×
26.08.2017
217.015.df11

Результат интеллектуальной деятельности: Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях

Вид РИД

Изобретение

Аннотация: При экспериментальном определении поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях, включающих регистрацию диаграммы тяги датчиком силы, определяют силу сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем путем приложения силовых нагрузок. До начала огневого испытания двигателя силовую нагрузку, превышающую ожидаемую величину сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем, прикладывают поочередно в противоположном направлении действия тяги двигателя и в прямом направлении действия тяги двигателя, а после окончания огневого испытания двигателя - поочередно в прямом направлении действия тяги двигателя и в противоположном направлении действия тяги двигателя. Во время приложения силовой нагрузки регистрируют диаграммы этих силовых нагрузок тем же датчиком силы, которым регистрируют тягу двигателя при огневом испытании. Поправку к суммарному импульсу тяги двигателя определяют как разность произведения силы сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем в прямом направлении действия тяги двигателя на суммарное время прогрессивных участков диаграммы тяги двигателя и произведения силы сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем, в противоположном направлении действия тяги двигателя на суммарное время дегрессивных участков диаграммы тяги испытуемого двигателя. Изобретение позволяет повысить точность определения экспериментального значения суммарной тяги двигателя. 1 з.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к области машиностроения, а именно к наземным испытаниям двигателей летательных аппаратов, при которых на стендах производится подтверждение энергетических параметров (суммарного импульса тяги) двигателей на соответствие техническому заданию.

При проектировании стендов для наземной экспериментальной отработки двигателей конструкторы и исследователи сталкиваются с проблемой достоверного определения суммарного импульса тяги с учетом погрешности, вносимой испытательным стендом. Суммарная погрешность стенда состоит из механической погрешности стенда (сила сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем) и погрешности измерительного канала (датчика силы и регистрирующей аппаратуры).

Если механическая погрешность стенда не превышает допустимого значения по ГОСТ В 21898-76 (0,001 от величины измеряемого параметра), то величина суммарного импульса тяги двигателя практически определяется с погрешностью измерительного канала в диапазоне измерения. В реальных условиях испытаний механическая погрешность стенда часто превышает допустимое значение по ГОСТ В 21898-76 и ее необходимо учитывать как поправку к суммарному импульсу тяги двигателя.

Известен способ определения суммарного импульса тяги двигателя при наземных испытаниях, в котором для уменьшения погрешности, вносимой стендом, проводится механическая градуировка измерительного канала в составе стенда путем ступенчатого нагружения датчика тяги во всем диапазоне измерения (авторы A.M. Винницкий, В.Т. Волков, И.Г. Волковицкий, С.В. Холодилов. Конструкция и отработка РДТТ под редакцией А.М. Винницкого. Москва. Машиностроение. 1980. Глава 10, раздел 10.1, стр. 142-143).

Недостаток этого способа состоит в том, что его применение можно считать допустимым, если измеряемая величина тяги составляет 0,6-1,0 диапазона измерения выбранного датчика силы. Кроме того, этот способ не оправдывает себя из-за существенных различий характера нагружения при градуировке и при работе двигателя во время испытания.

Известен способ определения суммарного импульса тяги двигателя при наземных испытаниях, в котором проводят калибровку системы измерения (датчика силы тяги) стенда перед началом работы двигателя, прикладывая строго регламентированные усилия (авторы И.М. Гладков, B.C. Мухамедов, Е.Л. Валуев, В.И. Черепов. Экспериментальные методы определения параметров двигателей специального назначения. Москва. НТЦ Информтехника. 1993. Глава 5, раздел 5.3). Приложение усилий осуществляется с помощью грузов через роликовый блок (стр. 244-245) или силовых гидроцилиндров с системой измерения, управляемой ЭВМ (стр. 238-240). Суммарный импульс силы тяги определяется путем интегрирования величины измеряемой тяги по времени работы двигателя с учетом данных калибровки системы измерения. Принят за прототип.

