×
26.08.2017
217.015.da46

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования реакционной способности взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а именно определения времени до начала самоподдерживающейся реакции и может быть использовано для определения прямым экспериментальным путем критических условий возникновения теплового взрыва ВВ и верификации адекватных кинетических моделей термического разложения ВВ. В способе определения параметров взрывчатого превращения, проводимого в условиях теплового воздействия на исследуемые образцы ВВ в реакционной камере, которая подключена к измерительным приборам, формирующим измерительные сигналы, и к приборам, преобразующим и обрабатывающим измерительные сигналы, путем регистрации измерительных сигналов, построением графических зависимостей измеряемых в режиме он-лайн параметров, и оценки условий возникновения взрывчатых превращений, тепловое воздействие на исследуемое ВВ осуществляют при нагреве со скоростью не более 0,7°C/мин, построение графических зависимостей осуществляют на основе регистрируемых сигналов, характеризующих температуру во всех характерных точках поверхности и внутри исследуемого цилиндрического образца ВВ произвольного вида и характеризующих величину давления газовой среды внутри реакционной камеры, а оценку условий возникновения взрывчатых превращений осуществляют визуально по характеру изменений хода указанных кривых графических зависимостей в зоне экстремальных значений наблюдаемых параметров, свидетельствующих о начале взрывчатого превращения, затем сравнивают выявленные экстремальные значения параметров с расчетными параметрами, полученными с помощью кинетических моделей термического разложения ВВ, характеризующих энергетическое состояние ВВ произвольного типа, на основании чего судят об адекватности применяемых видов кинетических моделей по установлению факта начала взрывчатых превращений ВВ. Технический результат - обеспечение возможности достоверного установления момента и параметров начала критического взрывчатого превращения - самоподдерживающейся реакции (СПР) в образцах ВВ, получение более точной и полной информации о параметрах возникновения СПР в ВВ, необходимой для верификации адекватных кинетических моделей термического разложения ВВ и прогнозирования поведения ВВ произвольного вида в условиях теплового воздействия. 1 табл., 5 ил., 1 пр.

Изобретение относится к области исследования реакционной способности взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а именно определения времени до начала самоподдерживающейся реакции (СПР), и может быть использовано для определения прямым экспериментальным путем критических условий возникновения теплового взрыва ВВ и при верификации адекватных кинетических моделей термического разложения ВВ.

Актуальность решаемой изобретением проблемы основана на существующей в области изучения параметров процессов, происходящих при тепловом взрыве ВВ, на основе данных которых проводится верификация расчетных кинетических моделей (проверка их точности и соответствия реальным показателям), используемых для прогнозирования поведения определенных ВВ и оценки степени опасности их при хранении и эксплуатации.

Известны методики исследования закономерностей взрывных быстропротекающих процессов и характеристик взрывчатых веществ (ВВ), в которых достигается точность оценки изменения свойств ВВ наблюдением за изменением параметров ВВ при испытаниях (патент РФ №2486512, МПК G01N 33/22, опубл. 27.06.2013 г.).

Известен метод исследования состояния ВВ в среде хранения и при контакте с материалами (индикатором) путем динамического наблюдения за анализируемой газообразной средой с одновременным установлением факта развития критических условий разложения ВВ по наличию характерных продуктов такого взаимодействия (SU №01623119, МПК С06В 21/00, опубл. 27.08.1996 г.).

Однако известные методы не предусматривают достоверного установления факта развития критических условий (риска взрыва или возгорания) с требуемой для верификации кинетических моделей термического разложения ВВ точностью. Кроме того, в известных способах использован исключительно линейный нагрев, вследствие чего невысока точность определения граничных условий взрывчатого превращения, необходимая для верификации адекватных кинетических моделей термического разложения ВВ произвольного вида и прогнозирования поведения последнего в условиях произвольно меняющегося теплового воздействия, что вносит существенную погрешность в расчеты для определения момента и параметров начала критического взрывчатого превращения - самоподдерживающейся реакции (СПР).

