×
26.08.2017
217.015.def0

Результат интеллектуальной деятельности: Скважинное устройство для измерения нейтронной пористости

Вид РИД

Изобретение

Аннотация: Использование: для геофизических исследований параметров геологических пластов методом компенсированного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что устройство содержит цилиндрический охранный корпус, внутри которого последовательно вдоль его оси размещены источник быстрых нейтронов, защитный экран, ближний и дальний детекторы тепловых нейтронов. Дальний детектор тепловых нейтронов расположен на большем расстоянии от источника быстрых нейтронов, чем ближний детектор тепловых нейтронов. В качестве источника быстрых нейтронов применяется генератор 2,5 МэВ нейтронов. Расстояние между генератором 2,5 МэВ нейтронов и ближним детектором тепловых нейтронов не превышает 15 см, а расстояние между генератором 2,5 МэВ нейтронов и дальним детектором тепловых нейтронов составляет не менее 35 см. Технический результат: повышение точности измерения нейтронной пористости за счет излучения в горную породу нейтронов с энергией существенно ниже энергии нейтронов, излучаемых AmBe источником. 4 ил.

Изобретение относится к области геофизических исследований параметров геологических пластов методом компенсированного нейтрон-нейтронного каротажа и может быть использовано в скважинных устройствах, предназначенных для измерения нейтронной пористости пластов горных пород в скважинах.

Известны скважинные устройства для определения сечения поглощения и пористости, снабженные нейтронными мониторами (Патент US 7365307, G01V 5/1, 29.04.2008).

Устройства включают в себя: импульсный источник нейтронов; нейтронный монитор, расположенный рядом с источником нейтронов, гамма-детектор, расположенный от источника нейтронов на расстоянии примерно 8-40 дюймов; защитный экран между гамма-детектором и нейтронным источником; детектор эпитепловых нейтронов, расположенный между источником нейтронов и гамма-детектором на расстоянии 9-14 дюймов от нейтронного источника; детектор тепловых нейтронов, расположенный рядом с детектором эпитепловых нейтронов; дополнительно один и более детекторов эпитепловых и тепловых нейтронов, расположенных от нейтронного источника на большем расстоянии, чем расстояние между гамма-детектором и нейтронным источником, причем расстояние между дополнительными детекторами эпитепловых и тепловых нейтронов и нейтронным источником составляет 24 или более дюймов.

Недостатком устройств является сравнительно большая погрешность измерения пористости, являющаяся следствием высокой статистической погрешности измерений, обусловленной импульсным характером излучения и не оптимальным расстоянием между нейтронным источником и ближайшим к нему детектору тепловых нейтронов.

Известно скважинное устройство для определения нейтронной пористости, характеризующееся повышенной точностью и уменьшением литологических эффектов (Заявка на патент США 2011/0260044 А1, G01V 5/10, 27.10.2011).

Устройство включает в себя: импульсный генератор 14 МэВ нейтронов; нейтронный монитор; первый и второй нейтронные детекторы и схему обработки данных. Причем, первый нейтронный детектор, или второй нейтронный детектор, или оба нейтронных детектора расположены от импульсного генератора на расстоянии, обеспечивающем минимальное влияние литологии.

Недостатком устройства является отсутствие данных о расстояниях между импульсным генератором 14 МэВ нейтронов и нейтронными детекторами, обеспечивающих повышение точности измерения нейтронной пористости.

Известно устройство, снабженное нейтронным генератором, для измерения нейтронной пористости, обладающее высокой чувствительностью к пористости (Патент US 8759750, G01V 5/10, 24.06.2014).

Устройство включает в себя: источник быстрых нейтронов; ближний нейтронный детектор и дальний нейтронный детектор, расположенный на большем расстоянии от нейтронного источника, чем ближний нейтронный детектор. Источник быстрых нейтронов выполнен в виде электронного генератора нейтронов, электронный генератор нейтронов является генератором 14 МэВ нейтронов. Излучаемые в горную породу нейтроны имеют энергию выше энергии нейтронов, излучаемых AmBe источником. Ближний нейтронный детектор является детектором тепловых нейтронов; детектор тепловых нейтронов содержит 3Не, активная область детектора тепловых нейтронов, ближайшего к электронному генератору нейтронов, располагается от него на расстояниях менее примерно 7, или 9, или 10 дюймов, активная область детектора тепловых нейтронов, дальнего по отношению к электронному генератору нейтронов, располагается от него на расстоянии более 15 дюймов, между детектором тепловых нейтронов и электронным нейтронным генератором установлен экран. Данное техническое решение принято в качестве прототипа.

