×
26.08.2017
217.015.da46

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования реакционной способности взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а именно определения времени до начала самоподдерживающейся реакции и может быть использовано для определения прямым экспериментальным путем критических условий возникновения теплового взрыва ВВ и верификации адекватных кинетических моделей термического разложения ВВ. В способе определения параметров взрывчатого превращения, проводимого в условиях теплового воздействия на исследуемые образцы ВВ в реакционной камере, которая подключена к измерительным приборам, формирующим измерительные сигналы, и к приборам, преобразующим и обрабатывающим измерительные сигналы, путем регистрации измерительных сигналов, построением графических зависимостей измеряемых в режиме он-лайн параметров, и оценки условий возникновения взрывчатых превращений, тепловое воздействие на исследуемое ВВ осуществляют при нагреве со скоростью не более 0,7°C/мин, построение графических зависимостей осуществляют на основе регистрируемых сигналов, характеризующих температуру во всех характерных точках поверхности и внутри исследуемого цилиндрического образца ВВ произвольного вида и характеризующих величину давления газовой среды внутри реакционной камеры, а оценку условий возникновения взрывчатых превращений осуществляют визуально по характеру изменений хода указанных кривых графических зависимостей в зоне экстремальных значений наблюдаемых параметров, свидетельствующих о начале взрывчатого превращения, затем сравнивают выявленные экстремальные значения параметров с расчетными параметрами, полученными с помощью кинетических моделей термического разложения ВВ, характеризующих энергетическое состояние ВВ произвольного типа, на основании чего судят об адекватности применяемых видов кинетических моделей по установлению факта начала взрывчатых превращений ВВ. Технический результат - обеспечение возможности достоверного установления момента и параметров начала критического взрывчатого превращения - самоподдерживающейся реакции (СПР) в образцах ВВ, получение более точной и полной информации о параметрах возникновения СПР в ВВ, необходимой для верификации адекватных кинетических моделей термического разложения ВВ и прогнозирования поведения ВВ произвольного вида в условиях теплового воздействия. 1 табл., 5 ил., 1 пр.

Изобретение относится к области исследования реакционной способности взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а именно определения времени до начала самоподдерживающейся реакции (СПР), и может быть использовано для определения прямым экспериментальным путем критических условий возникновения теплового взрыва ВВ и при верификации адекватных кинетических моделей термического разложения ВВ.

Актуальность решаемой изобретением проблемы основана на существующей в области изучения параметров процессов, происходящих при тепловом взрыве ВВ, на основе данных которых проводится верификация расчетных кинетических моделей (проверка их точности и соответствия реальным показателям), используемых для прогнозирования поведения определенных ВВ и оценки степени опасности их при хранении и эксплуатации.

Известны методики исследования закономерностей взрывных быстропротекающих процессов и характеристик взрывчатых веществ (ВВ), в которых достигается точность оценки изменения свойств ВВ наблюдением за изменением параметров ВВ при испытаниях (патент РФ №2486512, МПК G01N 33/22, опубл. 27.06.2013 г.).

Известен метод исследования состояния ВВ в среде хранения и при контакте с материалами (индикатором) путем динамического наблюдения за анализируемой газообразной средой с одновременным установлением факта развития критических условий разложения ВВ по наличию характерных продуктов такого взаимодействия (SU №01623119, МПК С06В 21/00, опубл. 27.08.1996 г.).

Однако известные методы не предусматривают достоверного установления факта развития критических условий (риска взрыва или возгорания) с требуемой для верификации кинетических моделей термического разложения ВВ точностью. Кроме того, в известных способах использован исключительно линейный нагрев, вследствие чего невысока точность определения граничных условий взрывчатого превращения, необходимая для верификации адекватных кинетических моделей термического разложения ВВ произвольного вида и прогнозирования поведения последнего в условиях произвольно меняющегося теплового воздействия, что вносит существенную погрешность в расчеты для определения момента и параметров начала критического взрывчатого превращения - самоподдерживающейся реакции (СПР).