Известны способы маломасштабных экспериментов, с помощью которых возможно определять критические температуры теплового взрыва модельных зарядов. В этих методах предпочтение отдается простым модельным испытаниям шарообразных зарядов, когда реализуется одномерная модель с простой математической обработкой получаемых экспериментальных данных. Примером такого подхода является метод «One Dimension Time То Explosion» (ODTX). В известных методах нагрев производят посредством токов высокой частоты, а измерение температуры осуществляют только в одной точке, поэтому информативность таких исследований невысока.

Известен в качестве прототипа заявляемого способ исследования и оценки совместимости энергетического материала с конструкционными в процессе их хранения и эксплуатации (патент РФ №2454661, МПК 33/22, опубл. 27.06.2012 г.), согласно которому производят динамические наблюдения за термостатируемыми при заданных температурах энергетическими и конструкционными материалами с построением графических зависимостей изменения значений измеряемого параметра энергетического материала от продолжительности термостатирования, с последующим определением изменения показателя качества энергетического материала.

Задачей изобретения является разработка экспериментального способа оценки реакционной способности ВВ, позволяющего установить факт возникновения самоподдерживающейся реакции (СПР) в ВВ в условиях теплового воздействия произвольного характера (изотермический, неизотермический и комбинированный режимы нагрева) с точным определением граничных условий по всей поверхности испытательного модуля (применением множественных датчиков температуры, устанавливаемых в разных точках исследуемых образцов) одновременно с возможностью проведения время-зависимых измерений и регистрации в зоне реакции температуры и давления газообразных продуктов, выделяющихся при разложении ВВ.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа определения параметров взрывчатого превращения, а именно времени до начала самоподдерживающейся реакции в цилиндрических образцах ВВ, заключается в обеспечении повышения информативности и достоверности способа за счет возможности динамического наблюдения за анализируемым образцом ВВ в различных точках его поверхности в режиме он-лайн с одновременным более достоверным установлением факта развития критических условий возникновения взрывчатого превращения в образце ВВ. При использовании предлагаемого способа обеспечивается возможность более подробного изучения влияния температурных режимов нагрева (постоянная температура, линейный нагрев, нелинейный нагрев, изотермический нагрев и т.д.); степени заполнения реакционной камеры; наличия в зоне реакции конструкционных материалов на механизм термического разложения ВВ.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа определения параметров взрывчатого превращения (начала самоподдерживающейся реакции) в условиях теплового воздействия на исследуемые образцы ВВ, помещаемые в реакционную камеру, которая подключена к измерительным приборам, формирующим измерительные сигналы, и к приборам, преобразующим и обрабатывающим измерительные сигналы путем регистрации измерительных сигналов, построением графических зависимостей, измеряемых в режиме он-лайн параметров, и оценки условий возникновения взрывчатых превращений, согласно предлагаемому способу тепловое воздействие осуществляют при нагреве со скоростью не более 0,7°C/мин, построение графических зависимостей осуществляют на основе регистрируемых сигналов, характеризующих и температуру во всех характерных точках поверхности и внутри исследуемого цилиндрического образца ВВ произвольного типа, и величину давления газовой среды внутри реакционной камеры, а оценку условий возникновения взрывчатых превращений осуществляют визуально по характеру изменений хода указанных кривых графических зависимостей в зоне экстремальных значений наблюдаемых параметров, свидетельствующих о начале взрывчатого превращения, затем сравнивают выявленные экстремальные значения параметров с расчетными параметрами, полученными с помощью кинетических моделей термического разложения ВВ, характеризующих энергетическое состояние ВВ произвольного типа, на основании чего судят об адекватности применяемых кинетических моделей по установлению факта начала взрывчатых превращений.

Предлагаемый способ оценки определения времени до начала самоподдерживающейся реакции в цилиндрических образцах ВВ поясняются следующим образом.

