×
26.08.2017
217.015.da10

Результат интеллектуальной деятельности: ЕМКОСТНЫЙ НАКОПИТЕЛЬ ЭНЕРГИИ

Вид РИД

Изобретение

№ охранного документа
0002623714
Дата охранного документа
28.06.2017
Аннотация: Изобретение относится к емкостным накопителям энергии для скважинных электроразрядных аппаратов и может быть использовано в нефтегазодобывающей промышленности для повышения дебита нефтяных и газоконденсатных скважин и/или повышения приемистости нагнетательных скважин, а также межскважинного сейсмопросвечивания и электромагнитного сканирования. Емкостный накопитель энергии содержит, по крайней мере, два конденсатора, высоковольтную и заземленную токопроводящие шины. При этом конденсаторы расположены в одну линию вдоль шин и подключены к ним параллельно, а смежные конденсаторы расположены одноименными выводами друг напротив друга, при механическом и электрическом соединении смежных конденсаторов одноименными выводами друг с другом. Техническим результатом изобретения является снижение индуктивности, повышение механической и электрической прочности емкостного накопителя, при одновременном уменьшении его длины, веса. 13 з.п. ф-лы, 5 ил.

Изобретение относится к емкостным накопителям энергии для скважинных электроразрядных аппаратов и может быть использовано в нефтегазодобывающей промышленности для повышения дебита нефтяных и газоконденсатных скважин и/или повышения приемистости нагнетательных скважин, а также межскважинного сейсмопросвечивания и электромагнитного сканирования.

УРОВЕНЬ ТЕХНИКИ

Известна схема последовательного соединения конденсаторов, когда конденсаторы располагаются в одну линию («паровозиком») и соединяются следующим образом: конец первого конденсатора соединяется с началом второго конденсатора, конец второго конденсатора соединяется с началом третьего конденсатора и т.д., а начало первого конденсатора и конец последнего присоединяются к источнику питания (см. книгу В.С. Попов, Н.Н. Мансуров, С.А. Николаев «Электротехника», Уч. Изд., Москва, 1958, стр. 20, рис. 1-10).

Схема последовательного соединения конденсаторов применяется для получения высоких импедансов и напряжений. Например, по этой схеме соединены конденсаторные секции в высоковольтных импульсных конденсаторах погружного типа по изобретению СССР №1355017 и патентам РФ №2101793 и №2130662.

Недостаток схемы последовательного соединения конденсаторов - техническая невозможность ее реализации в малых габаритах вследствие высокого напряжения и, соответственно, увеличения вероятности электрического повреждения (пробоя) схемы.

Известна также схема параллельного соединения конденсаторов, когда конденсаторы располагаются пространственно параллельно (в виде ряда кубиков) и присоединяются началами конденсаторов к одной общей шине, а концами конденсаторов - к другой общей шине, шины подключаются к источнику питания, например зарядному устройству (см. книгу В.С. Попов, Н.Н. Мансуров, С.А. Николаев «Электротехника», Уч. Изд., Москва, 1958, стр. 21, рис. 1-11).

Схема параллельного соединения конденсаторов применяется для снижения импеданса и получения больших токов. Например, по этой схеме строятся конденсаторные батареи для лазерных установок и установок термоядерного синтеза, а также электроимпульсные установки для обеззараживания жидкости (см. например, патент РФ №2144003).

Недостатком схемы параллельного соединения конденсаторов является то, что когда конденсаторы имеют большую высоту или длину, то пространственно параллельно разместить их в трубчатом металлическом корпусе скважинного электроразрядного аппарата и обеспечить тем самым большую энергоемкость и малые размеры схемы емкостного накопителя невозможно.