Известны способы маломасштабных экспериментов, с помощью которых возможно определять критические температуры теплового взрыва модельных зарядов. В этих методах предпочтение отдается простым модельным испытаниям шарообразных зарядов, когда реализуется одномерная модель с простой математической обработкой получаемых экспериментальных данных. Примером такого подхода является метод «One Dimension Time То Explosion» (ODTX). В известных методах нагрев производят посредством токов высокой частоты, а измерение температуры осуществляют только в одной точке, поэтому информативность таких исследований невысока.

Известен в качестве прототипа заявляемого способ исследования и оценки совместимости энергетического материала с конструкционными в процессе их хранения и эксплуатации (патент РФ №2454661, МПК 33/22, опубл. 27.06.2012 г.), согласно которому производят динамические наблюдения за термостатируемыми при заданных температурах энергетическими и конструкционными материалами с построением графических зависимостей изменения значений измеряемого параметра энергетического материала от продолжительности термостатирования, с последующим определением изменения показателя качества энергетического материала.

Задачей изобретения является разработка экспериментального способа оценки реакционной способности ВВ, позволяющего установить факт возникновения самоподдерживающейся реакции (СПР) в ВВ в условиях теплового воздействия произвольного характера (изотермический, неизотермический и комбинированный режимы нагрева) с точным определением граничных условий по всей поверхности испытательного модуля (применением множественных датчиков температуры, устанавливаемых в разных точках исследуемых образцов) одновременно с возможностью проведения время-зависимых измерений и регистрации в зоне реакции температуры и давления газообразных продуктов, выделяющихся при разложении ВВ.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа определения параметров взрывчатого превращения, а именно времени до начала самоподдерживающейся реакции в цилиндрических образцах ВВ, заключается в обеспечении повышения информативности и достоверности способа за счет возможности динамического наблюдения за анализируемым образцом ВВ в различных точках его поверхности в режиме он-лайн с одновременным более достоверным установлением факта развития критических условий возникновения взрывчатого превращения в образце ВВ. При использовании предлагаемого способа обеспечивается возможность более подробного изучения влияния температурных режимов нагрева (постоянная температура, линейный нагрев, нелинейный нагрев, изотермический нагрев и т.д.); степени заполнения реакционной камеры; наличия в зоне реакции конструкционных материалов на механизм термического разложения ВВ.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа определения параметров взрывчатого превращения (начала самоподдерживающейся реакции) в условиях теплового воздействия на исследуемые образцы ВВ, помещаемые в реакционную камеру, которая подключена к измерительным приборам, формирующим измерительные сигналы, и к приборам, преобразующим и обрабатывающим измерительные сигналы путем регистрации измерительных сигналов, построением графических зависимостей, измеряемых в режиме он-лайн параметров, и оценки условий возникновения взрывчатых превращений, согласно предлагаемому способу тепловое воздействие осуществляют при нагреве со скоростью не более 0,7°C/мин, построение графических зависимостей осуществляют на основе регистрируемых сигналов, характеризующих и температуру во всех характерных точках поверхности и внутри исследуемого цилиндрического образца ВВ произвольного типа, и величину давления газовой среды внутри реакционной камеры, а оценку условий возникновения взрывчатых превращений осуществляют визуально по характеру изменений хода указанных кривых графических зависимостей в зоне экстремальных значений наблюдаемых параметров, свидетельствующих о начале взрывчатого превращения, затем сравнивают выявленные экстремальные значения параметров с расчетными параметрами, полученными с помощью кинетических моделей термического разложения ВВ, характеризующих энергетическое состояние ВВ произвольного типа, на основании чего судят об адекватности применяемых кинетических моделей по установлению факта начала взрывчатых превращений.

Предлагаемый способ оценки определения времени до начала самоподдерживающейся реакции в цилиндрических образцах ВВ поясняются следующим образом.

