×
26.08.2017
217.015.dffc

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОГО АМОРФНОГО МИКРОКРЕМНЕЗЕМА ЗОЛЬ-ГЕЛЬ МЕТОДОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии переработки минерального сырья. Предложен способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом. Способ включает предварительное просушивание и измельчение диатомита. В измельченный диатомит добавляют 10-30%-ный раствор гидроксида натрия, выдерживают в термостате при 70-90°C в течение 2-3 часов при соотношении жидкой и твердой фаз 12:1. Осуществляют осаждение кремниевой кислоты из фильтрата добавлением концентрированного раствора соляной кислоты. Отделяют осадок диоксида кремния и сушат. Изобретение позволяет получить мелкодисперсный аморфный микрокремнезем дисперсностью 0,062-0,097 мкм высокой степени чистоты из недорогого минерального сырья с выходом целевого продукта до 99,97%. 3 табл.

Изобретение относится к технологии промышленности строительных материалов и переработки минерального сырья для создания теплоизоляционных материалов, сухих строительных смесей, производства модифицированных добавок для бетонов, изготовления оптоволокна.

Область применения тонкодисперсного аморфного диоксида кремния в мировой экономике с каждым годом расширяется, так как аморфный кремнезем является многоцелевым материалом и применяется в различных отраслях промышленности, в том числе в области высоких технологий. Он используется в производстве стекла, керамики, изделий из бетона, абразивных материалов, а также в радиотехнике, ультразвуковых установках, в изготовлении волоконно-оптических кабелей.

Аморфный диоксид кремния в чистом виде почти не встречается в природе. Его можно получить только технологическим способом. Существуют различные способы получения тонкодисперсного аморфного микрокремнезема.

Известен способ обработки мелкодисперсной кремнийсодержащей пыли газоочистки электротермического производства кремния и кремнистых ферросплавов, в котором обработку мелкодисперсной кремнийсодержащей пыли газоочистки проводят во вращающемся барабане, компактирование осуществляют за счет снятия электростатического заряда с частиц путем массообмена материала, контактирующего с электропроводящей поверхностью. Кремнийсодержащую пыль загружают в количестве 50-60% от объема барабана, линейную скорость перемещения материала в барабане поддерживают 0,18-0,37 м/с, а обработку ведут в течение 2-4 часов (RU 2085488, МПК C01B 33/18, опубл. 27.07.1997). Недостаток этого метода в том, что получается не достаточно чистый микрокремнезем, поэтому необходимы дополнительные затраты по очистке продукта.

Известно получение аморфного высокодисперсного порошка оксида кремния под воздействием на раствор жидкого стекла соляной кислотой, многократной отмывкой полученного осадка метакремниевой кислоты H2SiO3 от образовавшейся в результате реакции соли NaCl, сушкой образовавшегося геля, размолом полученного ксерогеля и последующей термической обработкой (RU 2262544, МПК C22B 34/12, C22B 3/06, опубл. 20.10.2005). Известный способ получения кремнезема является трудоемким, длительным и позволяет получить небольшие количества конечного продукта.

Известны способы получения диоксида кремния, включающие переработку фторидных растворов, содержащих кремний в виде фторидных соединений, а также алюминий и железо (RU 2474535, МПК C01B 33/12, B82B 3/00, B82Y 40/00, опубл. 10.02.2013; CN №1363511, опубл. 14.08.2002); способы получения аморфного диоксида кремния из раствора гексафторосиликата аммония (ГФСА) путем щелочного гидролиза с образованием осадка кремнезема и его отделения от раствора (RU 1624923, МПК C01B 33/12, C01B 41/00, C22B 34/36, опубл. 27.08.1999; RU 2048559, МПК C22B 34/14, опубл. 20.11.1995; RU 2058408, C22B 34/12, опубл. 20.04.1996). Недостатки известных способов заключаются в использовании фторидных соединений, которые являются агрессивными продуктами.