Первоначально в реакционную камеру, являющуюся составляющей испытательного модуля установки для определения начала самоподдерживающейся реакции в ВВ, помещают образец ВВ известной геометрии, плотности и массы. Конструкция реакционной камеры позволяет испытывать образцы ВВ массой от 1 до 5 г. Плотное примыкание ВВ к внутренним стенкам реакционной камеры с расположенными в них термопарами обеспечивает контроль граничных условий в эксперименте. Испытательный модуль включает в себя нагревательное устройство; блюмс алюминиевый с расположенным в нем корпусом, где в определенной последовательности установлены образец ВВ и втулка. После установки образца и втулки в корпус вся сборка затягивается гайкой. Такое выполнение реакционной камеры дает возможность оптимальным образом задавать и поддерживать температурный режим нагрева исследуемых материалов.

Испытательный модуль снабжен термопарами (до 26 штук), формирующими измерительные сигналы, и прибором, преобразующим и обрабатывающим эти измерительные сигналы в аналоговые сигналы посредством математической обработки с использованием расчетно-графического комплекса и ПК.

На фиг. 1 изображена схема расположения термопар в алюминиевом блюмсе Te(t), где №№1…26 - номера термопар. При проведении исследований с регистрацией давления, образующегося внутри реакционной камеры в результате разложения ВВ при нагреве, предусмотрено использование втулки с впаянным газоотводом.

На фиг. 2 изображен внешний вид втулки, используемой в экспериментах по определению времени до начала взрывчатых превращений (самоподдерживающейся реакции) в цилиндрических образцах с регистрацией давления в реакционной камере.

Расчетно-графический комплекс (РГК) представляет собой проектно компонуемую систему управления нагревом, контроля температур и давления в испытательном модуле с управляющим компьютером (ПЭВМ) (фиг. 3).

РГК предназначен для нагрева в герметичном объеме исследуемого образца ВВ при различных режимах (с заданной скоростью до заданной температуры, поддержания заданной температуры); регистрации динамики изменения температуры в зоне реакции при нагреве с пределами измерения до 800°C; регистрации давления газообразных продуктов, образующихся в реакционной; приема данных на сервере и регистрации значений в архиве системы; накопления данных различных экспериментов в едином архиве; визуализации хода эксперимента в реальном времени; оперативного анализа данных в ходе эксперимента.

В режиме он-лайн осуществляют наблюдение за поведением исследуемого образца по изменению температурных показателей в реакционной камере установки. О начале самоподдерживающей реакции (СПР) разложения ВВ судят по резкому возрастанию температуры по показаниям термопар, расположенных в центре верхней и нижней крышек реакционной камеры.

На фиг. 4 изображен пример экспериментальных данных графической зависимости температуры ВВ от времени при проведении опыта по определению времени до начала самоподдерживающейся реакции.

На фиг. 5 изображен момент и параметр критического взрывчатого превращения пластифицированного тэна в виде цилиндрического образца ∅15×15 мм при нагреве со скоростью ~0,7°C/мин.

Оценку условий возникновения взрывчатых превращений осуществляют визуально по характеру изменений хода указанных кривых графических зависимостей в зоне экстремальных значений наблюдаемых параметров, свидетельствующих о начале взрывчатого превращения (на фиг. 4, 5). Затем сравнивают выявленные экстремальные значения параметров с расчетными параметрами, полученными с помощью кинетических моделей термического разложения ВВ, характеризующих энергетическое состояние ВВ произвольного типа, на основании чего судят об адекватности применяемых кинетических моделей по установлению факта начала взрывчатых превращений.

Таким образом, при использовании предлагаемого способа определения параметров взрывчатого превращения в исследуемых образцах ВВ была обеспечена возможность определения момента и параметров начала критического взрывчатого превращения - самоподдерживающейся реакции (СПР), повышения точности определения указанных параметров, необходимой для верификации адекватных кинетических моделей термического разложения ВВ произвольного вида и прогнозирования поведения ВВ в условиях теплового воздействия.

Возможность промышленного применения предлагаемого способа подтверждена следующим примером.