Первоначально в реакционную камеру, являющуюся составляющей испытательного модуля установки для определения начала самоподдерживающейся реакции в ВВ, помещают образец ВВ известной геометрии, плотности и массы. Конструкция реакционной камеры позволяет испытывать образцы ВВ массой от 1 до 5 г. Плотное примыкание ВВ к внутренним стенкам реакционной камеры с расположенными в них термопарами обеспечивает контроль граничных условий в эксперименте. Испытательный модуль включает в себя нагревательное устройство; блюмс алюминиевый с расположенным в нем корпусом, где в определенной последовательности установлены образец ВВ и втулка. После установки образца и втулки в корпус вся сборка затягивается гайкой. Такое выполнение реакционной камеры дает возможность оптимальным образом задавать и поддерживать температурный режим нагрева исследуемых материалов.

Испытательный модуль снабжен термопарами (до 26 штук), формирующими измерительные сигналы, и прибором, преобразующим и обрабатывающим эти измерительные сигналы в аналоговые сигналы посредством математической обработки с использованием расчетно-графического комплекса и ПК.

На фиг. 1 изображена схема расположения термопар в алюминиевом блюмсе Te(t), где №№1…26 - номера термопар. При проведении исследований с регистрацией давления, образующегося внутри реакционной камеры в результате разложения ВВ при нагреве, предусмотрено использование втулки с впаянным газоотводом.

На фиг. 2 изображен внешний вид втулки, используемой в экспериментах по определению времени до начала взрывчатых превращений (самоподдерживающейся реакции) в цилиндрических образцах с регистрацией давления в реакционной камере.

Расчетно-графический комплекс (РГК) представляет собой проектно компонуемую систему управления нагревом, контроля температур и давления в испытательном модуле с управляющим компьютером (ПЭВМ) (фиг. 3).

РГК предназначен для нагрева в герметичном объеме исследуемого образца ВВ при различных режимах (с заданной скоростью до заданной температуры, поддержания заданной температуры); регистрации динамики изменения температуры в зоне реакции при нагреве с пределами измерения до 800°C; регистрации давления газообразных продуктов, образующихся в реакционной; приема данных на сервере и регистрации значений в архиве системы; накопления данных различных экспериментов в едином архиве; визуализации хода эксперимента в реальном времени; оперативного анализа данных в ходе эксперимента.

В режиме он-лайн осуществляют наблюдение за поведением исследуемого образца по изменению температурных показателей в реакционной камере установки. О начале самоподдерживающей реакции (СПР) разложения ВВ судят по резкому возрастанию температуры по показаниям термопар, расположенных в центре верхней и нижней крышек реакционной камеры.

На фиг. 4 изображен пример экспериментальных данных графической зависимости температуры ВВ от времени при проведении опыта по определению времени до начала самоподдерживающейся реакции.

На фиг. 5 изображен момент и параметр критического взрывчатого превращения пластифицированного тэна в виде цилиндрического образца ∅15×15 мм при нагреве со скоростью ~0,7°C/мин.

Оценку условий возникновения взрывчатых превращений осуществляют визуально по характеру изменений хода указанных кривых графических зависимостей в зоне экстремальных значений наблюдаемых параметров, свидетельствующих о начале взрывчатого превращения (на фиг. 4, 5). Затем сравнивают выявленные экстремальные значения параметров с расчетными параметрами, полученными с помощью кинетических моделей термического разложения ВВ, характеризующих энергетическое состояние ВВ произвольного типа, на основании чего судят об адекватности применяемых кинетических моделей по установлению факта начала взрывчатых превращений.

Таким образом, при использовании предлагаемого способа определения параметров взрывчатого превращения в исследуемых образцах ВВ была обеспечена возможность определения момента и параметров начала критического взрывчатого превращения - самоподдерживающейся реакции (СПР), повышения точности определения указанных параметров, необходимой для верификации адекватных кинетических моделей термического разложения ВВ произвольного вида и прогнозирования поведения ВВ в условиях теплового воздействия.

