×
26.08.2017
217.015.da6a

Результат интеллектуальной деятельности: Способ регулирования авиационного турбореактивного двухконтурного двигателя

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного двигателестроения. Способ регулирования авиационного турбореактивного двухконтурного двигателя включает измерение частоты вращения ротора низкого давления, положения рычага управления двигателем, температуры воздуха на входе в двигатель, температуры газов за турбиной низкого давления и давления воздуха за компрессором, и регулирование частоты вращения ротора низкого давления путем воздействия на дозирование топлива в камеру сгорания, регулирование величины угла установки входных и направляющих аппаратов компрессора низкого давления, а также критического сечения реактивного сопла. Регулирование частоты вращения производят путем регулирования расхода топлива в камеру сгорания, положения направляющих аппаратов компрессора низкого давления и площади критического сечения реактивного сопла, до достижения частоты выше или ниже предельно допустимых значений. Изобретение позволяет достичь максимального значения тяги при наличии ограничений на значения регулируемых параметров и/или управляющих воздействий. 1 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления двухвальными турбореактивными двигателями с регулируемыми направляющими компрессора низкого давления.

Наиболее близким к данному изобретению по технической сущности и достигаемому техническому результату является известный способ управления газотурбинным двигателем, в котором измеряют частоту вращения ротора низкого давления (РНД), положение рычага управления двигателем РУД, температуру воздуха на входе в двигатель, температуру газов за турбиной низкого давления, регулируют частоту вращения ротора низкого давления, дозируют расход топлива в камеру сгорания, регулируют величину угла установки входных направляющих аппаратов компрессора низкого давления.

В известном устройстве поддерживают заданное значение одного из параметров двигателя (частоту вращения РНД, РВД, температуру за турбиной) посредством изменения расхода топлива.

Система, реализующая приведенный выше способ, содержит последовательно соединенные: блок датчиков температуры газов за турбиной низкого давления (дат. Ттв), частоты вращения ротора низкого давления (дат. Nрнд), температуры воздуха на входе в двигатель (дат. Твх), задатчики параметров ГТД (задатчик частоты вращения РНД (Задат. Nрнд), задатчик температуры за турбиной (Задат. Ттв)), блоки регуляторов частоты вращения РНД (рег-р Nрнд) и температуры за турбиной (рег-р Ттв), селектор минимума (MIN) и устройство управления расходом топлива (УУ Gт).

В процессе работы, в зависимости от измеренной датчиком Твх температуры на входе ГТД, задатчиками формируются соответственно заданные Nрнд и Ттв. Блоки регулятора, сравнивая заданные значения с измеренными датчиками, рассчитывают необходимое воздействие на дозатор расхода топлива для поддержания каждого из параметров соответственно. Селектор минимума выбирает минимальное воздействие и подает его на дозатор расхода топлива, который обеспечивает изменение расхода топлива для поддержания заданного задатчиком значения.

[RU 115832 U1, «НЛП «Темп» им. Ф. Короткова, 10.05.2012].

Если в области максимальных режимов двигателя есть ограничения на диапазон частот вращения компрессора, например, из-за резонансов лопаток, такой способ управления не является оптимальным, так как не позволяет поддерживать частоту вращения ниже или выше области резонанса. Снижение частоты вращения нежелательно из-за потери тяги, возможность повышения частоты вращения ограничена предельно допустимой температурой газов за турбиной.

Задачей предлагаемого изобретения является исключение работы двигателя в зоне резонанса и повышение таким образом ресурса работы при сохранении тяги.

Ожидаемый технический результат заключается в достижении максимального значения тяги при наличии ограничений на значения регулируемых параметров и/или управляющих воздействий.

Ожидаемый технический результат достигается тем, что способ регулирования авиационного турбореактивного двухконтурного двигателя включает измерение частоты вращения ротора низкого давления, положения рычага управления двигателем РУД, температуры воздуха на входе в двигатель, температуры газов за турбиной низкого давления и давления воздуха за компрессором, и регулирование частоты вращения ротора низкого давления путем воздействия на дозирование топлива в камеру сгорания, регулирование величины угла установки входных и направляющих аппаратов компрессора низкого давления, а также критического сечения реактивного сопла, по предложению дополнительно измеряют давление газа за турбиной низкого давления, определяют отношение давлений за компрессором и за турбиной низкого давления, для каждого значения температуры воздуха на входе в двигатель устанавливают нижнее и верхнее предельно допустимые значения частоты вращения ротора низкого давления при допустимом уровне напряжений в рабочих лопатках, а регулирование частоты вращения ротора низкого давления производят путем регулирования расхода топлива в камеру сгорания, положения направляющих аппаратов компрессора низкого давления и площади критического сечения реактивного сопла, определяемой по отношению давлений за компрессором и за турбиной низкого давления, при этом регулирование частоты вращения производят до достижения частоты вращения ротора низкого давления выше или ниже предельно допустимых значений.

Допустимый уровень напряжений - такой уровень напряжений, при котором возможна кратковременная работа в течение 5-10 с, или суммарное время работы за ресурс двигателя не должно превышать 3-5 минут.