Пример 1. В лабораторных условиях предлагаемый способ был опробован на устройстве, изображенном на фиг. 1.

Лабораторные испытания проводили на цилиндрическом образце ∅15×15 мм из пластифицированного тэна с плотностью 1,77 г/см3. В условиях проведения испытаний обеспечивались граничные условия первого рода на поверхности блюмса Te(t). Схема точек измерения температуры в образце ВВ представлена на фиг. 1, вид А-А. Средняя скорость нагрева ВВ составляла 0,7°C/мин.

В условиях примера были зарегистрированы граничные условия температур, измеренных в различных точках цилиндрического образца ВВ, температур в реакционной камере с помощью установленных там ХК-термопар, регистрировалось давление газообразных продуктов, образующихся при разложении ВВ до начала самоподдерживающейся реакции в ВВ, в процессе всего эксперимента вплоть до 600 атм (с применением манганинового датчика) и свыше 1000 атм (в момент теплового взрыва ВВ). Опыт проводили при нагреве до 500°C с использованием различных типов теплового воздействия (изотермического, неизотермического, произвольно изменяющегося во времени).

В ходе проведения эксперимента на 150 минуте зарегистрировали момент начала самоподдерживающейся реакции в ВВ, сопровождаемое взрывчатым превращением с разгерметизацией сборки. После обработки показаний термопар установлено, что на поверхности ВВ в момент НСПР температура составляла 170°C, время 9070 с.

В режиме он-лайн осуществляют наблюдение за поведением исследуемого образца по изменению температурных показателей в реакционной камере установки. О начале самоподдерживающей реакции (СПР) разложения ВВ судят по резкому возрастанию температуры по показаниям термопар, расположенных в центре верхней и нижней крышек реакционной камеры.

Полученные данные использовали для верификации кинетических моделей процесса термического разложения пластифицированного тэна, построенных по данным манометрических и калориметрических исследований. Проводили расчет параметров начала самоподдерживающейся реакции (НСПР) при моделировании теплового взрыва ВВ, его теплофизические характеристики, теплофизические свойства материалов испытательного модуля установки для определения параметров взрывчатого превращения, фактические граничные условия, реализованные в эксперименте в соответствии с показаниями термопар, установленных на поверхности образца ВВ.

В условиях данного примера полученные данные и проведенные на их основе расчеты времени начала самоподдерживающейся реакции в цилиндрическом образце ВВ из пластифицированного тэна, полученные с применением различных кинетических моделей термического разложения ВВ, показали, что двухстадийная кинетическая модель термического разложения ВВ лучше описывает эксперимент по определению параметров взрывчатого превращения ВВ и может быть использована в расчетах по оценке реакционной способности образцов из пластифицированного тэна произвольной геометрии.

Результаты испытаний сведены в табл. 1, где представлены данные с использованием различных типов образцов исследуемых ВВ и режимов теплового воздействия в сравнении с известными методами.

Способ определения параметров взрывчатого превращения, проводимого в условиях теплового воздействия на исследуемые образцы ВВ в реакционной камере, которая подключена к измерительным приборам, формирующим измерительные сигналы, и к приборам, преобразующим и обрабатывающим измерительные сигналы путем регистрации измерительных сигналов, построением графических зависимостей, измеряемых в режиме он-лайн параметров, и оценки условий возникновения взрывчатых превращений, отличающийся тем, что тепловое воздействие на исследуемые образцы ВВ осуществляют при нагреве со скоростью не более 0,7°С/мин, построение графических зависимостей осуществляют на основе регистрируемых сигналов, характеризующих и температуру во всех характерных точках поверхности и внутри исследуемого цилиндрического образца ВВ произвольного вида, и величину давления газовой среды внутри реакционной камеры, а оценку условий возникновения взрывчатых превращений ВВ осуществляют визуально по характеру изменений хода указанных кривых графических зависимостей в зоне экстремальных значений наблюдаемых параметров, свидетельствующих о начале взрывчатого превращения, затем сравнивают выявленные экстремальные значения параметров с расчетными параметрами, полученными с помощью кинетических моделей термического разложения ВВ, характеризующих энергетическое состояние ВВ произвольного типа, на основании чего судят об адекватности применяемых видов кинетических моделей по установлению факта начала взрывчатых превращений ВВ.
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ
Источник поступления информации: Роспатент