Недостатком прототипа является сравнительно высокая погрешность измерения нейтронной пористости, обусловленная применением источника быстрых нейтронов, излучающего в горную породу нейтроны с энергией выше энергии нейтронов, излучаемых AmBe источником.

Техническим результатом изобретения является повышение точности измерения нейтронной пористости за счет применения источника быстрых нейтронов в виде генератора 2,5 МэВ нейтронов, излучающего в горную породу нейтроны с энергией существенно ниже энергии нейтронов, излучаемых AmBe источником.

Технический результат достигается тем, что в скважинном устройстве для измерения нейтронной пористости, содержащем цилиндрический охранный корпус, внутри которого последовательно вдоль его оси размещены источник быстрых нейтронов, защитный экран, ближний и дальний детекторы тепловых нейтронов, дальний детектор тепловых нейтронов расположен на большем расстоянии от источника быстрых нейтронов, чем ближний детектор тепловых нейтронов, в качестве источника быстрых нейтронов применяется генератор 2,5 МэВ нейтронов, расстояние между генератором 2,5 МэВ нейтронов и ближним детектором тепловых нейтронов не превышает 15 см, а расстояние между генератором 2,5 МэВ нейтронов и дальним детектором тепловых нейтронов составляет не менее 35 см.

На фиг. 1 схематично представлены основные части известных скважинных устройств, в том числе прототипа, применяемых в настоящее время для измерения нейтронной пористости W горной породы методом компенсированного нейтрон-нейтронного каротажа, где:

1 - цилиндрический охранный корпус;

2 - источник быстрых нейтронов;

3 - защитный экран;

4 - ближний детектор тепловых нейтронов;

5 - дальний детектор тепловых нейтронов;

L1 - расстояние между источником быстрых нейтронов 2 и ближним детектором 4 тепловых нейтронов;

L2 - расстояние между источником быстрых нейтронов 2 и дальним детектором 5 тепловых нейтронов.

Сущность изобретения поясняется на фиг. 2-4.

На фиг. 2 и 3 представлены результаты расчета, выполненные авторами и обосновывающие выбранное техническое решение.

На фиг. 2 в качестве примера представлены зависимости погрешности измерения пористости от расстояния между источником 2 быстрых нейтронов и дальним детектором 5 тепловых нейтронов ΔW(L2) для скважинного устройства с источником 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов с потоком 1⋅106 н/с для значений, изменяющихся в диапазоне от 0% до 40% с шагом 5% (направление увеличения W показано стрелкой), при систематической погрешности измерений, равной 2% и L1=15 см, где:

6 - изменение положения минимума зависимости ΔW(L2) при изменении W в диапазоне от 0% до 40%.

На фиг. 3 показаны зависимости ΔW(W), полученные для скважинных устройств с источником 2 быстрых нейтронов в виде генераторов 2,5 МэВ и 14 МэВ нейтронов, а также для AmBe источника при L1=15 см и L2, оптимизированном для каждого вида источника 2 быстрых нейтронов, и прочих равных условиях, где:

7 - допустимая погрешность измерения W, определяемая в соответствии с требованиями действующей инструкции по проведению нейтрон-нейтронного каротажа (Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах. РД 153-39.0-072-01. Москва, 2001);

8 - погрешность измерения нейтронной пористости для источника 2 быстрых нейтронов в виде генератора 14 МэВ нейтронов;

9 - погрешность измерения нейтронной пористости для источника 2 быстрых нейтронов в виде AmBe источника;

10 - погрешность измерения нейтронной пористости для источника 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов.

На фиг. 4 схематично показаны состав и взаимное расположение элементов конструкции скважинного устройства согласно заявляемому техническому решению с источником 2 быстрых нейтронов, выполненным в виде генератора 2,5 МэВ нейтронов.