Возможность промышленного применения предлагаемого способа подтверждена следующим примером.

Пример 1. В лабораторных условиях предлагаемый способ был опробован на устройстве, изображенном на фиг. 1.

Лабораторные испытания проводили на цилиндрическом образце ∅15×15 мм из пластифицированного тэна с плотностью 1,77 г/см3. В условиях проведения испытаний обеспечивались граничные условия первого рода на поверхности блюмса Te(t). Схема точек измерения температуры в образце ВВ представлена на фиг. 1, вид А-А. Средняя скорость нагрева ВВ составляла 0,7°C/мин.

В условиях примера были зарегистрированы граничные условия температур, измеренных в различных точках цилиндрического образца ВВ, температур в реакционной камере с помощью установленных там ХК-термопар, регистрировалось давление газообразных продуктов, образующихся при разложении ВВ до начала самоподдерживающейся реакции в ВВ, в процессе всего эксперимента вплоть до 600 атм (с применением манганинового датчика) и свыше 1000 атм (в момент теплового взрыва ВВ). Опыт проводили при нагреве до 500°C с использованием различных типов теплового воздействия (изотермического, неизотермического, произвольно изменяющегося во времени).

В ходе проведения эксперимента на 150 минуте зарегистрировали момент начала самоподдерживающейся реакции в ВВ, сопровождаемое взрывчатым превращением с разгерметизацией сборки. После обработки показаний термопар установлено, что на поверхности ВВ в момент НСПР температура составляла 170°C, время 9070 с.

В режиме он-лайн осуществляют наблюдение за поведением исследуемого образца по изменению температурных показателей в реакционной камере установки. О начале самоподдерживающей реакции (СПР) разложения ВВ судят по резкому возрастанию температуры по показаниям термопар, расположенных в центре верхней и нижней крышек реакционной камеры.

Полученные данные использовали для верификации кинетических моделей процесса термического разложения пластифицированного тэна, построенных по данным манометрических и калориметрических исследований. Проводили расчет параметров начала самоподдерживающейся реакции (НСПР) при моделировании теплового взрыва ВВ, его теплофизические характеристики, теплофизические свойства материалов испытательного модуля установки для определения параметров взрывчатого превращения, фактические граничные условия, реализованные в эксперименте в соответствии с показаниями термопар, установленных на поверхности образца ВВ.

В условиях данного примера полученные данные и проведенные на их основе расчеты времени начала самоподдерживающейся реакции в цилиндрическом образце ВВ из пластифицированного тэна, полученные с применением различных кинетических моделей термического разложения ВВ, показали, что двухстадийная кинетическая модель термического разложения ВВ лучше описывает эксперимент по определению параметров взрывчатого превращения ВВ и может быть использована в расчетах по оценке реакционной способности образцов из пластифицированного тэна произвольной геометрии.

Результаты испытаний сведены в табл. 1, где представлены данные с использованием различных типов образцов исследуемых ВВ и режимов теплового воздействия в сравнении с известными методами.

Способ определения параметров взрывчатого превращения, проводимого в условиях теплового воздействия на исследуемые образцы ВВ в реакционной камере, которая подключена к измерительным приборам, формирующим измерительные сигналы, и к приборам, преобразующим и обрабатывающим измерительные сигналы путем регистрации измерительных сигналов, построением графических зависимостей, измеряемых в режиме он-лайн параметров, и оценки условий возникновения взрывчатых превращений, отличающийся тем, что тепловое воздействие на исследуемые образцы ВВ осуществляют при нагреве со скоростью не более 0,7°С/мин, построение графических зависимостей осуществляют на основе регистрируемых сигналов, характеризующих и температуру во всех характерных точках поверхности и внутри исследуемого цилиндрического образца ВВ произвольного вида, и величину давления газовой среды внутри реакционной камеры, а оценку условий возникновения взрывчатых превращений ВВ осуществляют визуально по характеру изменений хода указанных кривых графических зависимостей в зоне экстремальных значений наблюдаемых параметров, свидетельствующих о начале взрывчатого превращения, затем сравнивают выявленные экстремальные значения параметров с расчетными параметрами, полученными с помощью кинетических моделей термического разложения ВВ, характеризующих энергетическое состояние ВВ произвольного типа, на основании чего судят об адекватности применяемых видов кинетических моделей по установлению факта начала взрывчатых превращений ВВ.
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
Источник поступления информации: Роспатент