Известно получение диоксида кремния (кремнезема) из природного минерального сырья - горных пород (перлит, обсидиан, диатомит, нефелин, трепелы, из силикатного сырья, кварцевого песка и из "полуфабрикатов" - отходов высококремнистого ферросилиция) (RU 2036836, МПК C01B 33/12, опубл. 09.06.1995), производства бора или боросиликатных материалов (RU 2170211, МПК C01B 33/142, C01F 7/26, опубл. 10.07.2001), из отходов апатитового производства (SU 856981, МПК C01B 33/18, опубл. 23.08.1981) и ферросплавного производства (RU 2002119217, МПК C01B 33/12, C01B 33/18, опубл. 27.02.2004), однако степень извлечения диоксида кремния не более 60%.

Известен способ получения диоксида кремния, по которому в качестве кремнийсодержащего материала используют пыль отходящих газов производства кремния и/или высококремнистого ферросилиция, которую обрабатывают раствором щелочи. Из полученного раствора диоксид кремния выделяют действием минеральной кислоты (RU 2036836, МПК C01B 33/12, опубл. 09.06.2015). Недостатком известного способа является недостаточно высокая чистота и невысокая дисперсность получаемого с его помощью продукта, что ограничивает область применения этого продукта, который преимущественно используют в качестве минерального наполнителя в композиционных материалах.

Известны способы получения диоксида кремния высокой чистоты (99,99%) из рисовой шелухи (CN 1063087, опубл. 29.07.1992; RU 2191159, МПК C01B 33/12, опубл. 20.10.2002). Недостатком известных способов является использование высокоагрессивной смеси концентрированной азотной кислоты и перекиси водорода и связанная с этим необходимость в специальном аппаратурном оформлении, что усложняет промышленное применение известного способа.

Известен способ получения диоксида кремния высокой степени чистоты из кремнийсодержащего сырья, в качестве которого используют колошниковую пыль процесса газоочистки электрохимического производства кремния на предприятиях алюминиевой промышленности (RU 2031838, МПК C01B 33/12, опубл. 27.03.1995). Недостатками способа являются многооперационность, использование для нейтрализации серной кислоты, а значит образование сернокислых стоков.

Известен способ получения диоксида кремния, в котором пирогенный высокодисперсный кремнезем получают путем сжигания четыреххлористого кремния в потоке кислорода и водорода, в итоге получается высокодисперсный аморфный диоксид кремния и хлористый водород в газообразном состоянии (RU 1791383, МПК C01B 33/12, опубл. 30.01.1993). Данное производство требует больших энергозатрат и серьезных мер по взрывобезопасности.

Известен способ получения мелкодисперсного SiO2, включающий автоклавирование твердых кремнийсодержащих продуктов и фторсодержащих соединений (US 6217840, МПК C01B 33/12, C01B 33/08, C01B 7/19, опубл. 17.04.2001). Однако известный способ технологически сложен, так как требует соответствующего аппаратурного оформления, энергетически затратен и связан с повышенными мерами техники безопасности из-за применения концентрированной серной кислоты и последующей утилизации фторсодержащих газов, а также высоких температур и давления.

Большого внимания из многообразия способов получения аморфного кремнезема заслуживают способы сплавления природных пород, с высоким содержанием связанного аморфного кремнезема, с щелочными плавнями и обработкой кремнийсодержащего сырья щелочью.

