×
26.08.2017
217.015.da22

Результат интеллектуальной деятельности: СПОСОБ РЕГИСТРАЦИИ ПЛАНКТОНА

Вид РИД

Изобретение

Аннотация: Способ регистрации планктона включает в себя формирование изучаемого объема среды путем передачи в выбранном направлении импульсного оптического излучения и регистрацию теневого изображения в виде цифровой осевой голограммы Габора. Затем восстанавливают с голограммы послойно изображение объема с обработкой информации в каждом сечении. Во время реализации способа регистрируют временную последовательность наложенных голограмм Габора, которые формируют посредством управления длительностью и скважностью импульсного оптического излучения, и временем фотоэлектрической регистрации. Технический результат – повышение различительной способности и контрастности изображения, повышение репрезентативности результатов за счет увеличения регистрируемого объема. 5 ил.

Изобретение относится к океанологическим исследованиям и предназначено для проведения океанологических (гидробиологических) исследований планктона.

Известен способ определения размерно-количественных характеристик взвешенных в воде частиц. Способ заключается в формировании реперного объема оптическим путем, передаче в заранее установленном направлении параллельного потока прямоугольного сечения импульсного оптического излучения постоянной интенсивности. Сформированный реперный объем перемещают по траектории, перпендикулярной направлению потока излучения и большей стороне его прямоугольного сечения, и регистрируют взвешенные в воде частицы при появлении их в реперном объеме путем приема оптического излучения из реперного объема под любым углом к нему. Оптическое излучение преобразуют в электрические сигналы, анализируют их, причем по амплитуде и длительности сигналов судят о размерах и количестве частиц. Предложено отношение размеров сторон прямоугольного сечения приравнять к отношению максимальной и минимальной границ размерного диапазона регистрируемых частиц, а скорость перемещения реперного объема удерживать на уровне, не превышающем отношение длины меньшей стороны сечения ко времени периода частоты следования импульсов оптического излучения (RU № 2112955, МПК6 G01N 15/14, G01N 21/85).

Недостатки аналога - низкая различительная способность, слабая детализация изображения, поскольку фактически оценивается величина, косвенно связанная с биомассой.

Известен также способ регистрации планктона, реализованный с помощью судового оптоэлектронного измерителя планктона (RU 131181 U1), принятый за прототип. Способ заключается в генерации параллельного потока импульсного оптического излучения, формировании оптическим путем реперного объема прямоугольного сечения, перемещении этого реперного объема, приеме оптического излучения и преобразовании его в электрические сигналы, регистрации изменения амплитуды электрических импульсов, определении разности между сигналом в отсутствие импульсов и сигналом, полученным во время воздействия импульсами, и формировании временного интервала на время регистрации частиц планктона, находящихся в реперном объёме.

В качестве средства для приема и преобразования оптического излучения в электрические сигналы в измерителе применена цифровая видеокамера, содержащая фотоприемную матрицу для измерения размеров тени планктона в двух взаимно перпендикулярных направлениях. В состав измерителя включен процессор, управляющий режимом работы измерителя.

Устройство, в котором реализуется способ-прототип, позволяет производить прямой подсчет планктона на заданной глубине. Но поскольку в целях измерений используется зарегистрированное теневое изображение, являющееся заведомо расфокусированным, различительная способность и контрастность изображения очень низки. Низкая детализация приводит к малой информативности измерений, в частности, способ не пригоден для изучения размерно-видового разнообразия планктона, ограничивая результаты оценкой биомассы. Низкая контрастность не позволяет регистрировать несколько реперных объемов на один кадр экспозиции камеры, т.е. увеличить исследуемый объем и повысить репрезентативность выборки, особенно в водах с низким содержанием планктона.