Недостаток этого способа заключается в том, что при калибровке потери на трение в роликовом блоке нестабильны и увеличиваются пропорционально увеличению веса грузов. Для силовых гидроцилиндров с системой измерения, управляемой ЭВМ, суммарная погрешность измерительного канала силы тяги равна сумме погрешностей регламентированных усилий от гидроцилиндров, задаваемых ЭВМ, и системы измерения стенда.

Задачей предлагаемого изобретения является повышение точности определения экспериментального значения суммарного импульса тяги двигателя при наземных испытаниях.

Задача решается за счет того, что в способе экспериментального определения суммарного импульса тяги двигателя при стендовых огневых испытаниях, основанном на определении сил сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем в прямом и противоположном направлениях действия тяги двигателя путем приложения силовых нагрузок, последующем огневом испытании двигателя с регистрацией диаграммы тяги датчиком силы и определении расчетом его суммарного импульса тяги, до начала огневого испытания двигателя силовую нагрузку, превышающую ожидаемую величину силы сопротивления перемещению подвижных опор стенда, прикладывают поочередно в противоположном направлении действия тяги двигателя и в прямом направлении действия тяги двигателя, а после огневого испытания двигателя - поочередно в прямом направлении действия тяги двигателя и в противоположном направлении действия тяги двигателя, при этом регистрируют диаграммы этих силовых нагрузок датчиком силы, которым регистрируют тягу двигателя при огневом испытании, а поправку к суммарному импульсу тяги двигателя определяют как разность произведения величины силы сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя на суммарное время прогрессивных участков диаграммы тяги двигателя и произведения величины силы сопротивления перемещению подвижных опор стенда в противоположном направлении действия тяги двигателя на суммарное время дегрессивных участков диаграммы тяги испытуемого двигателя.

При этом величина сил сопротивления перемещению подвижных опор стенда с закрепленным на них испытуемым двигателем, в прямом и противоположном направлениях действия тяги двигателя на каждом прогрессивном и дегрессивном участке диаграммы тяги двигателя определяется как среднее значение на каждом из этих участков диаграммы тяги двигателя при его огневом испытании,

На фиг. 1 показан стенд для наземных испытаний с закрепленным на его подвижных опорах двигателем.

На фиг. 2 показана экспериментальная диаграмма приложения силовой нагрузки к подвижным опорам стенда с закрепленным на них двигателем до начала работы двигателя, результаты измерения тяги датчиком силы во время огневого испытания и приложения силовой нагрузки к подвижным опорам стенда с закрепленным на ней двигателем после окончания работы двигателя. Кроме того, показаны прогрессивные и дегрессивные участки диаграммы тяги двигателя и величины сил сопротивления перемещению подвижных опор стенда в прямом и противоположном направлениях действия тяги двигателя на границах этих участков.

Указанный способ осуществляется следующим образом. При монтаже и проверке работоспособности системы измерения стенда показание датчика тяги соответствуют нулевому уровню по сопроводительному паспорту. После монтажа (см. фиг. 1) испытуемого двигателя 1 на подвижные опоры 2 стенда повторно включают систему измерения перед началом работы двигателя. Показание датчика тяги 3 при этом не соответствует нулевому уровню из-за влияния сил сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем и неопределенного направления действия этих сил сопротивления.

Далее, к подвижным опорам стенда с закрепленным на них неработающим двигателем (см. фиг. 2) прикладывают силовую нагрузку в противоположном направлении относительно направления действия тяги двигателя. Силовая нагрузка должна превышать ожидаемое значение силы сопротивления подвижных опор стенда с закрепленным на них неработающим двигателем, чтобы произошло перемещение опор в направлении приложения силовой нагрузки. Затем силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления перемещения подвижных опор стенда в направлении, противоположном действию тяги двигателя, и регистрируют показание датчика тяги (первая часть кривой F).

Потом к подвижной части стенда прикладывают силовую нагрузку в прямом направлении относительно направления действия тяги двигателя. Силовая нагрузка, также, должна превышать ожидаемую величину силы сопротивления подвижных опор стенда, чтобы произошло перемещение подвижных опор стенда в другую сторону. Силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчик тяги не станет равным силе сопротивления подвижных опор стенда в прямом направлении действия тяги двигателя, и регистрируют показание датчика тяги (вторая часть кривой F).