Showing 61-70 of 809 items.
10.09.2015
№216.013.7704

Инерционный включатель

Инерционный включатель содержит корпус, инерционное тело, размещенное на центральной оси, неподвижную направляющую, имеющую на боковых стенках наклонные пазы, контакты, перемыкатель и поворотный привод контактов. Включатель снабжен втулкой с радиальными выступами, закрепленной на инерционном...
Тип: Изобретение
Номер охранного документа: 0002562057
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.789b

Крышка люка контейнера

Изобретение относится к быстросъемным крышкам защитных контейнеров. Крышка люка контейнера содержит основание с установленным на его внешней поверхности устройством открывания/запирания и уплотнительную прокладку. Устройство открывания/запирания выполнено в виде взаимодействующих...
Тип: Изобретение
Номер охранного документа: 0002562464
Дата охранного документа: 10.09.2015
27.10.2015
№216.013.87ec

Способ определения структуры молекулярных кристаллов

Использование: для определения структуры молекулярных кристаллов. Сущность изобретения заключается в том, что выполняют подготовку поликристаллического или порошкообразного материала, воздействуют на него монохроматическим рентгеновским излучением, региструют дифракционную картину, определяют...
Тип: Изобретение
Номер охранного документа: 0002566399
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.944a

Микроволновый одноканальный радиоинтерферометр с волноведущим зондирующим трактом

Изобретение относится к радиоэлектронной технике микроволнового диапазона и может быть использовано для измерения параметров быстропротекающих процессов движения различных материальных объектов, ударно-волновых и детонационных фронтов, плазмы. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002569581
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9741

Резонатор лазера

Изобретение относится к резонатору твердотельного лазера с диодной накачкой. Резонатор лазера содержит опорную конструкцию и закрепленную на ней с помощью двух крепежных устройств несущую конструкцию с установленными на ней зеркалами. Опорная конструкция выполнена в виде двух плит, жестко...
Тип: Изобретение
Номер охранного документа: 0002570341
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.975a

Универсальный резонатор лазера

Изобретение относится к резонатору твердотельного лазера с диодной накачкой. Указанный резонатор содержит две плиты, с закрепленными на них зеркалами, связанных между собой стержнями, и снабженные подвижными и неподвижными опорами. Подвижные опоры выполнены в виде шариков с возможностью их...
Тип: Изобретение
Номер охранного документа: 0002570366
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9c06

Способ управления движением аэробаллистического летательного аппарата по заданной пространственной траектории

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002571567
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f5e

Способ сварки деталей различного диаметра и разной толщины

Изобретение относится к способу сварки деталей различного диаметра и разной толщины и может быть использовано в приборостроении, в электронной и радиотехнической промышленности. Для сварки используют переходник 3, на одном конце которого формируют технологический бурт 4. На другом конце...
Тип: Изобретение
Номер охранного документа: 0002572435
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3f1

Ударный пневмоцилиндр

Изобретение относится к пневматическим устройствам ударного действия. Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком. Средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с...
Тип: Изобретение
Номер охранного документа: 0002574630
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c9aa