В качестве ближайшего аналога выбран способ, описанный Дёминым В.В. и др.: Цифровая голография планктона / В.В.Демин, А.С.Ольшуков, Наумова Е.Ю., Мельник Н.Г. // Оптика атмосферы и океана. – 2008 – Т. 21 – № 12. – С. 1089-1095. Регистрацию планктона осуществляют с помощью источника когерентного излучения, а регистрация цифровых голограмм осуществляется непосредственно на ПЗС-камеру, не используя оптическую систему.

Недостатки прототипа: поперечное сечение исследуемого объёма невелико и ограничено размером используемой ПЗС-матрицы, контрастность получаемого изображения недостаточна для полной идентификации объекта.

Техническая задача изобретения заключается в создании способа регистрации планктона, обеспечивающего повышенную различительную способность и контрастность изображения, позволяющего увеличить регистрируемый объем и повысить репрезентативность выборки.

Эта задача решается за счет того, что, как и в прототипе, формируют изучаемый объем среды путем передачи в выбранном направлении коллимированного потока импульсного оптического излучения и осуществляют фотоэлектрическую регистрацию теневого изображения этого объема вместе с взвешенными в нем частицами.

В отличие от прототипа, теневое изображение, согласно изобретению, регистрируют как цифровую осевую голограмму Габора. При регистрации цифровой голограммы используют приёмную оптическую систему, которая, в отличие от проекционной оптической системы, не строит на ПЗС-камере сфокусированных изображений планктонных частиц, т.е. снимает ограничение на размер регистрируемого объёма с планктонными частицами.

Затем цифровым путем послойно восстанавливают с голограммы изображение объема с учётом приёмной оптической системы и с обработкой информации в каждом сечении известными численными методами. В результате получают размерные и количественные характеристики частиц, взвешенных в изучаемом объеме.

Задача в части увеличения изучаемого объема и, следовательно, репрезентативности выборки решается также за счет последовательной регистрации в течение одной экспозиции голограмм нескольких изучаемых объемов (наложенных голограмм), сформированных путем отправления последовательности импульсов лазера. Режим последовательности импульсов реализуется посредством управления длительностью и скважностью импульсов лазерного излучения, а также заданием времени фотоэлектрической экспозиции.

Сущность способа и возможность его осуществления поясняется на примере работы конкретного устройства, которое показано на фигурах 1–5.

На фиг.1 представлена структурная схема устройства, предназначенного для сбора информации об исследуемом планктоне, её предварительной обработки, сохранения информации в устройстве записи и/или передачи данных непосредственно на бортовой компьютер судна.

На фиг.2 представлены временные диаграммы генерации лазерного излучения Pл(t) и срабатывания затвора камеры Pк(t) в режиме записи одиночных голограмм.

На фиг.3 представлены временные диаграммы генерации лазерного излучения Pл(t) и срабатывания затвора камеры Pк(t) в режиме записи наложенных голограмм.

На фиг.4 представлены цифровая голограмма (она же - теневое изображение с тонкой структурой) исследуемого объема, полученная с помощью одного импульса полупроводникового лазера, и изображения планктонных частиц, восстановленные с неё в различных сечениях объёма.

На фиг.5 представлены цифровое фото четырех наложенных голограмм тестовой частицы размером 1 мм, движущейся в исследуемом объеме (а), и последовательность голографических изображений этой частицы, восстановленные с цифровых голограмм известными численными методами (б).

Основными структурными элементами схемы (фиг.1) являются: лазерный излучатель 1; матричное фотоприемное устройство 7; центральное процессорное устройство (ЦПУ) 10; постоянное запоминающее устройство (ПЗУ) 8; блок синхронизации 9, блок интерфейсов (БИ) 11; блок питания (БП) 12; аккумуляторная батарея (АБ) 13 и бортовой компьютер (БК) 15. Также имеются иллюминаторы 3 и 4, объектив 5, пространственный фильтр 6. Все эти структурные элементы скомпонованы в собственно герметичное погружное устройство 14.

