×
26.08.2017
217.015.ddfd

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНЫХ БАТАРЕЙ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002624885
Дата охранного документа
07.07.2017
Аннотация: Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение выходной мощности СБ. При этом разворачивают КА и СБ до достижения минимальной освещенности рабочей поверхности СБ отраженным от поверхности КА солнечным излучением при А < ε, где А – угол между вектором нормали к рабочей поверхности СБ и вектором направления на Солнце; ε - угол полураствора так называемой зоны чувствительности этой рабочей поверхности. В дальнейшем измеряют значения U, I и А, определяя максимальную выходную мощность СБ как UI/cos(А). Технический результат состоит в снижении влияния отраженного от поверхности КА излучения на измеряемую выходную мощность СБ. 1 ил.

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА), и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Основной электрической характеристикой СБ является выходная мощность СБ (эта мощность отличается от текущей действительной выходной мощности, зависящей от нагрузки и влияния окружающей среды). На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю. 0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат. 1983. Стр. 49, 54).

Недостаток указанного способа определения выходной мощности СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете проводятся специальные полетные операции - сеансы оценки эффективности СБ, в которых осуществляется измерение фактической максимальной выходной мощности СБ - выходной мощности СБ под воздействием солнечного излучения, поступающего перпендикулярно рабочей поверхности СБ (против нормали к рабочей поверхности СБ), при этом текущая эффективность СБ оценивается как отношение измеренной фактической максимальной выходной мощности СБ к ее номинальному значению - проектному или некоторому исходному значению (например, на момент начала функционирования КА).

Наиболее близким из аналогов, принятым за прототип, является способ определения максимальной выходной мощности солнечных батарей космического аппарата (Патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006), согласно которому разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, измеряют угол между направлением на Солнце и плоскостью орбиты КА, на витках, на которых значение угла, равное 180° за вычетом суммы угла полураствора видимого с КА диска Земли и угла полураствора зоны чувствительности рабочей поверхности СБ, превышает измеренный выше угол, измеряют угол возвышения направления на Солнце над видимым с КА горизонтом Земли, измеряют значения напряжения и тока от СБ и максимальную выходную мощность двусторонних СБ и СБ, имеющих положительную выходную мощность их тыльной поверхности, определяют как произведение значений напряжения и тока от СБ, измеренных в моменты, в которые отраженное от Земли излучение поступает на панели СБ с их торцевой стороны, определяемые из условия равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности панелей СБ, а максимальную выходную мощность односторонних СБ определяют как произведение значений напряжения и тока от СБ, измеренных в моменты, в которые отраженное от Земли излучение поступает на панели СБ с их торцевой или тыльной сторон, определяемые из условия равенства или превышения значением угла возвышения направления на Солнце над видимым с КА горизонтом Земли угла полураствора зоны чувствительности рабочей поверхности СБ.

Способ-прототип минимизирует влияние отраженного от Земли излучения в определение выходной мощности СБ и в последующее решение задачи оценки эффективности СБ.

Способ-прототип имеет существенный недостаток - он не позволяет учитывать влияние отраженного от поверхности КА солнечного излучения при решении задачи оценки эффективности СБ. Действительно, солнечное излучение отражается от поверхности КА и отраженное от поверхности КА излучение воспринимается СБ для генерации тока, что вносит неопределенность в определение выходной мощности СБ и последующее решение задачи оценки эффективности СБ. Неопределенность при этом заключается в наличии возможности непрогнозируемого и не подлежащего учету завышения получаемых значений выходной мощности СБ и оценок эффективности СБ.

Задачей, на решение которой направлено настоящее изобретение, является увеличение точности определения максимальной выходной мощности СБ.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в учете негативного влияния отраженного от поверхности КА солнечного излучения при определении максимальной выходной мощности СБ.

