×
26.08.2017
217.015.e2fc

Результат интеллектуальной деятельности: МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ ФАЗОВЫХ МИКРООБЪЕКТОВ В ПРОИЗВОЛЬНЫХ УЗКИХ СПЕКТРАЛЬНЫХ ИНТЕРВАЛАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологиям количественной фазовой микроскопии и предназначено для измерения пространственного распределения фазовой задержки, вносимой прозрачным микрообъектом, в произвольных узких спектральных интервалах. Способ заключается в том, что прошедшее через микрообъект коллимированное широкополосное оптическое излучение фильтруется и поляризуется с помощью перестраиваемого монохроматора и поляризатора, и затем делится на два идентичных пучка, которые сводятся под углом и направляются на вход 4f-системы, в которой в плоскости промежуточного изображения осуществляется пространственная фильтрация одного из них с выделением в нем узконаправленного излучения в виде плоской волны, далее регистрируется картина их интерференции матричным приемником излучения. Процедура повторяется для всех требуемых спектральных компонент. Технический результат – возможность получения изображений фазовых микрообъектов в произвольных узких спектральных интервалах, упрощение конструкции, уменьшение габаритов. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к технологиям количественной фазовой микроскопии и предназначено для измерения пространственного распределения фазовой задержки, вносимой прозрачным микрообъектом, в произвольных узких спектральных интервалах. Известны устройства количественного морфологического анализа клеток и биотканей, основанные на методах количественной визуализации фазы, в которых регистрируется интерференционное изображение, образованное в результате интерференции опорной световой волны и прошедшей через исследуемый образец объектной волны, а результатом обработки зарегистрированной интерференционной картины является двумерное распределение величины вносимой неоднородным микрообразцом фазовой задержки. Поскольку фазовая задержка пропорциональна оптической длине пути света, прошедшего через исследуемый образец, то есть зависит от его толщины и показателя преломления, то для получения количественной информации о показателе преломления клеток требуется регистрация изображений на нескольких длинах волн. В случае если показатель преломления исследуемого объекта (или вещества) и, как следствие, вносимая им фазовая задержка имеют существенную спектральную зависимость, которая может быть использована в задачах идентификации объекта и анализа протекающих в нем процессов, необходимо измерение на многих длинах волн, в том числе на конкретных, определяемых составом объекта.

Существует несколько подходов к решению задачи регистрации спектральных фазовых изображений, но все они обладают теми или иными недостатками: необходимостью замены фильтров [Y. Park, Т. Yamauchi, W. Choi, R. Dasari, and M.S. Feld, Opt. Lett. 34, 3668 (2009)], перемещения образца из одной иммерсионной среды в другую [В. Rappaz, P. Marquet, Е. Cuche, Y. Emery, С. Depeursinge, and P.J. Magistretti, Opt. Express 13, 9361 (2005)], использования нескольких различных источников излучения [D. Fu, W. Choi, Y.J. Sung, Z. Yaqoob, R.R. Dasari, and M. Feld, Biomed. Opt. Express 1, 347 (2010)] или подвижных элементов и дополнительного дорогостоящего оборудования (спектрометра) [патент US 8837045; Н. Pham, В. Bhaduri, Н. Ding, and G. Popescu, Opt. Lett. 37, 3438 (2012)]. Методы, использующие многоволновой подход, ограничены, как правило, тремя длинами волн и поэтому могут быть использованы для количественного анализа только достаточно простых клеточных структур. Для исследований в более широком диапазоне использовалась система с 6-ю светодиодами (с полосой от 12 до 40 нм), спектр которых полностью охватывал видимый диапазон [V. Dubey, G. Singh, V. Singh, A. Ahmad, and D.S. Mehta, Appl. Opt. 55, 2521-2525 (2016)]. С учетом того, что фоновая засветка, вызванная паразитным рассеянием на элементах системы, пропорциональна спектральной ширине канала, такие достаточно большие значения приводят к снижению контраста регистрируемой интерференционной картины по сравнению с узкополосными аналогами, и, как следствие, к увеличению погрешности восстановления фазы. Кроме того, недостатками этого подхода являются дискретность и ограниченность выбора длин волн, а также использование подвижных элементов, что снижает быстродействие и к тому же требует дополнительной юстировки схемы при переключении между светодиодами.