Импульсный полупроводниковый лазер МЛ126-0660-050 (производство компании LT&T, λ=660 нм, мощность P=50 мВт) используется в качестве источника света, освещающего исследуемый объем воды с планктоном. Пучок лазерного света, сформированный объективом 2, создает на светочувствительной матрице камеры распределение интенсивности поля, рассеянного исследуемым объемом и взвешенными в нем частицами. Объем V, фиксируемый одним импульсом лазера, определяется диаметром полевой диафрагмы D=22,5 мм и расстоянием L между иллюминаторами 3 и 4 погружного устройства L=294 мм. Для схемы, представленной на фиг.1, объем составляет .

В качестве фотоприемного устройства используется монохромная смарт-камера VRmD3FC-42M-COB компании VRmagic, выполненная на базе CMOS светочувствительной матрицы размером n x n = 2048 х 2048 пикселей с размером каждого пикселя r x r= 5,5 х 5,5 мкм. Камера регистрирует в плоскости светочувствительной матрицы и передаёт в ЦПУ распределение интенсивности лазерного излучения, рассеянного исследуемым объемом. Разрешение матрицы и ее размеры достаточны для того, чтобы зарегистрировать тонкую структуру этого распределения интенсивности, и распределение представляет собой цифровую голограмму Габора. В работе [5] показано: для того чтобы теневое изображение частицы размером d, расположенной на расстоянии z от плоскости регистрации, можно было считать голограммой Габора, необходимо, чтобы выполнялись следующие соотношения: для размера r пикселя матрицы: , где d – размер частицы; для полуширины R0 матрицы , где λ – длина волны, z – расстояние от ПЗС–матрицы до частицы или ее оптического изображения, - минимально необходимая полуширина матрицы.

Из формулы Ньютона для идеальной линзы известно:

где x, x’ - положение предмета и его изображения относительно соответственно переднего и заднего фокусов объектива. Тогда для объектива с фокусным расстоянием для частицы, расположенной на расстоянии от объектива, получим

Для матрицы смарт-камеры VRmD3FC-42M-COB имеем:

- размер частицы d, тонкая структура которой может быть уверенно зарегистрирована,

d > 10 r или ,

- полуширина матрицы R0 достаточна для регистрации голограммы Габора этой частицы, при условии расположения ее на расстоянии от матрицы:

Объектив 5 (см. фиг.1) расположен перед камерой и служит для согласования размеров светочувствительной матрицы и поперечных размеров регистрируемого объема. Помимо этого, в заднем фокусе этого объектива при необходимости может быть установлен пространственный фильтр 6 с целью повышения контрастности слабоконтрастных изображений планктонных частиц и организации телецентрического хода лучей при проведении оптических измерений размеров методом теневого изображения. ЦПУ 10 представляет собой вычислительное устройство погружного устройства 14. ЦПУ выполняет функции управления режимами работы, блоком синхронизации 9 лазера и камеры, передаёт данные в ПЗУ, а также осуществляет первичную обработку кадров, поступающих с камеры в режиме реального времени. В качестве ЦПУ может быть использован малогабаритный компьютер модели PICO821 компании Axiomtek.

ПЗУ 8 записывает зарегистрированные голограммы, инициализационные данные, историю перемещений (навигационный трек), а также историю состояний устройства. Блок интерфейсов 11 обеспечивает коммутацию и электрическую совместимость внутренних интерфейсов с внешними информационными и электрическими интерфейсами различных погружаемых аппаратов, в составе которых работает ЦПУ. Блок питания 12 обеспечивает электропитание узлов и блоков от аккумуляторных батарей 13.

Голограммы просвеченного объема, зарегистрированные камерой, могут записываться в ПЗУ и/или непосредственно передаваться по волоконно-оптической линии связи на бортовой компьютер БК, расположенный на НИС (научно-исследовательское судно) по последовательному высокоскоростному интерфейсу. В стационарных условиях на борту НИС голограммы обрабатываются следующим образом: с каждой зарегистрированной голограммы восстанавливают изображения всех частиц, определяют их размеры и взаимное расположение, производят статистическую обработку и интерпретируют результаты исследований. Для цифровой обработки голограмм используется специальное программное обеспечение, основанное на известных алгоритмах восстановления цифровых голограмм [6].