Наиболее близким по технической сущности к предлагаемому техническому решению является способ получения тонкодисперсного аморфного микрокремнезема, включающий предварительное размельчение и растирание в агатовой ступке до состояния пудры просушенного и прокаленного в муфельной печи диатомита массой 5-8 г, растирание в фарфоровой ступке 6-кратного количества щелочного плавня, состоящего из смеси безводных карбонатов калия и натрия, перемешивание диатомита и щелочного плавня в алундовом или корундовом тигле, сплавление полученной смеси в муфельной печи в тигле в течение 40-50 мин с последующим выливанием плава на силикатную основу, перенесение его в жаростойкий стакан, выделение кремниевой кислоты вначале выщелачиванием плава дистиллированной водой, а затем, после проведения контролирования pH среды титрованием 0,1 М-ным раствором гидроксида калия с метиловым оранжевым, обработкой его 100-200 мл дистиллированной воды до полного обезвоживания кремниевой кислоты. Осаждение кремниевой кислоты производят добавлением 30-40 мл концентрированного раствора соляной кислоты и после замедления реакции выпаривают раствор на песчаной бане до прекращения выделения углекислого газа. Обработку осадка проводят добавлением по 10-20 мл концентрированного раствора соляной кислоты, затем приливают 100-200 мл дистиллированной воды, а после выпаривания раствора на водяной бане в течение 5 мин до полного обезвоживания гидратированного оксида кремния (IV) и контролирования pH среды титрованием 0,1 М-ным раствором гидроксида калия с метиловым оранжевым проводят отделение оксида кремния (IV) фильтрованием, собирая фильтрат через неплотный беззольный фильтр в стакан и промывая осадок 0,5%-ным раствором соляной кислоты до отрицательной реакции на ионы железа (III) с роданидом. Проводят контролирование pH среды титрованием 0,1 М-ным раствором гидроксида калия с метиловым оранжевым. Сушку осадка производят на фильтре, затем в чашке Петри в сушильном шкафу при температуре 90-120°C (RU 2526454, МПК C01B 33/18, C09C 1/28, опубл. 20.08.2014).

Недостатками известного способа являются невысокий выход (70-80%) и невысокая дисперсность (5-10 мкм) микрокремнезема, кроме того при его получении возникает необходимость применения дорогостоящих материалов (платиновые, алундовые тигли), а также необходимы большие энергетические затраты для сплавления диатомита с щелочным плавнем (800-1000°C), что приводит к существенному повышению себестоимости конечного продукта.

Технический результат предлагаемого метода заключается в получении мелкодисперсного аморфного микрокремнезема высокой степени чистоты из недорогого исходного минерального кремнесодержащего сырья - диатомита, без дорогостоящих материалов и сложного аппаратурного оборудования, с минимальными энергетическими затратами, оптимизированной технологической схемой для промышленного производства и широким диапазоном удельной поверхности для различных промышленных целей, а также увеличении выхода тонкодисперсного аморфного микрокремнезема.

Сущность изобретения заключается в том, что способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом включает предварительное просушивание и измельчение диатомита. В измельченный диатомит добавляют 10-30%-ный раствор гидроксида натрия, выдерживают в термостате при 70-90°C в течение 2-3 часов, где соотношение жидкой и твердой фаз составляет 12:1. Осуществляют осаждение кремниевой кислоты из фильтрата добавлением концентрированного раствора соляной кислоты, обработку осадка, отделение оксида кремния (IV) фильтрованием, сушку осадка производят на фильтре, затем в чашке Петри в сушильном шкафу при 90-120°C.

Способ осуществляют следующим образом. В качестве сырья используют осадочную горную породу - диатомит, состоящую преимущественно из останков диатомовых водорослей, обычно рыхлая или слабо сцементированная, светло-серого или желтоватого цвета порода. Порошок диатомита нерастворим в хлорводородной, азотной и серной кислотах и относится к кислым породам. Для получения тонкодисперсного аморфного микрокремнезема использовалось Атемарское месторождение диатомита (Республика Мордовия).