Поэтому для исследования биообъектов представляет интерес создание систем, обладающих большим числом спектральных каналов, покрывающих широкий спектральный интервал. Примером технической реализации этой задачи является съемный модуль к микроскопу [Patent US 8837045; Н. Pham, В. Bhaduri, Н. Ding, and G. Popescu, Opt. Lett. 37, 3438 (2012)], который и был выбран в качестве прототипа предлагаемого устройства. Этот модуль использует источник белого света - галогеновую лампу, и дифракционную решетку, раскладывающую белый свет на спектральные составляющие. С помощью амплитудного пространственного селектора света в пучке 1-го порядка дифракции поочередно выделяются узкие спектральные интервалы и в каждом из них регистрируется интерференционная картина от выделенного пучка и от недифрагированного пучка (0-го порядка дифракции). По этим картинам численными методами количественно восстанавливается распределение фазы по сечению на каждой длине волны. Недостатками этого устройства являются наличие дополнительного механического селектора положения излучения требуемой длины волны, необходимость использования дополнительного оборудования - спектрометра - для калибровки с целью предварительного измерения положения (средней длины волны) выделяемых спектральных кривых, и необходимость регулировать размер диафрагмы в зависимости от параметров оптической системы. Все это приводит к ограничению области применения модуля, а достаточно большая ширина выделяемых спектральных каналов (~28 нм) - к невысокому контрасту регистрируемой интерференционной картины.

Задачей изобретения является устранение недостатков известных решений.

Техническим результатом изобретения является возможность получения изображений фазовых микрообъектов в произвольных узких спектральных интервалах в пределах широкого диапазона без использования подвижных, громоздких и дорогих оптико-электронных и механических компонентов.

Для решения указанной технической задачи с достижением указанного технического результата применяется способ регистрации фазовых изображений микрообъектов в произвольных узких спектральных интервалах, состоящий в том, что прошедшее через микрообъект коллимированное широкополосное оптическое излучение фильтруется (выделяется одна спектральная компонента) и поляризуется с помощью перестраиваемого монохроматора и поляризатора и затем делится на два идентичных пучка, которые сводятся под углом и направляются на вход 4f-системы, в которой в плоскости промежуточного изображения осуществляется пространственная фильтрация одного из них с выделением в нем узконаправленного излучения в виде плоской волны, и регистрируют картину их интерференции матричным приемником излучения.

Последовательно перестраивая монохроматор в пределах его рабочего спектрального диапазона, регистрируют интерференционные картины в узких спектральных интервалах и путем цифровой обработки каждой из них вычисляют пространственное распределение в каждом спектральном интервале фазовой задержки и соответственно ее спектральную зависимость. Это позволяет определить величину и спектральную зависимость показателя преломления каждого элемента однородного по толщине исследуемого образца.

Пространственная фильтрация интерферирующих пучков в совмещенной фокальной плоскости пары линз 4f-системы осуществляется с помощью пространственного фильтра, представляющего собой экран с двумя круглыми отверстиями: 1) «точечным» (малого диаметра) для создания опорного плоского волнового фронта на выходе пространственного фильтра и 2) выделяющим полностью второй пучок для сохранения объектного волнового фронта (минимально достаточного диаметра).

Изобретение поясняется чертежом.

На Фиг. 1 показана структурная схема прибора, где 1 - широкополосный источник света, 2 - коллективная линза, 3 - диафрагма, 4 - конденсор, 5 - исследуемый объект, 6 - микрообъектив, 7, 11, 12 - зеркала, 8 - тубусная линза, 9 - поляризующий монохроматор, 10, 13 - светоделители, 14, 16 - линзы, 15 - пространственный фильтр, 17 - матричный приемник излучения, M - световой микроскоп, работающий «на просвет».

Осуществление изобретения

Изобретение может быть реализовано на основе устройства, состоящего из оптически связанных и расположенных последовательно элементов, составляющих схему светового микроскопа M: широкополосного источника света 1; линз 2 и 4 и диафрагмы 3, образующих коллимирующую систему; микрообъектива 6 и тубусной линзы 8; а также элементов, образующих дополнительный модуль к микроскопу: монохроматора с линейным поляризатором 9, системы из пары светоделителей 10, 13 и пары зеркал 11, 12, 4f-системы, состоящей из пары линз 14 и 16 и пространственного транспаранта (экрана) 15; матричного приемника излучения 17.

Отличием изобретения является то, что вместо дифракционной решетки, осуществляющей спектральную фильтрацию и угловое разделение световых пучков, установлены последовательно перестраиваемый узкополосный спектральный фильтр (монохроматор) и оптическая система из пары светоделителей 10, 13 и пары зеркал для разделения светового пучка на два и их последующего сведения в передней фокальной плоскости первой линзы 4f-системы. Из схемы исключено механическое устройство для селекции заданной спектральной компоненты (порядка дифракции), расположенное в плоскости промежуточного изображения 4f-системы. Устройство на основе предлагаемого метода отличается компактностью, высоким спектральным разрешением, большим числом (несколько сотен и даже тысяч) спектральных каналов, высоким отношением сигнал/шум за счет отсутствия создающих фон высших порядков дифракции, отсутствием подвижных элементов и необходимости использования дополнительных дорогостоящих компонентов (пространственного модулятора света, спектрометра и пр.).