Частоту вращения ротора низкого давления двигателя поддерживает регулятор воздействием на расход топлива. При наличии ограничений на допустимый диапазон изменения частоты вращения необходимо поддерживать частоту вращения выше или ниже зоны резонанса. Поддержание частоты вращения ниже зоны резонанса ограничивает тягу двигателя при высокой температуре воздуха на входе в двигатель. Возможность повышения частоты вращения выше зоны резонанса воздействием на расход топлива ограничено максимально допустимым значением температуры газов. Поэтому для достижения частоты вращения выше зоны резонанса необходимо дополнительно использовать управление площадью критического сечения реактивного сопла и положением направляющих аппаратов компрессора.

Сущность заявленного изобретения поясняется схемой системы регулирования авиационного турбореактивного двухконтурного двигателя, представленной на фиг. 1.

Система регулирования авиационного турбореактивного двухконтурного двигателя оснащена датчиками измерения параметров его работы, задатчиками измеряемых параметров и регуляторами параметров ГТД:

1 - газотурбинный двигатель,

2 - датчик частоты вращения ротора низкого давления,

3 - датчик температуры воздуха на входе в двигатель,

4 - компаратор,

5 - датчик положения направляющих аппаратов компрессора,

6 - датчик давления газа за компрессором (Рk),

7 - датчик давления газа за турбиной низкого давления (Ртв),

8 - задатчик частоты вращения ротора низкого давления,

9 - блок формирования приведенной частоты вращения ротора низкого давления,

10 - задатчик положения направляющих аппаратов компрессора,

11 - задатчик степени расширения газов на турбинах (отношение давления газа за компрессором к давлению газа за турбиной низкого давления),

12 - регулятор частоты вращения ротора низкого давления,

13 - регулятор положения направляющих аппаратов компрессора,

14 - регулятор степени расширения газов на турбинах,

15 - дозатор топлива,

16 - привод направляющих аппаратов,

17 - привод створок PC (реактивного сопла).

Заданный режим работы двигателя 1 поддерживается регулятором частоты вращения компрессора низкого давления 12, который сравнивает заданное задатчиком 8 и измеренное датчиком 2 значения частоты вращения и формирует управляющий сигнал на дозатор топлива 15.

Блок формирования приведенной частоты вращения компрессора низкого давления 9 в зависимости от сигналов датчиков частоты вращения 2 и температуры воздуха на входе в двигатель 3 формирует сигнал приведенной частоты вращения nк пр в соответствии с зависимостью:

nк пр=пк/√(Твх/288), где:

nк - значение физической частоты вращения,

nк пр - значение приведенной частоты вращения,

Твх - значение температуры воздуха на входе в двигатель.

Задатчик положения направляющих аппаратов 10 в зависимости от приведенной частоты вращения РНД формирует заданное значение положения направляющих аппаратов. Регулятор положения направляющих аппаратов 13 сравнивает заданное задатчиком 10 и измеренное датчиком положения 5 фактическое положения направляющих аппаратов и формирует сигнал управления на привод направляющих аппаратов 16 для поддержания заданного положения.

Задатчик степени расширения газов на турбинах Пт 11 формирует заданное значение положения створок PC в зависимости от измеренной датчиком 3 температуры на входе в двигатель. Регулятор Пт 14 по измеренному датчиком 6 давлению газа за компрессором и датчиком 7 давлению газа за турбиной низкого давления рассчитывает фактическое значение Пт и сравнивает его с заданным задатчиком Пт 11 и формирует сигнал управления на привод створок PC 17 для поддержания заданного значения степени расширения газов.

При превышении измеренной датчиком температурой на входе в двигатель порога срабатывания компаратора 4 компаратор срабатывает, и на его выходе формируется единичный сигнал. Порог срабатывания компаратора выбирается расчетным путем из условия обеспечения оптимальных высотно-скоростных характеристик и составляет (320…330) K. Сигнал с выхода компаратора 4 поступает на входы задатчика частоты вращения 8, задатчика положения направляющих аппаратов 10 и задатчика отношения давления 11, которые одновременно изменяют заданные значения регулируемых параметров.

Задатчик частоты вращения 8 повышает заданное значение частоты вращения на фиксированную величину 3%, что обеспечивает переход из области частот вращения ниже резонанса в область частот выше резонанса. Задатчик положения направляющих аппаратов 10 снижает заданное положение на величину (5…10) град, и регулятор положения направляющих аппаратов 13 формирует команду на привод НА 16, который прикрывает направляющие аппараты.

Задатчик степени расширения газов на турбинах 11 повышает заданное значение на величину (0,5…0,7), и регулятор 14 подает команду на привод 17, который увеличивает площадь критического сечения реактивного сопла. Таким образом, при температуре воздуха на входе в двигатель выше порога срабатывания компаратора 4 поддерживается значение частоты вращения выше области частот резонанса.