Наиболее близким аналогом заявленного изобретения является емкостный накопитель энергии, использованный в скважинном источнике упругих колебаний (см. описание и фиг. 2 RU 2248591 C2, МПК G01V 1/157, опубл. 20.03.2005). В емкостном накопителе данного источника использованы семь цилиндрических конденсаторов, соединенных параллельно друг с другом. Общая емкость накопителя 200 мкФ, рабочее напряжение 3 кВ, средняя запасаемая энергия 1 кДж. Из-за малого диаметра источника (102 мм по внешнему защитному корпусу) и относительно большого диаметра конденсаторов (75 мм) конденсаторы расположены в одну линию («паровозиком») и введены две токопроводящие шины, расположенные вдоль всей цепи (внешней поверхности) конденсаторов диаметрально противоположно, при этом к одной шине присоединены начала всех конденсаторов, а к другой шине - концы всех конденсаторов. Дополнительно между концами и началами смежных конденсаторов устроены зазоры, в которые установлены твердотельные диэлектрические барьеры. Токопроводящие шины изолированы от поверхности конденсаторов и наружного защитного корпуса полимерной изоляционной пленкой. К одной - высоковольтной шине подключены высоковольтный выпрямитель и верхний электрод управляемого коммутатора, другая - заземленная шина подключена через калиброванную взрывающуюся проволочку к стальному защитному корпусу источника и нижнему электроду управляемого коммутатора. Общая длина емкостного накопителя скважинного источника упругих волн 1,64 м.

Недостатками емкостного накопителя, раскрытого в наиболее близком аналоге являются:

- большая длина емкостного накопителя (1,64 м вместо 1,19 м в идеале при семи конденсаторах) вследствие больших резьбовых выводов у конденсаторов и наличия изоляционных зазоров между смежными конденсаторами;

- большая индуктивность емкостного накопителя из-за пространственного разнесения конденсаторов и большой длины токопроводящих шин сборных, что снижает амплитуду разрядного тока и амплитуду электрогидравлического удара источника;

- большая индуктивность емкостного накопителя из-за разнесения конденсаторов и разного расстояния до нагрузки (взрывающей проволочки) - собственные частоты и амплитуды колебаний напряжения и тока в смежных конденсаторах различны (отличаются примерно в 1,41 раза); соответственно, перегруженные по току конденсаторы часто выходят из строя и снижается общий ресурс скважинного источника;

- отсутствие механической сцепки смежных конденсаторов, вследствие чего схема емкостного накопителя механически неустойчива и ее трудно обертывать изоляционной пленкой и устанавливать в защитный металлический корпус.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей заявленного изобретения является создание благоприятных условий для создания скважинных электроразрядных аппаратов малого диаметра и одновременно большой энергоемкости (и мощности).

Техническим результатом изобретения является снижение индуктивности, повышение механической и электрической прочности емкостного накопителя, при одновременном уменьшении его длины, веса.

Указанный технический результат достигается за счет того, что емкостный накопитель энергии содержит, по крайней мере, два конденсатора, высоковольтную и заземленную токопроводящие шины, при этом конденсаторы расположены в одну линию вдоль шин и подключены к ним параллельно, а смежные конденсаторы расположены одноименными выводами друг напротив друга, при механическом и электрическом соединении смежных конденсаторов одноименными выводами друг с другом.

Для емкостного накопителя применяют конденсаторы с разнонаправленными выводами или однонаправленными выводами.

Для емкостного накопителя применяют конденсаторы с укороченными выводами, а также конденсаторы с пластиковыми или металлическими корпусами.

Боковые поверхности смежных конденсаторов изолированы попарно от первой и второй шин полосы полимерной пленки с поперечным сечением С-образной или прямоугольной формы.

При применении конденсаторов с разнонаправленными выводами, боковые поверхности крайних конденсаторов изолированы от высоковольтной и заземленной токопроводящих шин полосами полимерной пленки, изогнутых в виде буквы «Г» или полосами полимерной пленки с выступающими за пределы конденсаторов концами.

Высоковольтная и заземленная шины расположены с разносом по азимуту на угол от 0 до 180°.

Заземленная шина выполнена в виде тонкостенный металлического лотка с поперечным сечением С-образной формы.

Высоковольтная шина выполнена в виде металлической полосы с электроизоляционным покрытием.

При применении конденсаторов с разнонаправленными выводами выводы конденсатов соединены друг с другом при помощи шпилек, или гаек, или муфт с резьбой.

При применении конденсаторов с однонаправленными выводами, выводы конденсатов соединены друг с другом при помощи упругих или шарнирных элементов.

При применении конденсаторов с укороченными выводами, выводы конденсатов соединены друг с другом при помощи перемычек.

При применении конденсаторов с однонаправленными выводами, боковые и торцевые поверхности крайних конденсаторов изолированы от высоковольтной и заземленной токопроводящих шин полимерными изоляторами в виде стаканов.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение будет более понятным из описания, не имеющего ограничительного характера и приводимого со ссылками на прилагаемые чертежи.

