемы при переключении между светодиодами.

Поэтому для исследования биообъектов представляет интерес создание систем, обладающих большим числом спектральных каналов, покрывающих широкий спектральный интервал. Примером технической реализации этой задачи является съемный модуль к микроскопу [Patent US 8837045; Н. Pham, В. Bhaduri, Н. Ding, and G. Popescu, Opt. Lett. 37, 3438 (2012)], который и был выбран в качестве прототипа предлагаемого устройства. Этот модуль использует источник белого света - галогеновую лампу, и дифракционную решетку, раскладывающую белый свет на спектральные составляющие. С помощью амплитудного пространственного селектора света в пучке 1-го порядка дифракции поочередно выделяются узкие спектральные интервалы и в каждом из них регистрируется интерференционная картина от выделенного пучка и от недифрагированного пучка (0-го порядка дифракции). По этим картинам численными методами количественно восстанавливается распределение фазы по сечению на каждой длине волны. Недостатками этого устройства являются наличие дополнительного механического селектора положения излучения требуемой длины волны, необходимость использования дополнительного оборудования - спектрометра - для калибровки с целью предварительного измерения положения (средней длины волны) выделяемых спектральных кривых, и необходимость регулировать размер диафрагмы в зависимости от параметров оптической системы. Все это приводит к ограничению области применения модуля, а достаточно большая ширина выделяемых спектральных каналов (~28 нм) - к невысокому контрасту регистрируемой интерференционной картины.

Задачей изобретения является устранение недостатков известных решений.

Техническим результатом изобретения является возможность получения изображений фазовых микрообъектов в произвольных узких спектральных интервалах в пределах широкого диапазона без использования подвижных, громоздких и дорогих оптико-электронных и механических компонентов.

Для решения указанной технической задачи с достижением указанного технического результата применяется способ регистрации фазовых изображений микрообъектов в произвольных узких спектральных интервалах, состоящий в том, что прошедшее через микрообъект коллимированное широкополосное оптическое излучение фильтруется (выделяется одна спектральная компонента) и поляризуется с помощью перестраиваемого монохроматора и поляризатора и затем делится на два идентичных пучка, которые сводятся под углом и направляются на вход 4f-системы, в которой в плоскости промежуточного изображения осуществляется пространственная фильтрация одного из них с выделением в нем узконаправленного излучения в виде плоской волны, и регистрируют картину их интерференции матричным приемником излучения.

Последовательно перестраивая монохроматор в пределах его рабочего спектрального диапазона, регистрируют интерференционные картины в узких спектральных интервалах и путем цифровой обработки каждой из них вычисляют пространственное распределение в каждом спектральном интервале фазовой задержки и соответственно ее спектральную зависимость. Это позволяет определить величину и спектральную зависимость показателя преломления каждого элемента однородного по толщине исследуемого образца.

Пространственная фильтрация интерферирующих пучков в совмещенной фокальной плоскости пары линз 4f-системы осуществляется с помощью пространственного фильтра, представляющего собой экран с двумя круглыми отверстиями: 1) «точечным» (малого диаметра) для создания опорного плоского волнового фронта на выходе пространственного фильтра и 2) выделяющим полностью второй пучок для сохранения объектного волнового фронта (минимально достаточного диаметра).

Изобретение поясняется чертежом.

На Фиг. 1 показана структурная схема прибора, где 1 - широкополосный источник света, 2 - коллективная линза, 3 - диафрагма, 4 - конденсор, 5 - исследуемый объект, 6 - микрообъектив, 7, 11, 12 - зеркала, 8 - тубусная линза, 9 - поляризующий монохроматор, 10, 13 - светоделители, 14, 16 - линзы, 15 - пространственный фильтр, 17 - матричный приемник излучения, M - световой микроскоп, работающий «на просвет».

Осуществление изобретения

Изобретение может быть реализовано на основе устройства, состоящего из оптически связанных и расположенных последовательно элементов, составляющих схему светового микроскопа M: широкополосного источника света 1; линз 2 и 4 и диафрагмы 3, образующих коллимирующую систему; микрообъектива 6 и тубусной линзы 8; а также элементов, образующих дополнительный модуль к микроскопу: монохроматора с линейным поляризатором 9, системы из пары светоделителей 10, 13 и пары зеркал 11, 12, 4f-системы, состоящей из пары линз 14 и 16 и пространственного транспаранта (экрана) 15; матричного приемника излучения 17.

Отличием изобретения является то, что вместо дифракционной решетки, осуществляющей спектральную фильтрацию и угловое разделение световых пучков, установлены последовательно перестраиваемый узкополосный спектральный фильтр (монохроматор) и оптическая система из пары светоделителей 10, 13 и пары зеркал для разделения светового пучка на два и их последующего сведения в передней фокальной плоскости первой линзы 4f-системы. Из схемы исключено механическое устройство для селекции заданной спектральной компоненты (порядка дифракции), расположенное в плоскости промежуточного изображения 4f-системы. Устройство на основе предлагаемого метода отличается компактностью, высоким спектральным разрешением, большим числом (несколько сотен и даже тысяч) спектральных каналов, высоким отношением сигнал/шум за счет отсутствия создающих фон высших порядков дифракции, отсутствием подвижных элементов и необходимости использования дополнительных дорогостоящих компонентов (пространственного модулятора света, спектрометра и пр.).

В предпочтительном варианте осуществления реализуется вариант схемы, заключающийся в использовании в качестве поляризующего монохроматора 9 акустооптического перестраиваемого фильтра, выделяющего из падающего излучения заданный узкий спектральный интервал и линейную поляризацию.

Прибор работает следующим образом.