Диаграммы, приведенные на фиг.2, показывают, что в режиме записи одиночных голограмм частота срабатывания камеры составляет Fк=20 Гц, длительность экспозиции камеры tк=10 мкс, частота повторения импульсов лазера Fл=1 кГц, длительность импульса лазера tл=5 мкс. При этом затвор камеры и сигнал, управляющий импульсом лазера, синхронизированы таким образом, что на одно время экспозиции камеры приходится один импульс лазера. С учетом оптической схемы регистрации за одну секунду регистрируются частицы в объеме около 2,5 л.

Диаграммы, приведенные на фиг.3, показывают, что частота срабатывания камеры в режиме наложенных голограмм по-прежнему составляет Fк=20 Гц, но длительность экспозиции камеры tк=5 мс, частота повторения импульсов лазера составляет Fл=1 кГц, длительность импульса лазера составляет tл=5 мкс. При этом затвор камеры и сигнал, запускающий лазер, синхронизированы таким образом, что на одно время экспозиции камеры приходится пять повторений импульса лазера. В этом случае за одну секунду регистрируются частицы в объеме около 10 л.

Изображения, восстановленные цифровым путем с голограммы, представленной на фиг.4, позволяют уверенно определять видовое разнообразие планктона, измерять размеры особей и их расположение, что невозможно сделать, располагая только теневым изображением объема. В частности, по изображениям частиц a, b, с, d (восстановлены с голограммы фиг.4) можно определить характерные размеры частиц в различных сечениях объема: a - длина 1270 мкм, толщина 327 мкм; b - длина 633 мкм, толщина 187 мкм, толщина усиков 40 мкм; c - длина 275 мкм, толщина 77 мкм, толщина усиков 15 мкм; d - длина 434 мкм, толщина 155 мкм, толщина усиков 20 мкм. Если задать начало координат x, y, z в левом нижнем углу плоскости, в которой располагалась ПЗС–матрица на этапе регистрации, то по восстановленным голографическим изображениям можно определить пространственное расположение частиц в момент регистрации:

Информация, полученная прямой обработкой теневого изображения, также является полезной в силу того, что она выполняется быстро и без привлечения больших вычислительных ресурсов. Она может быть использована, например, в качестве критерия необходимости перехода от регистрации одиночных голограмм к наложенным голограммам и обратно, в зависимости от концентрации планктона в месте измерения.

Результаты эксперимента с наложенными голограммами показывают возможность увеличения исследуемого объема в 5 раз по сравнению с прототипом без потери качества восстановленных изображений. Помимо этого, по восстановленному голографическому изображению была определена поперечная скорость движения тестируемого объекта v=0,262 м/с. Как показывает данный пример, способ по изобретению, в отличие от аналогов, позволяет определить количество планктонных особей в объеме, их размеры, форму, следовательно, позволяет получать не только интегральную оценку биомассы, но, благодаря повышенной различительной способности и контрастности изображения, дифференцирует информацию об исследуемом объекте по размерам, расположению, количеству и видам особей.

Промышленное применение изобретения: научные исследования биологических ресурсов Мирового океана, оборудование судов промразведки с целью получения информации о кормовой базе рыбных запасов, исследования невозмущенных планктонных частиц в среде обитания (концентрация планктонных особей, распределение по видам и размерам, траектория движения, форма и ориентация) в задачах экологии, рационального природопользования, диагностики и охраны окружающей среды.