Технический результат достигается тем, что в способе определения максимальной выходной мощности солнечных батарей КА, включающем разворот панелей солнечных батарей в рабочее положение, в котором рабочая поверхность солнечных батарей освещена Солнцем, измерение напряжения и тока от солнечных батарей в моменты, когда уходящее от Земли излучение поступает на панель солнечных батарей с их нерабочей стороны, и определение выходной мощности солнечных батарей по измеренным значениям напряжения и тока, дополнительно разворачивают КА относительно инерциального пространства и солнечной батареи относительно КА до достижения минимальной освещенности рабочей поверхности солнечной батареи отраженным от поверхности КА солнечным излучением при ∠S, N<ε, где

N - вектор нормали к рабочей поверхности солнечной батареи;

S - вектор направления на Солнце;

ε - угол полураствора зоны чувствительности рабочей поверхности панели солнечной батареи,

после чего измеряют значения напряжения U и тока I от солнечной батареи и угол А между направлением на Солнце и нормалью к рабочей поверхности солнечной батареи и максимальную выходную мощность солнечной батареи определяют по соотношению.

Описанную последовательность операций выполняют для каждой солнечной батареи КА, для которой решается задача определения максимальной выходной мощности СБ с последующей оценкой эффективности СБ.

Суть предлагаемого изобретения поясняется на фиг. 1, на которой представлен пример возможных схем ориентации СБ относительно направления на Солнце и КА и введены обозначения:

S - вектор направления на Солнце;

N- вектор нормали к рабочей поверхности СБ;

А - угол между направлением на Солнце и нормалью к рабочей поверхности СБ;

Р - вектора нормалей к поверхности КА;

i - i-ая цепочка фотоэлементов рабочей поверхности СБ;

j - j-ая площадка разбиения поверхности КА;

L - вектор направления от i-ой цепочки фотоэлементов рабочей поверхности СБ на j-ую площадку разбиения поверхности КА;

М - вектор идеального (зеркального) отражения солнечного излучения от освещенной Солнцем j-ой площадки разбиения поверхности КА.

В предлагаемом техническом решении при определении выходной мощности СБ одновременно устраняется (минимизируется) влияние на ее величину солнечного излучения, отраженного как от Земли, так и от поверхности КА.

Влияние уходящего (отраженного) от Земли излучения устраняется за счет определения выходной мощности СБ в моменты, когда уходящее от Земли излучение поступает на панель СБ с ее нерабочей стороны (с торцевой и/или тыльной сторон СБ в зависимости от возможности выработки электроэнергии от освещения тыльной поверхности СБ). Например, как описано в способе-прототипе, данные моменты могут определяться из условий равенства и/или превышения значением угла возвышения направления на Солнце над видимым с КА горизонтом Земли значения угла полураствора зоны чувствительности рабочей поверхности СБ - в зависимости от рассмотренных в прототипе классов СБ, различающихся возможностью выработки электроэнергии от освещения тыльной поверхности СБ.

Влияние отраженного от поверхности КА солнечного излучения устраняется за счет выполнения разворотов КА относительно инерциального пространства и СБ относительно КА до достижения минимальной освещенности рабочей поверхности СБ отраженным от поверхности КА солнечным излучением при условии

где N - вектор нормали к рабочей поверхности СБ;

S - вектор направления на Солнце;

ε - угол полураствора зоны чувствительности рабочей поверхности панели СБ.

Условие (1) соответствует требованию необходимого уровня освещенности рабочей поверхности панели СБ.

Достижение минимальной освещенности рабочей поверхности солнечной батареи отраженным от поверхности космического аппарата солнечным излучением определяется, например, соотношением

где Lij - вектор направления от i-ой цепочки фотоэлементов рабочей поверхности СБ на j-ую площадку разбиения поверхности КА;

Vij=-Lij - вектор направления от j-ой площадки разбиения поверхности КА на i-ую цепочку фотоэлементов рабочей поверхности СБ,

Pj - вектор нормали к j-ой площадке разбиения поверхности КА;

- вектор идеального (зеркального) отражения солнечного излучения от освещенной Солнцем j-ой площадки разбиения поверхности КА;

kdj, kmj, aj - коэффициенты диффузной и зеркальной компонент и коэффициент резкости бликов зеркальной компоненты отражения от j-ой площадки разбиения поверхности КА.