В предпочтительном варианте осуществления реализуется вариант схемы, заключающийся в использовании в качестве поляризующего монохроматора 9 акустооптического перестраиваемого фильтра, выделяющего из падающего излучения заданный узкий спектральный интервал и линейную поляризацию.

Прибор работает следующим образом.

Исследуемый фазовый объект (образец) 5 устанавливают на предметный столик работающего «на просвет» светового микроскопа М. Излучение широкополосного источника света 1 собирается коллективом 2 в плоскости точечной диафрагмы 3, коллимируется конденсором 4 и направляется на исследуемый объект 5, расположенный в передней фокальной плоскости микрообъектива 6. Прошедшее через объект излучение проходит через микрообъектив 6 и направляется зеркалом 7 на тубусную линзу 8, после которой коллимированное излучение поступает на перестраиваемый монохроматор с линейным поляризатором 9, выделяющий из него заданный узкий спектральный интервал и линейную поляризацию. Узкополосное и линейно поляризованное излучение с помощью системы светоделителей 10, 13 и зеркал 11, 12 делится на два пучка примерно равной интенсивности, которые сводятся под некоторым углом, регулируемым наклоном светоделителя 13, на входе 4f-системы, состоящей из пары софокусных линз 14 и 16 и транспаранта 15. Транспарант в виде экрана с двумя отверстиями различного диаметра 15 выполняет роль пространственного фильтра. Точечное отверстие осуществляет пространственную фильтрацию одного из пучков, так что после линзы 16 он имеет плоский волновой фронт, образуя опорную волну. Второе отверстие полностью пропускает второй пучок, отрезая фоновое излучение, образующееся вследствие паразитного рассеяния на элементах системы, и тем самым сохраняет неизменным объектный волновой фронт. После линзы 16 интерферирующие объектный и плоский опорный световые пучки накладываются в плоскости матричного приемника излучения 17, регистрирующего интерференционную картину. Последовательно перестраивая монохроматор 9 в пределах рабочего спектрального диапазона, регистрируют интерференционные картины в узких спектральных интервалах и путем цифровой обработки каждой из этих картин вычисляют пространственное распределение фазы в соответствующем спектральном интервале, что позволяет определить на различных длинах волн показатель преломления всех элементов исследуемого образца (если он является однородным).


МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ ФАЗОВЫХ МИКРООБЪЕКТОВ В ПРОИЗВОЛЬНЫХ УЗКИХ СПЕКТРАЛЬНЫХ ИНТЕРВАЛАХ
МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ ФАЗОВЫХ МИКРООБЪЕКТОВ В ПРОИЗВОЛЬНЫХ УЗКИХ СПЕКТРАЛЬНЫХ ИНТЕРВАЛАХ
Источник поступления информации: Роспатент

Showing 11-20 of 28 items.
09.06.2018
№218.016.5ace

Триангуляционный метод измерения площади участков поверхности внутренних полостей объектов известной формы

Изобретение относится к технологиям визуально-измерительного контроля (ВИК), позволяющим по зарегистрированным изображениям обнаружить искомые элементы поверхности контролируемых объектов в труднодоступных внутренних полостях различных технических устройств и сооружений и измерить...
Тип: Изобретение
Номер охранного документа: 0002655479
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5aef

Способ и устройство регистрации пространственного распределения оптических характеристик труднодоступных объектов

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления...
Тип: Изобретение
Номер охранного документа: 0002655472
Дата охранного документа: 28.05.2018
02.12.2018
№218.016.a28f

Двухкомпонентный интерферометр общего пути

Устройство предназначено для регистрации пространственного распределения фазовой задержки, вносимой оптически прозрачным микрообъектом, и измерению его характеристик. Устройство состоит из оптически связанных и расположенных последовательно первого оптического компонента, фокусирующего...
Тип: Изобретение
Номер охранного документа: 0002673784
Дата охранного документа: 29.11.2018
08.03.2019
№219.016.d343

Акустооптическая ячейка для реализации обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в жидкости

Использование: для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Сущность изобретения заключается в том, что акустооптическая ячейка (АО-ячейка) содержит герметичный контейнер с...
Тип: Изобретение
Номер охранного документа: 0002681420
Дата охранного документа: 06.03.2019
08.03.2019
№219.016.d3a2

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области бесконтактного исследования поверхности металлов и полупроводников и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник p-поляризованного монохроматического излучения,...
Тип: Изобретение
Номер охранного документа: 0002681427
Дата охранного документа: 06.03.2019
14.03.2019
№219.016.df80

Устройство для определения коэффициента затухания поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения

Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства определения коэффициента затухания поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство включает в себя источник...
Тип: Изобретение
Номер охранного документа: 0002681658
Дата охранного документа: 12.03.2019
05.04.2019
№219.016.fd4c

Устройство для наблюдения обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в кристаллической среде

Изобретение относится к акустооптике и может найти применение для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Устройство для наблюдения обратной коллинеарной дифракции...
Тип: Изобретение
Номер охранного документа: 0002683886
Дата охранного документа: 03.04.2019
07.06.2019
№219.017.74e9

Способ получения нитрида углерода, обладающего аномально высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона

Изобретение относится к неорганической химии и может быть использовано в фотокатализе, литий-ионных аккумуляторах, медицинских зондах. Меламин разлагают в закрытом кварцевом реакторе в азотсодержащей атмосфере при 275-295 С в течение 4,5-6 ч. Получают графитоподобный g-CN, имеющий молярное...
Тип: Изобретение
Номер охранного документа: 0002690810
Дата охранного документа: 05.06.2019
24.10.2019
№219.017.dab1

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области исследования поверхности металлов и полупроводников оптическими методами и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002703772
Дата охранного документа: 23.10.2019
24.10.2019
№219.017.dab5

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на плоской грани проводящего тела

Изобретение относится к области исследования поверхности металлов и полупроводников путем измерения характеристик направляемых ей поверхностных электромагнитных волн (ПЭВ) и может найти применение в сенсорных устройствах, абсорбционных спектрометрах и интерферометрах, использующих в качестве...
Тип: Изобретение
Номер охранного документа: 0002703941
Дата охранного документа: 23.10.2019
Showing 11-20 of 21 items.
09.06.2018
№218.016.5ace

Триангуляционный метод измерения площади участков поверхности внутренних полостей объектов известной формы

Изобретение относится к технологиям визуально-измерительного контроля (ВИК), позволяющим по зарегистрированным изображениям обнаружить искомые элементы поверхности контролируемых объектов в труднодоступных внутренних полостях различных технических устройств и сооружений и измерить...
Тип: Изобретение
Номер охранного документа: 0002655479
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5aef

Способ и устройство регистрации пространственного распределения оптических характеристик труднодоступных объектов

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления...
Тип: Изобретение
Номер охранного документа: 0002655472
Дата охранного документа: 28.05.2018
02.12.2018
№218.016.a28f

Двухкомпонентный интерферометр общего пути

Устройство предназначено для регистрации пространственного распределения фазовой задержки, вносимой оптически прозрачным микрообъектом, и измерению его характеристик. Устройство состоит из оптически связанных и расположенных последовательно первого оптического компонента, фокусирующего...
Тип: Изобретение
Номер охранного документа: 0002673784
Дата охранного документа: 29.11.2018
05.07.2019
№219.017.a650

Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной...
Тип: Изобретение
Номер охранного документа: 0002693532
Дата охранного документа: 03.07.2019
19.11.2019
№219.017.e379

Метод контроля формы выпуклых оптических сферических и асферических поверхностей и устройство для его осуществления

Изобретение относится к технологиям получения топографической карты поверхности интерференционным методом и позволяет контролировать форму выпуклой сферической (СП) или асферической (АП) поверхностей. Технический результат - возможность получения топографической карты выпуклых СП или АП...
Тип: Изобретение
Номер охранного документа: 0002706388
Дата охранного документа: 18.11.2019
12.12.2019
№219.017.ec49

Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее...
Тип: Изобретение
Номер охранного документа: 0002708549
Дата охранного документа: 09.12.2019
08.02.2020
№220.018.0039

Способ регистрации мультиспектрального цифрового голографического изображения

Изобретение относится к технологиям цифровой голографии, а именно количественной фазовой микроскопии, и предназначено для измерения спектральной зависимости пространственного распределения фазовой задержки, вносимой оптически прозрачным объектом в световую волну. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002713567
Дата охранного документа: 05.02.2020
27.02.2020
№220.018.0681

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объекта

Изобретение относится к технологиям дистанционного измерения пространственного распределения температуры и излучательной способности по поверхности объектов. Заявлен способ бесконтактного измерения пространственного распределения температуры и излучательной способности объекта, в котором...
Тип: Изобретение
Номер охранного документа: 0002715089
Дата охранного документа: 25.02.2020
20.05.2020
№220.018.1dd3

Способ изменения длины фокусировки бесселева пучка 0-го порядка

Изобретение относится к области оптического приборостроения и может быть использовано в лазерных оптико-электронных приборах, где возникает необходимость плавного изменения длины фокусировки бесселева пучка 0-го порядка при сохранении постоянным его диаметра ядра. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002721085
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e1d

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования

Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта,...
Тип: Изобретение
Номер охранного документа: 0002721097
Дата охранного документа: 15.05.2020
+ добавить свой РИД