Просушенную до 5-6%-ной влажности навеску диатомита массой 50 г предварительно размельчают в шаровой мельнице до фракции 0,08 мм и растирают в агатовой ступке до состояния пудры. Навеску диатомита в бюксе переносят в коническую колбу емкостью 1 л, добавляют 300 мл раствора гидроксида натрия 10, 20, 30%-ной концентрации, перемешивают и выдерживают в течение 1-3 часов в термостате при 50, 70, 90°C, периодически перемешивая. Соотношение твердой и жидкой фаз составляет Ж:Т=12:1. После окончания термостатирования отделяют непрореагировавший остаток из горячего раствора фильтрованием через неплотный фильтр (белая лента). Фильтрат представляет собой жидкое стекло. Кремниевую кислоту выделяют из остатка действием концентрированной соляной кислоты, которую добавляют небольшими порциями, при непрерывном перемешивании до кислой среды (pH≈2). Образовавшийся аморфный осадок (золь кремниевой кислоты) трудно выделить из раствора фильтрованием, поэтому золь кремниевой кислоты коагулируют. Раствор выпаривают на водяной (песчаной) бане досуха, к сухому остатку добавляют небольшими порциями (3-5 мл концентрированной соляной кислоты) для обезвоживания кремниевой кислоты и снова подсушивают сухой остаток, затем добавляют 200-300 мл горячей дистиллированной воды, выдерживают при нагревании и перемешивании для полного растворения солей. Непрореагировавший осадок диоксида кремния отделяют из раствора фильтрованием через неплотный фильтр (белая лента), промывают 1%-ным раствором азотной кислоты и большим количеством горячей воды до отрицательной реакции на Cl- - ионы с нитратом серебра (I) и ионы Fe3+до отрицательной реакции с тиоцианатом калия. Сушку промытого осадка, после отделения от фильтра, производят в чашке Петри в сушильном шкафу при 90-120°C до постоянной массы.

В табл. 1 показан выход кремнезема из диатомита в зависимости от концентрации щелочи и температуры (время термостатирования - 2 часа); в табл. 2 - элементный состав микрокремнезема, полученного из природного диатомита в зависимости от концентрации щелочи и времени термостатирования; в табл. 3 - размерность полученных частиц микрокремнезема.

Оптимальные условия получения аморфного диоксида кремния выявлены в порядке эксперимента, с учетом изменения температуры, времени термостатирования и концентрации щелочи (табл. 1).

Результаты элементного анализа порошков синтезированного кремнезема рентгенофлуоресцентным методом показали, что он состоит на 95,00-99,97% из диоксида кремния. Основной примесью является хлорид натрия. Оксиды железа, алюминия, кальция, калия, титана содержатся в небольших количествах, которые можно отнести к микрокомпонентам (табл. 2). Примесь хлорида натрия сорбировалась на поверхности аморфного кремнезема в процессе синтеза его из раствора гидроксида натрия и выделения кремниевой кислоты хлористоводородной кислотой. Хлорид натрия удаляют обильным промыванием водой и диализом.

Для сравнения исследовано получение микрокремнезема при следующих условиях: соотношение жидкой и твердой фаз - Ж:Т=6:1, температура термостатирования - 145°C, время термостатирования - 2 часа (состав 4, табл. 1, 2).

Выявлено, что оптимальными составами являются 2 и 3 (табл. 1, 2), где соотношение жидкой и твердой фаз составляет Ж:Т=12:1 при температуре термостатирования - 70-90°C и времени термостатирования - 2-3 часа, так как микрокремнезем получают более мелкодисперный.

Лазерным дифракционным анализатором размера частиц ShimadzuSALD-3101 установлен минимальный размер частиц аморфного микрокремнезема, полученного из природного диатомита при различной температуре и концентрации щелочи (Ж:Т=12:1) (табл. 3).

Установлено, что полученный микрокремнезем (Ж:Т=12:1) из Атемарского месторождения диатомита характеризуется следующими показателями:

Содержание диоксида кремния - не менее 96,00-99,97%; Минимальный размер частиц - 0,062-0,097 мкм;

Содержание примесей: оксид железа (III) - 0,0169% и оксид кальция - 0,0041%.