Выражениесоставляет модельное значение интенсивности поля отраженного излучения в направлении Vij от j-ой площадки разбиения поверхности КА на i-ую цепочку фотоэлементов рабочей поверхности СБ, полученную с учетом диффузной и зеркальной компонент отражения поверхности КА.

Освещенная поверхность КА соответствует углам между направлением на Солнце и нормалью к поверхности КА<90°: ∠S, Pj<90°, . Затененная поверхность КА соответствует углам между направлением на Солнце и нормалью к поверхности КА≥90°: ∠S, Pj≥90°, .

Соотношение (2) формализует минимизацию освещенности рабочей поверхности СБ отраженным от поверхности КА солнечным излучением с учетом угла падения отраженного от поверхности КА солнечного излучения на рабочую поверхность панели СБ и учетом зеркальной и диффузной составляющей отраженного от поверхности КА солнечного излучения.

После выполнения указанных разворотов КА и СБ выполняют измерения значений напряжения U и тока I от СБ и угла А между направлением на Солнце и нормалью к рабочей поверхности СБ.

Поскольку текущий ток I от СБ определяется выражением (см. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57)

где IMAX - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панелей солнечных батарей перпендикулярно солнечным лучам,

то и максимальную выходную мощность СБ - выходную мощность СБ, соответствующую воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, определяют по соотношению .

Например, при значениях угла между направлением на Солнце и нормалью к рабочей поверхности СБ A=30° (cos(A)=0,866) и А=60° (cos(A)=0,5) значение выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, равно, соответственно, и .

Опишем технический эффект предлагаемого изобретения.

Предлагаемое техническое решение позволяет увеличить точность определения максимальной выходной мощности СБ за счет учета и минимизации влияния на ее величину отраженного от поверхности КА излучения при определении выходной мощности СБ и оценке их эффективности.

Технический результат достигается путем определения выходной мощности СБ в моменты времени, когда КА развернут относительно СБ и Солнца и СБ развернута относительно КА и Солнца в положение, при котором минимизируется использование отраженного от поверхности КА солнечного излучения для выработки электроэнергии. Этим минимизируется непрогнозируемое и неподлежащее учету увеличение текущих значений тока от СБ, получаемое за счет поступления на рабочую поверхность СБ отраженного от поверхности КА излучения, и, следовательно, увеличивается точность определения искомой максимальной выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, и получаемых на ее основе оценок текущей эффективности СБ.

Указанный технический эффект достигается за счет выполнения предложенных разворотов КА относительно инерциального пространства и СБ относительно КА в предложенную ориентацию, измерения в предложенной ориентации предложенных параметров и определения выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, по данным параметрам (напряжению, току, углу между направлением на Солнце и нормалью к рабочей поверхности СБ) по предложенному соотношению.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНЫХ БАТАРЕЙ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНЫХ БАТАРЕЙ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 361-370 of 379 items.
09.06.2019
№219.017.7d6e

Осевой вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий космической техники. Техническим результатом, достигаемым с помощью заявленного изобретения, является повышение технологичности. Указанный технический результат достигается в осевом...
Тип: Изобретение
Номер охранного документа: 0002422680
Дата охранного документа: 27.06.2011
09.06.2019
№219.017.7dcf

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов. Сущность: способ определения уровня диэлектрического вещества заключается в формировании синусоидальных напряжений на...
Тип: Изобретение
Номер охранного документа: 0002456552
Дата охранного документа: 20.07.2012
09.06.2019
№219.017.7ef4

Способ определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, что представляет существенный практический интерес для контроля широкого спектра выпускаемых электрорадиоизделий, а также двухполюсников, используемых в качестве датчиков...
Тип: Изобретение
Номер охранного документа: 0002449295
Дата охранного документа: 27.04.2012
09.06.2019
№219.017.7f6d