Приведенные на фиг. 2 и 3 результаты расчетов получены при условии, что систематическая погрешность измерений XV составляет 2%. Указанное значение соответствует изменению чувствительности 3Не детекторов тепловых нейтронов при изменении температуры окружающей среды на 50°C и по сути является оценкой минимальной ее величины. Практически температура в скважине может существенно превышать 100°C, а также существует целый набор факторов, приводящих к ее увеличению.

Погрешность измерения W при использовании определенного источника 2 быстрых нейтронов зависит от расстояний от источника 2 быстрых нейтронов до ближнего детектора 4 тепловых нейтронов L1 и дальнего детектора 5 тепловых нейтронов L2.

Оптимальные значения L1 и L2, соответствующие минимальным значениям погрешности измерения нейтронной пористости ΔW, зависят от энергии нейтронов, излучаемых источником 2 быстрых нейтронов.

Расчеты показывают, что для источника 2 быстрых нейтронов в виде генераторов 2,5 МэВ и 14 МэВ нейтронов, а также для AmBe источника погрешность измерения нейтронной пористости ΔW в интервале L1=(0, 15) см изменяется незначительно, несколько увеличиваясь при увеличении L1.

Диапазон L1=(0, 15) см дает возможность размещения защитного экрана 3 длиной, необходимой для уменьшения вклада фоновых излучений до приемлемого уровня в самых различных случаях практического применения скважинного устройства.

Зависимость ΔW(L2) (фиг. 2) имеет ярко выраженный минимум для высокой пористости, соответствующий L2=35 см, и широкий диапазон значений, близких к минимальному значению погрешности, для низкой (менее ≈10%) пористости. Штриховая линия 6 на фиг. 2 показывает, что оптимальное расстояние L2 увеличивается с уменьшением W. В соответствии с фиг. 2 при уменьшении W от 40% до 5% оптимальное расстояние L2 увеличивается с 35 см до примерно 60 см. При этом погрешность измерения нейтронной пористости постоянно уменьшается при уменьшении W.

Это означает, что скважинное устройство с источником 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов, в котором ближний детектор 4 тепловых нейтронов расположен на расстоянии L1, не превышающем 15 см, а дальний детектор 5 тепловых нейтронов на расстоянии L2, составляющем не менее 35 см, может использоваться во всем диапазоне изменения W<40% без существенной потери точности при низкой пористости.

При увеличении систематической составляющей погрешности измерений W скважинным устройством с источником 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов с 2% до 6%, т.е. на 300%, минимальное значение погрешности ΔW возрастает примерно на 86%. При этом оптимальное расстояние L2 возрастает примерно на 20%.

При W<10% значения ΔW для скважинных устройств с различными источниками 2 быстрых нейтронов (зависимости 8-10 на фиг. 3) практически совпадают и лежат значительно ниже зависимости 7 для допустимой погрешности измерения нейтронной пористости.

При W>10% зависимости 8-10 значительно расходятся. При этом погрешность измерения пористости скважинным устройством с источником 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов (зависимость 10) существенно меньше погрешности для скважинных устройств, оснащенных генератором 14 МэВ нейтронов (зависимость 8) или AmBe источником (зависимость 9). Это объясняется более высоким сечением рассеяния на водороде 2,5 МэВ нейтронов по сравнению с быстрыми нейтронами, излучаемых генератором 14 МэВ нейтронов или AmBe источником.

Таким образом, при нейтронной пористости W>10% скважинное устройство, содержащее источник 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов и ближний детектор 4 тепловых нейтронов, расположенный от источника 2 быстрых нейтронов на расстоянии L1, не превышающем 15 см, а дальний детектор 5 тепловых нейтронов на расстоянии L2, составляющем не менее 35 см, обеспечивает существенно меньшее значение погрешности измерения нейтронной пористости по сравнению со скважинными устройствами, содержащими источник 2 быстрых нейтронов в виде генератора 14 МэВ нейтронов или AmBe источника и находящийся от ближнего детектора 4 тепловых нейтронов на расстоянии L1, не превышающем 15 см, и от дальнего детектора 5 тепловых нейтронов на расстоянии L2, соответствующем минимальной погрешности измерений.