Величины раскрытия реактивного сопла и прикрытия направляющих аппаратов определены расчетным путем таким образом, чтобы повысить частоту вращения компрессора низкого давления при практически постоянном расходе топлива. Это необходимо для того, чтобы не превысить максимально допустимое значение температуры газов перед турбинами двигателя. Одновременное прикрытие направляющих аппаратов и раскрытие реактивного сопла на заранее рассчитанные величины позволяет оптимизировать характеристики двигателя.

Предлагаемый способ регулирования позволяет исключить работу двигателя в зоне резонанса, достичь максимальное значение тяги при наличии ограничений на значения регулируемых параметров и/или управляющих воздействий.


Способ регулирования авиационного турбореактивного двухконтурного двигателя
Способ регулирования авиационного турбореактивного двухконтурного двигателя
Источник поступления информации: Роспатент

Showing 261-261 of 261 items.
04.07.2019
№219.017.a540

Способ регулирования газотурбинного привода и система для его осуществления

Изобретение относится к системам управления силовыми установками и может быть использована для регулирования работы установок со свободной турбиной, например, нагнетателей, гребных винтов, винтов вертолетов и т.д. Способ регулирования газотурбинного привода осуществляется путем измерения...
Тип: Изобретение
Номер охранного документа: 0002252329
Дата охранного документа: 20.05.2005
Showing 311-320 of 366 items.
19.04.2019
№219.017.3474

Ротор турбины

Изобретение относится к элементам турбины с охлаждаемыми рабочими лопатками и с противовибрационными средствами на роторе. Ротор турбины содержит установленные своей замковой частью в пазах диска охлаждаемые рабочие лопатки, выполненные с полками на ножках замковой части. На поверхности полок...
Тип: Изобретение
Номер охранного документа: 0002460886
Дата охранного документа: 10.09.2012
29.04.2019
№219.017.3e44

Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)

Тракт воздушного охлаждения сопловой лопатки выполнен трехканальным. Сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиальной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами. Входной участок первого канала тракта...
Тип: Изобретение
Номер охранного документа: 0002686430
Дата охранного документа: 25.04.2019
29.04.2019
№219.017.411b

Система смазки газотурбинного двигателя

Изобретение относится системам смазки механических устройств, например двигателей, в частности к устройствам для сигнализации о наличии металлических частиц в системе смазки газотурбинных двигателей (ГТД), и позволяет диагностировать начало разрушения двигателя при появлении стружки в масле....
Тип: Изобретение
Номер охранного документа: 0002312240
Дата охранного документа: 10.12.2007
29.04.2019
№219.017.413c

Сигнализатор наличия металлических частиц в системе смазки

Сигнализатор предназначен для сигнализации о наличии металлических частиц в системе смазки газотурбинных двигателей и позволяет диагностировать начало разрушения двигателя при появлении стружки в масле. Сигнализатор содержит пакет кольцевых электропроводящих пластин, разделенных...
Тип: Изобретение
Номер охранного документа: 0002315900
Дата охранного документа: 27.01.2008
20.05.2019
№219.017.5cdb

Способ охлаждения соплового аппарата турбины высокого давления (твд) газотурбинного двигателя (гтд) и сопловый аппарат твд гтд (варианты)

Способ охлаждения соплового аппарата турбины высокого давления осуществляют путем охлаждения наиболее теплонапряженные элементы в лопатках и полках сопловых блоков соплового аппарата двумя потоками воздуха - вторичного потока воздуха камеры сгорания и воздухом от воздуховоздушного...
Тип: Изобретение
Номер охранного документа: 0002688052
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e7b

Способ эксплуатации осесимметричного поворотного сопла турбореактивного двигателя

Изобретение относится к авиационным турбореактивным двигателям, а именно к эксплуатации осесимметричного поворотного сопла, обеспечивающего у двигателя изменения тяги по направлению. Способ эксплуатации осесимметричного поворотного сопла турбореактивного двигателя, у которого ось поворота...
Тип: Изобретение
Номер охранного документа: 0002688609
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5eb2

Реверсивное устройство турбореактивного двигателя

Реверсивное устройство турбореактивного двигателя, содержащее устройство для перекрытия газового потока в корпусе двигателя, размещенного в мотогондоле самолета, содержит выхлопные каналы, установленные по направлению движения газового потока, по окружности в кольцевой полости, клапаны...
Тип: Изобретение
Номер охранного документа: 0002688642
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.66a8

Плоское сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Плоское сопло турбореактивного двигателя содержит две неподвижные боковые стенки и установленные между ними верхнюю и нижнюю подвижные створки. В каждую подвижную створку...
Тип: Изобретение
Номер охранного документа: 0002374477
Дата охранного документа: 27.11.2009
29.05.2019
№219.017.688b

Магнитожидкостное уплотнение вала

Изобретение относится к конструкциям уплотнений между подвижными относительно одна другой поверхностями. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит с полюсными приставками и жестко...
Тип: Изобретение
Номер охранного документа: 0002451225
Дата охранного документа: 20.05.2012
29.05.2019
№219.017.6a11

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения. Управление газотурбинным двигателем (ГТД) с форсажной камерой сгорания (ФКС) осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по...
Тип: Изобретение
Номер охранного документа: 0002466287
Дата охранного документа: 10.11.2012
+ добавить свой РИД