Библиография

1. US 4637719, кл. G01N 21/85, 1987.

2. SU № 1321212, МПК7 G01N 15/14.

3. RU № 2112955, МПК6 G01N 15/14, G01N21/85.

4. RU № 131181 U1, МПК G01N 15/14, 2013.

5. Оленин А.Л., Парамонов А.А. Разработка многоканального гидролого-оптико-химического комплекса для океанологических исследований на подвижных измерительных платформах. // Материалы конференции X Международная научно-техническая конференция «Современные методы и средства океанологических исследований» Часть III, Москва 2007, стр. 154-160.

6. Schnars U. Digital Hologram Recording, Numerical Reconstruction, and Related Techniques / Schnars U., Jueptner W. – Berlin: Sprinder, 2005. – 164 p.

7. Цифровая голография планктона / В.В. Дёмин, А.С. Ольшуков, Е.Ю. Наумова, Н.Г. Мельник // Оптика атмосферы и океана. – 2008 – Т. 21 – № 12. – С. 1089–1095 (прототип).

Способ регистрации планктона, включающий оптическое формирование изучаемого объема с взвешенными частицами путем фиксации этого объема импульсами когерентного оптического излучения и фотоэлектрическую регистрацию теневого изображения изучаемого объема с взвешенными частицами, отличающийся тем, что теневое изображение изучаемого объема с взвешенными частицами регистрируют как цифровую осевую голограмму Габора, при этом в течение одной экспозиции регистрируют голограммы нескольких изучаемых объемов, временную последовательность наложенных голограмм Габора формируют посредством управления длительностью и скважностью импульсного оптического излучения и продолжительностью фотоэлектрической экспозиции, изображение изучаемого объема с взвешенными частицами восстанавливают с голограммы послойно, путем обработки информации в каждом сечении методами численного расчета, а увеличения регистрируемого объёма достигают за счёт приёмной оптической системы, которая согласует поперечный размер изучаемого объёма и размер используемого приёмника оптического излучения.
СПОСОБ РЕГИСТРАЦИИ ПЛАНКТОНА
СПОСОБ РЕГИСТРАЦИИ ПЛАНКТОНА
СПОСОБ РЕГИСТРАЦИИ ПЛАНКТОНА
СПОСОБ РЕГИСТРАЦИИ ПЛАНКТОНА
СПОСОБ РЕГИСТРАЦИИ ПЛАНКТОНА
Источник поступления информации: Роспатент

Showing 51-60 of 174 items.
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b07c

Способ определения меди(ii) и марганца(ii) индикаторной трубкой при их совместном присутствии в растворах для анализа природных вод

Изобретение может быть использовано для полуколичественного определения марганца(II) и меди(II) в водных растворах, в частности в природных и сточных водах в полевых условиях. Способ включает наполнение стеклянной трубки с внутренним диаметром 0,5 см Na-формой макросетчатого карбоксильного...
Тип: Изобретение
Номер охранного документа: 0002613407
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b139

Лазерный газоанализатор

Изобретение относится к измерительной технике и может быть использовано для проведения качественного и количественного анализа газовых сред. Лазерный газоанализатор содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода...
Тип: Изобретение
Номер охранного документа: 0002613200
Дата охранного документа: 15.03.2017
Showing 51-60 of 103 items.
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b07c

Способ определения меди(ii) и марганца(ii) индикаторной трубкой при их совместном присутствии в растворах для анализа природных вод

Изобретение может быть использовано для полуколичественного определения марганца(II) и меди(II) в водных растворах, в частности в природных и сточных водах в полевых условиях. Способ включает наполнение стеклянной трубки с внутренним диаметром 0,5 см Na-формой макросетчатого карбоксильного...
Тип: Изобретение
Номер охранного документа: 0002613407
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b139

Лазерный газоанализатор

Изобретение относится к измерительной технике и может быть использовано для проведения качественного и количественного анализа газовых сред. Лазерный газоанализатор содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода...
Тип: Изобретение
Номер охранного документа: 0002613200
Дата охранного документа: 15.03.2017
+ добавить свой РИД