Showing 141-150 of 809 items.
24.08.2017
№217.015.952c

Герметичный разъем

Изобретение относится к области электротехники и теплофизических исследований и измерений. Техническим результатом является повышение надежности и снижение габаритов, упрощение монтажа и ремонта, обеспечение электроизоляции трубок или кабелей в узле герметичного разъема, увеличение количества...
Тип: Изобретение
Номер охранного документа: 0002608597
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.95bc

Устройство для защиты от ударов и вибраций

Изобретение относится к области машиностроения. Устройство защиты от ударов и вибраций содержит упругие элементы и расположенный между ними опорный элемент. В отверстии опорного элемента установлены демпфирующая втулка, крепежная втулка с фланцами и дополнительная крепежная втулка с фланцами....
Тип: Изобретение
Номер охранного документа: 0002608897
Дата охранного документа: 26.01.2017
25.08.2017
№217.015.9632

Оптический блок для обнаружения цели

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях различных боеприпасов. Оптический блок для обнаружения цели содержит последовательно установленные по ходу излучения источник оптического излучения, светоделитель, выполненный в виде двух...
Тип: Изобретение
Номер охранного документа: 0002608963
Дата охранного документа: 27.01.2017
25.08.2017
№217.015.9aef

Силовой каркас для космической аппаратуры

Изобретение относится к конструкции космической техники. Силовой каркас состоит из цилиндрических стержней, расположенных под углом друг к другу, с узлами соединения в местах их пересечения. Каркас выполнен на основе тепловых труб. Диаметр и толщина стенок тепловых труб выбраны из условий...
Тип: Изобретение
Номер охранного документа: 0002610070
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9d79

Прибор для подрыва пиросредств

Изобретение относится к системам инициирования пиросредств в области взрывных работ. Прибор для подрыва пиросредств содержит микроконтроллер, внешний источник энергии, выходы которого подключены к входам преобразователя напряжения, электронные ключи K…K, к управляющим входам которых подключены...
Тип: Изобретение
Номер охранного документа: 0002610610
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9de3

Траверса

Изобретение относится к подъемно-транспортному оборудованию и может быть использовано при производстве работ по подъему и перемещению большегрузных и габаритных изделий. Траверса содержит штангу, на одном конце которой имеется проушина для соединения с механизмом подъема крана, а на втором...
Тип: Изобретение
Номер охранного документа: 0002610770
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9dff

Приборный отсек космического аппарата

Изобретение относится к терморегулируемому бортовому оборудованию космического аппарата (КА). Отсек содержит шестиугольную платформу (многослойную панель), на которой с двух сторон размещены тепловыделяющие элементы блоков аппаратуры. Несущая конструкция отсека выполнена на основе тепловых труб...
Тип: Изобретение
Номер охранного документа: 0002610850
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.9edb

Прибор для подрыва пиросредств

Изобретение относится к системам инициирования пиросредств. Прибор для подрыва пиросредств содержит микроконтроллер, каждый выход которого подключен к управляющему входу соответствующего релейного ключа, электровзрывные сети, источник энергии, к минусовой клемме которого подключен первый вывод...
Тип: Изобретение
Номер охранного документа: 0002606265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a21f

Устройство взрывной резки

Изобретение относится к обработке металлов давлением, в частности к взрывной резке, и может быть использовано для резки корпусных конструкций сложной конфигурации с толщиной стенки до 23 мм на фрагменты, удобные для транспортировки и переплавки. Устройство содержит детонационно соединенный со...
Тип: Изобретение
Номер охранного документа: 0002606812
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a307

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера (варианты)