При нейтронной пористости W<10% различие погрешностей измерения нейтронной пористости (зависимостей 8-10) для скважинных устройств, содержащих источник 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов или генератора 14 МэВ нейтронов, или AmBe источника, не имеет практического значения.

Скважинное устройство согласно заявляемому техническому решению (фиг. 4) содержит цилиндрический охранный корпус 1, внутри которого последовательно вдоль его оси размещены источник 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов, защитный экран 3, ближний детектор 4 тепловых нейтронов, дальний детектор 5 тепловых нейтронов, дальний детектор 5 тепловых нейтронов расположен на большем расстоянии от генератора 2,5 МэВ нейтронов, чем ближний детектор 4 тепловых нейтронов.

Цилиндрический охранный корпус 1, источник быстрых нейтронов 2, защитный экран 3, ближний 4 и дальний 5 детекторы тепловых нейтронов делают по возможности соосными. Но устройство будет работоспособным и в случае, когда вышеуказанные элементы конструкции несоосны.

Цилиндрический охранный корпус 1 выполняется из стали толщиной около нескольких миллиметров.

Источник 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов служит для облучения горной породы быстрыми нейтронами и работает в режиме непрерывного излучения. Генерация быстрых нейтронов с энергией 2,5 МэВ осуществляется за счет реакции синтеза, протекающей в нейтронной трубке генератора 2,5 МэВ нейтронов.

Между источником 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов и ближним детектором 4 тепловых нейтронов установлен защитный экран 3, который служит для уменьшения потока быстрых нейтронов, излучаемых генератором 2,5 МэВ нейтронов на ближний детектор 4 тепловых нейтронов, а также предотвращения потока тепловых нейтронов вдоль оси скважинного устройства со стороны генератора 2,5 МэВ нейтронов.

Как правило, защитный экран 3 выполняют из вещества, одновременно замедляющего быстрые нейтроны и поглощающего тепловые нейтроны. Защитный экран 3 может содержать боросодержащий полиэтилен или капролон, окруженный слоем кадмия толщиной около 1 мм. Для эффективного уменьшения потока быстрых нейтронов, излучаемых генератором 2,5 МэВ нейтронов на ближний детектор 4 тепловых нейтронов, и одновременно сохранения достаточно высокого потока тепловых нейтронов на ближний 4 детектор тепловых нейтронов длина защитного экрана 3 не превышает 15 см.

Ближний детектор 4 и дальний детектор 5 тепловых нейтронов служат для регистрации тепловых нейтронов, образовавшихся в горной породе в результате рассеяния в ней быстрых нейтронов, излучаемых генератором 2,5 МэВ нейтронов. В качестве датчика в ближнем детекторе 4 и дальнем детекторе 5 тепловых нейтронов часто используются пропорциональные счетчики, заполненные 3Не, длина которых обычно составляет от 8 см до 15 см, а диаметр около 30 мм.

Ближний детектор 4 и дальний детектор 5 тепловых нейтронов располагаются по отношению к генератору 2,5 МэВ нейтронов на расстояниях L1<15 см и L2>35 см.

Работа скважинного устройства осуществляется следующим образом.

От наземной аппаратуры (на фиг. 4 не показана) на электронные узлы (на фиг. 4 не показаны), входящих в состав скважинного устройства, подается питание. С помощью наземной аппаратуры (на фиг. 4 не показана) программируется работа скважинного устройства.

Скважинное устройство, находящееся в охранном корпусе 1, помещают в скважину и перемещают вдоль ее стенки. Быстрые нейтроны выходят из источника 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов, частично попадают в защитный экран 3, проходят через стенки охранного корпуса 1, попадают в воду, заполняющую скважину, и горную породу, окружающую скважину.

В среде, окружающей источник 2 быстрых нейтронов в виде генератора 2,5 МэВ нейтронов, быстрые нейтроны постепенно замедляются, становясь тепловыми нейтронами. Поток тепловых нейтронов в горной породе зависит от расстояния до генератора 2,5 МэВ нейтронов и от нейтронной пористости W горной породы.