Исследуемый фазовый объект (образец) 5 устанавливают на предметный столик работающего «на просвет» светового микроскопа М. Излучение широкополосного источника света 1 собирается коллективом 2 в плоскости точечной диафрагмы 3, коллимируется конденсором 4 и направляется на исследуемый объект 5, расположенный в передней фокальной плоскости микрообъектива 6. Прошедшее через объект излучение проходит через микрообъектив 6 и направляется зеркалом 7 на тубусную линзу 8, после которой коллимированное излучение поступает на перестраиваемый монохроматор с линейным поляризатором 9, выделяющий из него заданный узкий спектральный интервал и линейную поляризацию. Узкополосное и линейно поляризованное излучение с помощью системы светоделителей 10, 13 и зеркал 11, 12 делится на два пучка примерно равной интенсивности, которые сводятся под некоторым углом, регулируемым наклоном светоделителя 13, на входе 4f-системы, состоящей из пары софокусных линз 14 и 16 и транспаранта 15. Транспарант в виде экрана с двумя отверстиями различного диаметра 15 выполняет роль пространственного фильтра. Точечное отверстие осуществляет пространственную фильтрацию одного из пучков, так что после линзы 16 он имеет плоский волновой фронт, образуя опорную волну. Второе отверстие полностью пропускает второй пучок, отрезая фоновое излучение, образующееся вследствие паразитного рассеяния на элементах системы, и тем самым сохраняет неизменным объектный волновой фронт. После линзы 16 интерферирующие объектный и плоский опорный световые пучки накладываются в плоскости матричного приемника излучения 17, регистрирующего интерференционную картину. Последовательно перестраивая монохроматор 9 в пределах рабочего спектрального диапазона, регистрируют интерференционные картины в узких спектральных интервалах и путем цифровой обработки каждой из этих картин вычисляют пространственное распределение фазы в соответствующем спектральном интервале, что позволяет определить на различных длинах волн показатель преломления всех элементов исследуемого образца (если он является однородным).


МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ ФАЗОВЫХ МИКРООБЪЕКТОВ В ПРОИЗВОЛЬНЫХ УЗКИХ СПЕКТРАЛЬНЫХ ИНТЕРВАЛАХ
МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ ФАЗОВЫХ МИКРООБЪЕКТОВ В ПРОИЗВОЛЬНЫХ УЗКИХ СПЕКТРАЛЬНЫХ ИНТЕРВАЛАХ
Источник поступления информации: Роспатент

Showing 21-28 of 28 items.
12.12.2019
№219.017.ec49

Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее...
Тип: Изобретение
Номер охранного документа: 0002708549
Дата охранного документа: 09.12.2019
21.12.2019
№219.017.efd6

Интерферометр майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП). Интерферометр содержит источник коллимированного р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002709600
Дата охранного документа: 18.12.2019
08.02.2020
№220.018.0039

Способ регистрации мультиспектрального цифрового голографического изображения

Изобретение относится к технологиям цифровой голографии, а именно количественной фазовой микроскопии, и предназначено для измерения спектральной зависимости пространственного распределения фазовой задержки, вносимой оптически прозрачным объектом в световую волну. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002713567
Дата охранного документа: 05.02.2020
20.05.2020
№220.018.1e1d

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования

Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта,...
Тип: Изобретение
Номер охранного документа: 0002721097
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e2a

Способ одновременной спектральной фильтрации пары световых пучков с перестройкой по спектру

Изобретение относится к области стереоскопии, а именно к способам получения и регистрации спектральных стереоизображений объектов. Техническим результатом изобретения является использование одного акустооптического (АО) кристалла малых массы и габаритов, исключение или упрощение формирующей...
Тип: Изобретение
Номер охранного документа: 0002721170
Дата охранного документа: 18.05.2020
13.06.2020
№220.018.26ba

Управляемый ультразвуком поляризатор терагерцового излучения

Изобретение относится к оптике терагерцового (ТГц) диапазона и может быть использовано для поляризации и амплитудной модуляции ТГц излучения без использования мобильных оптических устройств, размещаемых на пути пучка излучения. Суть изобретения заключается в том, что поляризатор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002723150
Дата охранного документа: 09.06.2020
07.07.2020
№220.018.3031

Способ получения композитного материала, обладающего высоким уровнем флуоресценции под действием электромагнитного излучения видимого диапазона

Изобретение относится к химической и электронной промышленности, а также к медицине и может быть использовано при производстве флуоресцентных пигментов, светодиодов, лазеров, медицинских зондов. В реакционную зону помещают смесь меламина и оксида алюминия при соотношении их масс 1:3. Затем...
Тип: Изобретение
Номер охранного документа: 0002725796
Дата охранного документа: 06.07.2020
16.06.2023
№223.018.79d3

Способ визуализации неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении

Изобретение относится к оптическим методам контроля качества поверхности полупроводниковых и металлических изделий, в которых взаимодействие зондирующего излучения с поверхностью опосредовано поверхностной электромагнитной волной (ПЭВ), возбуждаемой падающим излучением и направляемой...
Тип: Изобретение
Номер охранного документа: 0002737725
Дата охранного документа: 02.12.2020
Showing 21-21 of 21 items.
20.05.2020
№220.018.1e2a

Способ одновременной спектральной фильтрации пары световых пучков с перестройкой по спектру

Изобретение относится к области стереоскопии, а именно к способам получения и регистрации спектральных стереоизображений объектов. Техническим результатом изобретения является использование одного акустооптического (АО) кристалла малых массы и габаритов, исключение или упрощение формирующей...
Тип: Изобретение
Номер охранного документа: 0002721170
Дата охранного документа: 18.05.2020
+ добавить свой РИД