Канал технологический совмещенный для промышленной ядерной установки

Изобретение относится к атомной энергетике и касается конструкции канала технологического совмещенного (КТС), содержащего тепловыделяющие и поглощающие элементы. Канал ядерного реактора содержит трубу, тепловыделяющие элементы и блоки-поглотители нейтронов. Канал снабжен второй трубой,...
Тип: Изобретение
Номер охранного документа: 0002577783
Дата охранного документа: 20.03.2016
Showing 61-70 of 306 items.
10.09.2015
№216.013.7704

Инерционный включатель

Инерционный включатель содержит корпус, инерционное тело, размещенное на центральной оси, неподвижную направляющую, имеющую на боковых стенках наклонные пазы, контакты, перемыкатель и поворотный привод контактов. Включатель снабжен втулкой с радиальными выступами, закрепленной на инерционном...
Тип: Изобретение
Номер охранного документа: 0002562057
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.789b

Крышка люка контейнера

Изобретение относится к быстросъемным крышкам защитных контейнеров. Крышка люка контейнера содержит основание с установленным на его внешней поверхности устройством открывания/запирания и уплотнительную прокладку. Устройство открывания/запирания выполнено в виде взаимодействующих...
Тип: Изобретение
Номер охранного документа: 0002562464
Дата охранного документа: 10.09.2015
27.10.2015
№216.013.87ec

Способ определения структуры молекулярных кристаллов

Использование: для определения структуры молекулярных кристаллов. Сущность изобретения заключается в том, что выполняют подготовку поликристаллического или порошкообразного материала, воздействуют на него монохроматическим рентгеновским излучением, региструют дифракционную картину, определяют...
Тип: Изобретение
Номер охранного документа: 0002566399
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.944a

Микроволновый одноканальный радиоинтерферометр с волноведущим зондирующим трактом

Изобретение относится к радиоэлектронной технике микроволнового диапазона и может быть использовано для измерения параметров быстропротекающих процессов движения различных материальных объектов, ударно-волновых и детонационных фронтов, плазмы. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002569581
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9741

Резонатор лазера

Изобретение относится к резонатору твердотельного лазера с диодной накачкой. Резонатор лазера содержит опорную конструкцию и закрепленную на ней с помощью двух крепежных устройств несущую конструкцию с установленными на ней зеркалами. Опорная конструкция выполнена в виде двух плит, жестко...
Тип: Изобретение
Номер охранного документа: 0002570341
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.975a

Универсальный резонатор лазера

Изобретение относится к резонатору твердотельного лазера с диодной накачкой. Указанный резонатор содержит две плиты, с закрепленными на них зеркалами, связанных между собой стержнями, и снабженные подвижными и неподвижными опорами. Подвижные опоры выполнены в виде шариков с возможностью их...
Тип: Изобретение
Номер охранного документа: 0002570366
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9c06

Способ управления движением аэробаллистического летательного аппарата по заданной пространственной траектории

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002571567
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f5e

Способ сварки деталей различного диаметра и разной толщины

Изобретение относится к способу сварки деталей различного диаметра и разной толщины и может быть использовано в приборостроении, в электронной и радиотехнической промышленности. Для сварки используют переходник 3, на одном конце которого формируют технологический бурт 4. На другом конце...
Тип: Изобретение
Номер охранного документа: 0002572435
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3f1

Ударный пневмоцилиндр

Изобретение относится к пневматическим устройствам ударного действия. Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком. Средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с...
Тип: Изобретение
Номер охранного документа: 0002574630
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c9aa

Канал технологический совмещенный для промышленной ядерной установки

Изобретение относится к атомной энергетике и касается конструкции канала технологического совмещенного (КТС), содержащего тепловыделяющие и поглощающие элементы. Канал ядерного реактора содержит трубу, тепловыделяющие элементы и блоки-поглотители нейтронов. Канал снабжен второй трубой,...
Тип: Изобретение
Номер охранного документа: 0002577783
Дата охранного документа: 20.03.2016
+ добавить свой РИД