Способ построения орбитальной ориентации пилотируемого космического аппарата

Изобретение относится к управлению ориентацией пилотируемого космического аппарата (ПКА) при полете по орбите вокруг планеты. ПКА оснащен прибором наблюдения поверхности планеты. Способ включает построение ориентации ПКА по местной вертикали, после чего осуществляют поворот экранной сетки...
Тип: Изобретение
Номер охранного документа: 0002467929
Дата охранного документа: 27.11.2012
13.06.2019
№219.017.821e

Селектор импульсов по длительности

Предлагаемое изобретение относится к области электронной техники и может быть использовано при создании устройств для контроля длительности сигналов от нескольких независимых источников одновременно. Технический результат заключается в расширении функциональных возможностей, а именно...
Тип: Изобретение
Номер охранного документа: 0002332783
Дата охранного документа: 27.08.2008
19.06.2019
№219.017.8b6c

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора наземного объекта наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора наземных объектов наблюдения с орбитального КА включает в себя гибкую ленту с картой поверхности планеты, установленную над ней полупрозрачную пластину и...
Тип: Изобретение
Номер охранного документа: 0002469274
Дата охранного документа: 10.12.2012
29.06.2019
№219.017.9a89

Способ определения угла между осью вращения многостепенной платформы и заданным направлением координатной оси

Изобретение относится к области измерения и может быть использовано для уточнения и калибровки положения измерительных осей датчиков, например, акселерометров относительно заданных координатных осей. Способ определения угла между осью вращения многостепенной платформы и заданным направлением...
Тип: Изобретение
Номер охранного документа: 02243570
Дата охранного документа: 27.12.2004
29.06.2019
№219.017.a116

Исполнительный механизм

Исполнительный механизм может быть использован в областях машиностроения, в частности в космической технике для раскрытия посадочного устройства пилотируемого космического корабля. В корпусе размещается цилиндр и зубчато-реечный механизм. Внутри цилиндра установлен поршень со штоком. На конце...
Тип: Изобретение
Номер охранного документа: 0002446322
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.a131

Пневмопривод с тормозным устройством

Заявленный пневмопривод может быть использован в областях машиностроения, в частности в космической технике для раскрытия посадочного устройства пилотируемого космического корабля, где необходимо осуществить торможение поршня пневмоцилиндра в конце его движения для избежания удара. Пневмопривод...
Тип: Изобретение
Номер охранного документа: 0002447329
Дата охранного документа: 10.04.2012
06.07.2019
№219.017.a845

Устройство удержания магистрали заправки и слива окислителя ракетного разгонного блока

Изобретение относится к ракетно-космической технике. Устройство удержания магистрали заправки и слива окислителя ракетного разгонного блока содержит опору, жестко закрепленную на нижнем переходнике с помощью болтового соединения и двух растягивающих тросов, регулируемых по длине с помощью...
Тип: Изобретение
Номер охранного документа: 0002355609
Дата охранного документа: 20.05.2009
Showing 351-353 of 353 items.
16.05.2023
№223.018.632f

Способ оценки эффективности солнечных панелей системы электропитания космического аппарата

Изобретение относится к электроснабжению космического аппарата (КА). Способ включает измерения текущего солнечного потока, углов его падения на поверхности солнечных панелей (СП) и тока, генерируемого СП. При этом разворачивают лицевую поверхность (ЛП) СП близко к направлению на Солнце, а КА -...
Тип: Изобретение
Номер охранного документа: 0002771552
Дата охранного документа: 05.05.2022
23.05.2023
№223.018.6cba

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления ПАН...
Тип: Изобретение
Номер охранного документа: 0002771488
Дата охранного документа: 05.05.2022
17.06.2023
№223.018.7ee6

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления снабжен...
Тип: Изобретение
Номер охранного документа: 0002772766
Дата охранного документа: 25.05.2022
+ добавить свой РИД