По сравнению с известным предлагаемый способ позволяет получить мелкодисперсный аморфный микрокремнезем дисперсностью 0,062-0,097 мкм высокой степени чистоты (минимальное содержание примесей) из недорогого исходного минерального кремнесодержащего сырья - диатомита Атемарского месторождения, без дорогостоящих материалов и сложного аппаратурного оборудования, с минимальными энергетическими затратами, оптимизированной технологической схемой для промышленного производства, за счет отсутствия необходимости сплавления диатомита с щелочным плавнем, и широким диапазоном удельной поверхности для различных промышленных целей, а также увеличить выход тонкодисперсного аморфного микрокремнезема до 99,97%.

Способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом, включающий предварительное просушивание, измельчение диатомита, осаждение кремниевой кислоты из фильтрата добавлением концентрированного раствора соляной кислоты, обработку осадка, отделение оксида кремния(IV) фильтрованием, сушку осадка вначале на фильтре, затем в чашке Петри в сушильном шкафу при 90-120°C, отличающийся тем, что в измельченный диатомит добавляют 10-30%-ный раствор гидроксида натрия, выдерживают в термостате при 70-90°C в течение 2-3 часов, где соотношение жидкой и твердой фаз составляет 12:1.
Источник поступления информации: Роспатент

Showing 61-70 of 93 items.
06.06.2019
№219.017.7408

Способ получения производного 2,6-диметилфенилацетамида, обладающего церебропротекторной активностью

Изобретение относится к области фармацевтической химии. Предложен новый способ получения нового производного 2,6-диметилфенилацетамида - 2-(диэтиламино)-N-(2,6-диметилфенил) ацетамида 2-ацетаминоэтансульфоноата. Согласно способу по изобретению к 20 г очищенного...
Тип: Изобретение
Номер охранного документа: 0002690506
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.760e

Способ прогнозирования риска развития артериальной гипертензии и стрессиндуцированной кардиомиопатии на ранних стадиях у детей-спортсменов

Изобретение относится к медицине, а именно к функциональной диагностике и лечебно-оздоровительной медицине, и может быть использовано для прогнозирования риска развития артериальной гипертензии и стрессиндуцированной кардиомиопатии на ранних стадиях у детей-спортсменов. Осуществляют оценку...
Тип: Изобретение
Номер охранного документа: 0002691009
Дата охранного документа: 07.06.2019
14.06.2019
№219.017.82c4

Способ прогнозирования течения хронического пародонтита

Изобретение относится к области медицины, а именно к стоматологии, и предназначен для использования при диагностике и прогнозировании течения хронического пародонтита. Для прогнозирования течения хронического пародонтита в динамике оценивают папиллярно-маргинально-альвеолярный индекс, исследуют...
Тип: Изобретение
Номер охранного документа: 0002691304
Дата охранного документа: 11.06.2019
14.06.2019
№219.017.82d8

Способ получения люминофора зеленого свечения

Изобретение относится к химии и может быть использовано при производстве люминесцентных материалов для источников и преобразователей света. Готовят реакционную смесь механическим перемешиванием в планетарной мельнице в течение 20 мин порошков пероксидов или оксидов щелочноземельных металлов,...
Тип: Изобретение
Номер охранного документа: 0002691366
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8cbf

Вяжущее

Изобретение относится к промышленности строительных материалов, в частности к шлакощелочным вяжущим, и может быть использовано для изготовления растворов и бетонов различного назначения. Вяжущее, включающее отходы производства минеральной ваты и щелочной активатор, содержит отходы производства...
Тип: Изобретение
Номер охранного документа: 0002691798
Дата охранного документа: 18.06.2019
11.07.2019
№219.017.b25b

Способ определения предельной величины блокирующего напряжения силовых транзисторов

Изобретение относится к области полупроводниковой электроники и может быть использовано для оценки запирающей способности силовыхтранзисторов, диодов, тиристоров по напряжению как в процессе их производства, так и в условиях эксплуатации. Сущность изобретения заключается в том, что в способе...
Тип: Изобретение
Номер охранного документа: 0002694169
Дата охранного документа: 09.07.2019
23.07.2019
№219.017.b6e3