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера содержит входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент. Устройство снабжено дополнительными входным и...
Тип: Изобретение
Номер охранного документа: 0002607269
Дата охранного документа: 10.01.2017
Showing 141-150 of 306 items.
24.08.2017
№217.015.952c

Герметичный разъем

Изобретение относится к области электротехники и теплофизических исследований и измерений. Техническим результатом является повышение надежности и снижение габаритов, упрощение монтажа и ремонта, обеспечение электроизоляции трубок или кабелей в узле герметичного разъема, увеличение количества...
Тип: Изобретение
Номер охранного документа: 0002608597
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.95bc

Устройство для защиты от ударов и вибраций

Изобретение относится к области машиностроения. Устройство защиты от ударов и вибраций содержит упругие элементы и расположенный между ними опорный элемент. В отверстии опорного элемента установлены демпфирующая втулка, крепежная втулка с фланцами и дополнительная крепежная втулка с фланцами....
Тип: Изобретение
Номер охранного документа: 0002608897
Дата охранного документа: 26.01.2017
25.08.2017
№217.015.9632

Оптический блок для обнаружения цели

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях различных боеприпасов. Оптический блок для обнаружения цели содержит последовательно установленные по ходу излучения источник оптического излучения, светоделитель, выполненный в виде двух...
Тип: Изобретение
Номер охранного документа: 0002608963
Дата охранного документа: 27.01.2017
25.08.2017
№217.015.9aef

Силовой каркас для космической аппаратуры

Изобретение относится к конструкции космической техники. Силовой каркас состоит из цилиндрических стержней, расположенных под углом друг к другу, с узлами соединения в местах их пересечения. Каркас выполнен на основе тепловых труб. Диаметр и толщина стенок тепловых труб выбраны из условий...
Тип: Изобретение
Номер охранного документа: 0002610070
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9d79

Прибор для подрыва пиросредств

Изобретение относится к системам инициирования пиросредств в области взрывных работ. Прибор для подрыва пиросредств содержит микроконтроллер, внешний источник энергии, выходы которого подключены к входам преобразователя напряжения, электронные ключи K…K, к управляющим входам которых подключены...
Тип: Изобретение
Номер охранного документа: 0002610610
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9de3

Траверса

Изобретение относится к подъемно-транспортному оборудованию и может быть использовано при производстве работ по подъему и перемещению большегрузных и габаритных изделий. Траверса содержит штангу, на одном конце которой имеется проушина для соединения с механизмом подъема крана, а на втором...
Тип: Изобретение
Номер охранного документа: 0002610770
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9dff

Приборный отсек космического аппарата

Изобретение относится к терморегулируемому бортовому оборудованию космического аппарата (КА). Отсек содержит шестиугольную платформу (многослойную панель), на которой с двух сторон размещены тепловыделяющие элементы блоков аппаратуры. Несущая конструкция отсека выполнена на основе тепловых труб...
Тип: Изобретение
Номер охранного документа: 0002610850
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.9edb

Прибор для подрыва пиросредств

Изобретение относится к системам инициирования пиросредств. Прибор для подрыва пиросредств содержит микроконтроллер, каждый выход которого подключен к управляющему входу соответствующего релейного ключа, электровзрывные сети, источник энергии, к минусовой клемме которого подключен первый вывод...
Тип: Изобретение
Номер охранного документа: 0002606265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a21f

Устройство взрывной резки

Изобретение относится к обработке металлов давлением, в частности к взрывной резке, и может быть использовано для резки корпусных конструкций сложной конфигурации с толщиной стенки до 23 мм на фрагменты, удобные для транспортировки и переплавки. Устройство содержит детонационно соединенный со...
Тип: Изобретение
Номер охранного документа: 0002606812
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a307

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера (варианты)

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера содержит входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент. Устройство снабжено дополнительными входным и...
Тип: Изобретение
Номер охранного документа: 0002607269
Дата охранного документа: 10.01.2017
+ добавить свой РИД