Защитный экран 3 уменьшает поток быстрых нейтронов генератора 2,5 МэВ нейтронов на ближний детектор 4 тепловых нейтронов, подавляя таким образом фоновый сигнал, связанный с работой генератора 2,5 МэВ нейтронов, а также поглощает тепловые нейтроны, распространяющиеся вдоль оси скважинного устройства со стороны генератора 2,5 МэВ нейтронов.

Образующиеся вокруг скважины тепловые нейтроны частично попадают на ближний детектор 4 и дальний детектор 5 тепловых нейтронов и регистрируются ими.

Сигналы с ближнего детектора 4 и дальнего детектора 5 тепловых нейтронов поступают на вход электронных узлов скважинного устройства, где обрабатываются. Затем результаты измерений по кабелю передаются в наземную аппаратуру.

С помощью наземной аппаратуры результаты измерений нейтронной пористости горной породы сравниваются с результатами калибровочных измерений и используются для определения характера насыщения пластов (нефть, вода), их фильтрационно-емкостных свойств и коэффициента нефтенасыщенности.

Таким образом, заявленный технический результат: уменьшение погрешности измерения нейтронной пористости, достигается за счет применения в скважинном устройстве генератора 2,5 МэВ нейтронов, излучающего в горную породу нейтроны с энергией существенно ниже энергии нейтронов, излучаемых AmBe источником.

Скважинное устройство для измерения нейтронной пористости, содержащее цилиндрический охранный корпус, внутри которого последовательно вдоль его оси размещены источник быстрых нейтронов, защитный экран, ближний и дальний детекторы тепловых нейтронов, дальний детектор тепловых нейтронов расположен на большем расстоянии от источника быстрых нейтронов, чем ближний детектор тепловых нейтронов, отличающееся тем, что в качестве источника быстрых нейтронов применяется генератор 2,5 МэВ нейтронов, расстояние между генератором 2,5 МэВ нейтронов и ближним детектором тепловых нейтронов не превышает 15 см, а расстояние между генератором 2,5 МэВ нейтронов и дальним детектором тепловых нейтронов составляет не менее 35 см.
Скважинное устройство для измерения нейтронной пористости
Скважинное устройство для измерения нейтронной пористости
Скважинное устройство для измерения нейтронной пористости
Скважинное устройство для измерения нейтронной пористости
Скважинное устройство для измерения нейтронной пористости
Источник поступления информации: Роспатент

Showing 31-40 of 199 items.
27.01.2014
№216.012.9cc7

Способ измерения интенсивности излучения

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002505841
Дата охранного документа: 27.01.2014
10.04.2014
№216.012.b342

Устройство доплеровского измерителя скорости на основе интерферометра фабри-перо с волоконным вводом излучения

Изобретение относится к измерителям скорости интерферометрическим методом по доплеровскому смещению длины волны света, отраженного от исследуемого объекта, с использованием интерферометра Фабри-Перо и может быть использовано для увеличения яркости интерференционной картины на щелевой диафрагме...
Тип: Изобретение
Номер охранного документа: 0002511606
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3dd

Цепной подвес

Изобретение относится к узлам и деталям машин, в частности к такелажным механизмам, и предназначено для подвешивания груза к грузоподъемному устройству. Цепной подвес содержит корпус со стопорным отверстием, в корпусе расположена звездочка, жестко соединенная с втулкой, в которой выполнено...
Тип: Изобретение
Номер охранного документа: 0002511761
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb6a

Устройство защиты узкополосных приемно-передающих каналов радиотехнических систем

Изобретение относится к области радиотехники. Технический результат - повышение предела подавления помеховой импульсной мощности в узкополосных приемно-передающих каналах радиотехнических систем, работающих в диапазоне СВЧ, в условиях короткоимпульсных помеховых воздействий большой мощности при...
Тип: Изобретение
Номер охранного документа: 0002513706
Дата охранного документа: 20.04.2014
27.06.2014
№216.012.d677

Строповый подвес

Изобретение относится к узлам и деталям машин, в частности к такелажным механизмам, и предназначено для подвешивания груза к грузоподъемному устройству. В корпусе стропового подвеса установлен барабан с внутренним шестигранником для принудительного перемещения корпуса вдоль плоского стропа,...
Тип: Изобретение
Номер охранного документа: 0002520681
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.e270