Далее, подают команду на запуск двигателя и проводят его огневое испытание с регистрацией диаграммы тяги двигателя (кривая P).

Потом к подвижным опорам стенда с закрепленным на них отработавшим двигателем прикладывают силовую нагрузку в прямом направлении относительно направления действия тяги двигателя. Силовая нагрузка должна превышать ожидаемое значение силы сопротивления подвижных опор стенда с закрепленным на них отработавшим двигателем, чтобы произошло перемещение опор в направлении приложения силовой нагрузки. Затем силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя, и регистрируют показание датчика тяги (первая часть кривой F1).

После этого к подвижным опорам стенда с закрепленным на них отработавшим двигателем прикладывают силовую нагрузку в противоположном направлении относительно направления действия тяги двигателя. Силовая нагрузка, также, должна превышать ожидаемую величину силы сопротивления подвижных опор стенда, чтобы произошло перемещение подвижных опор стенда с закрепленным на них отработавшим двигателем в другую сторону. Силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления подвижных опор стенда в противоположном направлении относительно направления действия тяги двигателя, и регистрируют показание датчика тяги (вторая часть кривой F1).

По результатам обработки полученной экспериментальной диаграммы тяги двигателя (фиг. 2) определяют величины сил сопротивления Δнп, Δкп, Δно, Δко и текущие значения этих параметров на границах прогрессивных и дегрессивных участков экспериментальной диаграммы тяги двигателя (кривая P), а также средние значения этих параметров на каждом участке диаграммы тяги двигателя.

Поправку к суммарному импульсу тяги двигателя определяют по формуле

ΔJΣ=Σ{0,5(Δнп iкп i)⋅Δτпрогр i}-Σ{0,5(Δно iко i)⋅Δτдегр i},

где Δнп i - сила сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя в начале каждого прогрессивного участка диаграммы тяги двигателя;

Δкп i - сила сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя в конце каждого прогрессивного участка диаграммы тяги двигателя;

Δτпрогр i - время каждого прогрессивного участка диаграммы тяги двигателя;

Δно i - сила сопротивления перемещению подвижных опор стенда в направлении, противоположном действию тяги двигателя, в начале каждого дегрессивного участка диаграммы тяги двигателя;

Δко i - сила сопротивления перемещению подвижных опор стенда в направлении, противоположном действию тяги двигателя, в конце каждого дегрессивного участка диаграммы тяги двигателя;

Δτдегр i - время каждого дегрессивного участка диаграммы тяги двигателя.

Первое слагаемое формулы представляет собой суммарный импульс силы сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя и уменьшает суммарный импульс тяги двигателя (показание датчика силы меньше фактической величины тяги двигателя при огневом испытании).

Второе слагаемое формулы представляет собой суммарный импульс силы сопротивления перемещению подвижных опор стенда в направлении, противоположном направлению действия тяги двигателя, и увеличивает суммарный импульс тяги двигателя (показание датчика силы больше фактической величины тяги двигателя при огневом испытании).

Поэтому существенное значение имеет вид диаграммы тяги (прогрессивный или дегрессивный), а также соотношение величин тяги и массы испытуемого двигателя.

Экспериментальные данные стендовых огневых испытаний различных двигателей подтверждают вышеизложенное.

Например:

1. Для крупногабаритных двигателей (стартовых и маршевых) с временем работы 40-60 с (при соотношении тяги к массе 5-12) поправка к суммарному импульсу двигателя составляет ~0,17-0,25%.

2. Для малогабаритных двигателей с временем работы 300-400 с (при соотношении тяги и массы 0,45-1,1) поправка к суммарному импульсу двигателя составляет ~2,3-3,7%.

Таким образом, предложенный способ определения поправки к суммарному импульсу тяги двигателя позволяет повысить точность определения экспериментального значения суммарного импульса тяги двигателя и достоверность получаемых экспериментальных данных при проведении наземной стендовой отработки различных двигателей.


Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях
Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях
Источник поступления информации: Роспатент

Showing 161-170 of 676 items.
20.11.2015
№216.013.8f6b

Устройство для определения утечек взрывоопасных жидкостей на основе пьезосенсора

Использование: для непрерывного контроля утечек взрывоопасных жидкостей (в том числе органических растворителей, аммиака, керосина, бензина) и выдачи звукового или светового сигнала при повышении концентраций паров жидкостей в воздухе помещений, замкнутых объемах (подземных сооружениях и...
Тип: Изобретение
Номер охранного документа: 0002568331
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f7d

Манжетное уплотнительное устройство

Изобретение относится к уплотнительной технике и предназначено для уплотнительных устройств в системах и агрегатах, работающих в широком диапазоне температур и давлений, в частности в области ракетно-космической техники. В манжетном уплотнительном устройстве, содержащем эластомерную манжету, в...
Тип: Изобретение
Номер охранного документа: 0002568349
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fa8

Устройство управления резервированной с помощью мажоритарных элементов системой

Изобретение относится к современным пилотажно-навигационным комплексам (ПНК) летательных аппаратов (ЛА) и их бортовой аппаратуре и предназначается в основном для формирования сигналов управления резервированными с помощью мажоритарных элементов системами радиоавтоматики и системами...
Тип: Изобретение
Номер охранного документа: 0002568392
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fcc

Устройство детектирования частотно-модулированных колебаний

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов с увеличенной крутизной детекторной характеристики. Сущность изобретения состоит в том, что вход (1) и выход (2) устройства соединены через первый (С1) и второй (С2) конденсаторы и...
Тип: Изобретение
Номер охранного документа: 0002568428
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fce

Способ радиолокационного зондирования пространства

Изобретение относится к радиотехнике, преимущественно к радиолокации, в частности может быть использовано для зондирования квазимонохроматическими и дискретно-частотными сигналами стационарных, линейно рассеивающих электромагнитные волны объектов. Достигаемый технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002568430
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c5

Способ идентификации воздушных объектов

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных объектов. Достигаемый технический результат - повышение вероятности правильной идентификации воздушных объектов, обнаруженных бортовой радиолокационной станцией (БРЛС), в условиях...
Тип: Изобретение
Номер охранного документа: 0002568677
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9118

Автоматический органичитель степени сжатия дожимающего компрессора плунжерного типа

Изобретение относится к области автоматизации и касается газозарядных компрессорных станций. Автоматический ограничитель степени сжатия дожимающего компрессора содержит блок отслеживания соотношений давлений всасывания и нагнетания, который выполнен в корпусе с двумя парами...
Тип: Изобретение
Номер охранного документа: 0002568760
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92ce

Устройство преобразования энергии магнитного поля ферромагнитного сердечника в тепловую или электрическую энергию

Изобретение относится к области электротехники и может быть использовано в автономных системах освещения, обогрева и т.п. Устройство содержит источник электрического тока в виде аккумуляторной батареи, генератор постоянного по направлению и линейно меняющегося во времени пилообразного тока...
Тип: Изобретение
Номер охранного документа: 0002569200
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92d4

Устройство для определения показателей качества применяемых топлив и масел в баках систем силовой установки и трансмиссии военной гусеничной машины

Устройство содержит пульт управления (21), дисплей (22), блок определения показателей качества топлива и масел (23), электронно-вычислительный блок, блок датчиков (8), расположенный в топливном баке (7), блок датчиков (2), расположенных в масляном баке двигателя (1), блок датчиков (17),...
Тип: Изобретение
Номер охранного документа: 0002569206
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9530

Способ пространственно-временной обработки изображений на основе матриц фоточувствительных приборов с зарядовой связью

Изобретение относится к телевидению и может быть использовано для пространственно-временной обработки изображений. Техническим результатом изобретения является обеспечение адаптации к уровню освещенности без каких-либо ограничений на значения отсчетов импульсной характеристики при выделении...
Тип: Изобретение
Номер охранного документа: 0002569811
Дата охранного документа: 27.11.2015
Showing 161-170 of 364 items.
20.11.2015
№216.013.8f43