Способ лечения дуоденогастроэзофагеального рефлюкса

Изобретение относится к медицине и предназначено для лечения гастроэзофагеальной рефлюксной болезни. Пациент за 15-20 мин перед процедурой эндоскопического вмешательства принимает 150 мл прохладной воды, затем проводят эндоскопическое одномоментное удаление желчного содержимого из...
Тип: Изобретение
Номер охранного документа: 0002695067
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b704

Способ лечения травматических разрывов печени с использованием пленочного покрытия на основе бактериальной целлюлозы

Изобретение относится к медицине и предназначено для лечения травматических разрывов печени. Получают бактериальную целлюлозу культивированием штамма бактерий Gluconacetobacter sucrofermentans Н-110 в статических условиях культивирования в течение 3-5 сут при температуре 28°C, с последующей ее...
Тип: Изобретение
Номер охранного документа: 0002695066
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b70a

Автономное переносное устройство индуктивной зарядки аккумуляторной батареи

Использование: в области электротехники. Технический результат - увеличение мобильности источника питания, использующего принцип беспроводной индуктивной зарядки, обеспечение его автономной работы без подключения к сети энергоснабжения, а также расширение спектра возможностей для подзарядки...
Тип: Изобретение
Номер охранного документа: 0002695103
Дата охранного документа: 19.07.2019
26.07.2019
№219.017.b97a

Преобразователь энергии потока

Изобретение относится к преобразователю энергии потока жидкости и может быть использовано для привода вентилятора калориферных установок. Преобразователь включает вал 1, трубчатую спираль 4 конической формы с каналами входа и выхода 2, 3. Вал 1 запрессован в подшипник 15, жестко закрепленный к...
Тип: Изобретение
Номер охранного документа: 0002695554
Дата охранного документа: 24.07.2019
Showing 21-25 of 25 items.
04.04.2018
№218.016.2faf

Адаптивная фреза-культиватор

Изобретение относится к сельскохозяйственному машиностроению, в частности к малогабаритным самоходным почвообрабатывающим фрезам. Адаптивная фреза-культиватор содержит полый вал, на одном конце которого на равном удалении друг от друга расположены три радиальные сквозные отверстия и жестко...
Тип: Изобретение
Номер охранного документа: 0002644592
Дата охранного документа: 13.02.2018
19.08.2018
№218.016.7d45

Способ фотометрического определения железа (iii)

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации. Способ фотометрического определения железа (III)...
Тип: Изобретение
Номер охранного документа: 0002664504
Дата охранного документа: 17.08.2018
14.12.2018
№218.016.a704

Способ фотометрического определения железа (iii) в растворах чистых солей в присутствии поверхностно-активного вещества

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации. Способ включает переведение железа (III) в...
Тип: Изобретение
Номер охранного документа: 0002674760
Дата охранного документа: 13.12.2018
09.05.2019
№219.017.5086

Полиуретановое покрытие

Изобретение относится к двухкомпонентной полиуретановой композиции и может быть использовано для устройства и ремонта наливных бесшовных износостойких покрытий по бетонному основанию. Полиуретановое покрытие выполнено из композиции, которая содержит масло касторовое рафинированное, сложный...
Тип: Изобретение
Номер охранного документа: 0002466165
Дата охранного документа: 10.11.2012
30.05.2023
№223.018.742d

Способ получения микрокремнезема из природного диатомита осаждением раствора азотной кислоты

Изобретение относится к строительным материалам, а именно к производству модифицированных добавок для бетонов, строительных растворов, сухих строительных смесей, теплоизоляционных материалов. Предложен способ получения микрокремнезема из природного диатомита осаждением раствора HNO, включающий...
Тип: Изобретение
Номер охранного документа: 0002740995
Дата охранного документа: 22.01.2021
+ добавить свой РИД