Датчик давления

Изобретение относится к измерительной технике, предназначено для измерения давления при автоматизации контроля технологических процессов. Техническим результатом изобретения является уменьшение температурной погрешности и повышение быстродействия. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002523754
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e519

Способ определения порога обнаружения радиационного монитора

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002524439
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.ec14

Аппарат для дистанционной нейтронной терапии

Изобретение относится к медицинской технике. Аппарат для дистанционной нейтронной терапии предназначен для лечения радиорезистентных форм онкологических заболеваний. В его конструкцию входят основание, обеспечивающее вращение на ±180° сбалансированной консоли с нейтронной головкой. Нейтронная...
Тип: Изобретение
Номер охранного документа: 0002526244
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ef84

Датчик разности давлений

Изобретение относится к измерительной технике, а именно к датчикам разности давления, и может быть использовано в различных измерительных системах для контроля давления. Заявленный датчик разности давлений имеет корпус, выполненный из составных частей, между которыми установлена силовая...
Тип: Изобретение
Номер охранного документа: 0002527135
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fc5f

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для...
Тип: Изобретение
Номер охранного документа: 0002530453
Дата охранного документа: 10.10.2014
Showing 31-40 of 188 items.
27.01.2014
№216.012.9cc7

Способ измерения интенсивности излучения

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002505841
Дата охранного документа: 27.01.2014
10.04.2014
№216.012.b342

Устройство доплеровского измерителя скорости на основе интерферометра фабри-перо с волоконным вводом излучения

Изобретение относится к измерителям скорости интерферометрическим методом по доплеровскому смещению длины волны света, отраженного от исследуемого объекта, с использованием интерферометра Фабри-Перо и может быть использовано для увеличения яркости интерференционной картины на щелевой диафрагме...
Тип: Изобретение
Номер охранного документа: 0002511606
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3dd

Цепной подвес

Изобретение относится к узлам и деталям машин, в частности к такелажным механизмам, и предназначено для подвешивания груза к грузоподъемному устройству. Цепной подвес содержит корпус со стопорным отверстием, в корпусе расположена звездочка, жестко соединенная с втулкой, в которой выполнено...
Тип: Изобретение
Номер охранного документа: 0002511761
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb6a

Устройство защиты узкополосных приемно-передающих каналов радиотехнических систем

Изобретение относится к области радиотехники. Технический результат - повышение предела подавления помеховой импульсной мощности в узкополосных приемно-передающих каналах радиотехнических систем, работающих в диапазоне СВЧ, в условиях короткоимпульсных помеховых воздействий большой мощности при...
Тип: Изобретение
Номер охранного документа: 0002513706
Дата охранного документа: 20.04.2014
27.06.2014
№216.012.d677

Строповый подвес

Изобретение относится к узлам и деталям машин, в частности к такелажным механизмам, и предназначено для подвешивания груза к грузоподъемному устройству. В корпусе стропового подвеса установлен барабан с внутренним шестигранником для принудительного перемещения корпуса вдоль плоского стропа,...
Тип: Изобретение
Номер охранного документа: 0002520681
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.e270

Датчик давления

Изобретение относится к измерительной технике, предназначено для измерения давления при автоматизации контроля технологических процессов. Техническим результатом изобретения является уменьшение температурной погрешности и повышение быстродействия. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002523754
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e519

Способ определения порога обнаружения радиационного монитора

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002524439
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.ec14

Аппарат для дистанционной нейтронной терапии

Изобретение относится к медицинской технике. Аппарат для дистанционной нейтронной терапии предназначен для лечения радиорезистентных форм онкологических заболеваний. В его конструкцию входят основание, обеспечивающее вращение на ±180° сбалансированной консоли с нейтронной головкой. Нейтронная...
Тип: Изобретение
Номер охранного документа: 0002526244
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ef84

Датчик разности давлений

Изобретение относится к измерительной технике, а именно к датчикам разности давления, и может быть использовано в различных измерительных системах для контроля давления. Заявленный датчик разности давлений имеет корпус, выполненный из составных частей, между которыми установлена силовая...
Тип: Изобретение
Номер охранного документа: 0002527135
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fc5f

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для...
Тип: Изобретение
Номер охранного документа: 0002530453
Дата охранного документа: 10.10.2014
+ добавить свой РИД