Система глобального мониторинга в режиме реального времени параметров состояния многопараметрических объектов

Изобретение относится к системам мониторинга в режиме реального времени состояния объектов различных типов и степени подвижности. Техническим результатом изобретения является сокращение времени реагирования на аномальные изменения параметров состояния контролируемых многопараметрических...
Тип: Изобретение
Номер охранного документа: 0002568291
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6b

Устройство для определения утечек взрывоопасных жидкостей на основе пьезосенсора

Использование: для непрерывного контроля утечек взрывоопасных жидкостей (в том числе органических растворителей, аммиака, керосина, бензина) и выдачи звукового или светового сигнала при повышении концентраций паров жидкостей в воздухе помещений, замкнутых объемах (подземных сооружениях и...
Тип: Изобретение
Номер охранного документа: 0002568331
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f7d

Манжетное уплотнительное устройство

Изобретение относится к уплотнительной технике и предназначено для уплотнительных устройств в системах и агрегатах, работающих в широком диапазоне температур и давлений, в частности в области ракетно-космической техники. В манжетном уплотнительном устройстве, содержащем эластомерную манжету, в...
Тип: Изобретение
Номер охранного документа: 0002568349
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fa8

Устройство управления резервированной с помощью мажоритарных элементов системой

Изобретение относится к современным пилотажно-навигационным комплексам (ПНК) летательных аппаратов (ЛА) и их бортовой аппаратуре и предназначается в основном для формирования сигналов управления резервированными с помощью мажоритарных элементов системами радиоавтоматики и системами...
Тип: Изобретение
Номер охранного документа: 0002568392
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fcc

Устройство детектирования частотно-модулированных колебаний

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов с увеличенной крутизной детекторной характеристики. Сущность изобретения состоит в том, что вход (1) и выход (2) устройства соединены через первый (С1) и второй (С2) конденсаторы и...
Тип: Изобретение
Номер охранного документа: 0002568428
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fce

Способ радиолокационного зондирования пространства

Изобретение относится к радиотехнике, преимущественно к радиолокации, в частности может быть использовано для зондирования квазимонохроматическими и дискретно-частотными сигналами стационарных, линейно рассеивающих электромагнитные волны объектов. Достигаемый технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002568430
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c5

Способ идентификации воздушных объектов

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных объектов. Достигаемый технический результат - повышение вероятности правильной идентификации воздушных объектов, обнаруженных бортовой радиолокационной станцией (БРЛС), в условиях...
Тип: Изобретение
Номер охранного документа: 0002568677
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9118

Автоматический органичитель степени сжатия дожимающего компрессора плунжерного типа

Изобретение относится к области автоматизации и касается газозарядных компрессорных станций. Автоматический ограничитель степени сжатия дожимающего компрессора содержит блок отслеживания соотношений давлений всасывания и нагнетания, который выполнен в корпусе с двумя парами...
Тип: Изобретение
Номер охранного документа: 0002568760
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92ce

Устройство преобразования энергии магнитного поля ферромагнитного сердечника в тепловую или электрическую энергию

Изобретение относится к области электротехники и может быть использовано в автономных системах освещения, обогрева и т.п. Устройство содержит источник электрического тока в виде аккумуляторной батареи, генератор постоянного по направлению и линейно меняющегося во времени пилообразного тока...
Тип: Изобретение
Номер охранного документа: 0002569200
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92d4

Устройство для определения показателей качества применяемых топлив и масел в баках систем силовой установки и трансмиссии военной гусеничной машины

Устройство содержит пульт управления (21), дисплей (22), блок определения показателей качества топлива и масел (23), электронно-вычислительный блок, блок датчиков (8), расположенный в топливном баке (7), блок датчиков (2), расположенных в масляном баке двигателя (1), блок датчиков (17),...
Тип: Изобретение
Номер охранного документа: 0002569206
Дата охранного документа: 20.11.2015
+ добавить свой РИД