На фиг. 1 и 2 приведены электрические схемы предлагаемого емкостного накопителя с высоковольтными конденсаторами, имеющими разнонаправленные и однонаправленные выводы, соответственно.

На фиг. 3 приведена общая компоновка емкостного накопителя аппарата «Plasma Streamer 102» с токоведущими шинами, расположенными друг на дружке и высоковольтными конденсаторами, имеющими разнонаправленные выводы.

На фиг. 4 и 5 приведены варианты схем соединения соседних конденсаторов в емкостном накопителе аппарата «Plasma Streamer 102».

1 - высоковольтная токопроводящая шины; 2 - заземленная токопроводящая шина; 3 - конденсатор; 4 - полосы полимерной пленки; 5 - муфта; 6 - вывод конденсаторов; 7 - токоограничивающие резисторы; 8 - полосы полимерной пленки, изогнутые в виде буквы «Г»; 9 - полимерные изоляторы в виде стаканов.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

В соответствии с фиг. 1-5 емкостный накопитель энергии содержит, по крайней мере, два конденсатора (3), высоковольтную (1) и заземленную (2) токопроводящие шины, при этом конденсаторы (3) расположены в одну линию вдоль шин (1, 2) и подключены к ним параллельно, а смежные конденсаторы (3) расположены одноименными выводами (10) друг напротив друга, при механическом и электрическом соединении смежных конденсаторов одноименными выводами (10) друг с другом.

Для емкостного накопителя применяют конденсаторы (3) с разнонаправленными или однонаправленными выводами (6). Для емкостного накопителя применяют конденсаторы (3) с укороченными выводами (6), а также конденсаторы (3) с пластиковыми или металлическими корпусами.

Боковые поверхности смежных конденсаторов (3) изолированы попарно от первой и второй шин (1, 2) полосами (4) полимерной пленки с поперечным сечением С-образной или прямоугольной формы.

При применении конденсаторов (3) с разнонаправленными выводами, боковые поверхности крайних конденсаторов (3) изолированы от высоковольтной и заземленной токопроводящих шин (1, 2) полосами полимерной пленки (8), изогнутых в виде буквы «Г» или полосами полимерной пленки (8) с выступающими за пределы (на фиг. не показаны) конденсаторов (3) концами.

Высоковольтная и заземленная шины расположены с разносом по азимуту на угол от 0 до 180°.

Заземленная шина (2) выполнена в виде тонкостенный металлического лотка с поперечным сечением С-образной формы.

Высоковольтная шина (1) выполнена в виде металлической полосы с электроизоляционным покрытием.

При применении конденсаторов (3) с разнонаправленными выводами (6), выводы (5) конденсатов (3) соединены друг с другом при помощи шпилек, или гаек, или муфт с резьбой.

При применении конденсаторов (3) с однонаправленными выводами (6), выводы (5) конденсатов (3) соединены друг с другом при помощи упругих или шарнирных элементов.

При применении конденсаторов (3) с укороченными выводами (6), выводы (6) конденсатов (3) соединены друг с другом при помощи перемычек.

При применении конденсаторов (3) с однонаправленными выводами (6), боковые и торцевые поверхности крайних конденсаторов (3) изолированы от высоковольтной и заземленной токопроводящих шин (1) полимерными изоляторами (9) в виде стаканов.

В качестве полимера для полос полимерной пленки (4, 8) и изоляторов (9) применяют лавсан или полиамид.

Применяют пленочные, керамические и другие известные конденсаторы (3). Конденсаторы (3) используют цилиндрической, дисковой и других известных форм.

Согласно фиг. 1 в заявленном техническом решении применяют пять конденсаторов (3) С1-С5, например конденсаторы К75-99В напряжением 6 кВ и емкостью 50-55 мкФ производства ЗАО «ЭЛКОД» в цилиндрических корпусах из полимерных материалов диаметром 75 мм и длиной 170 мм с разнонаправленными резьбовыми выводами длиной 25 мм, конденсаторы серии Е51 производства фирмы «Electronicon» напряжением 6 кВ и емкостью 2,5 мкФ, диаметром 90 мм и длиной 285 мм с разнонаправленными резьбовыми выводами в виде гаек Мб на торцах конденсаторов или дисковые керамические конденсаторы серии DNS производства японской фирмы "muRata" напряжением 10 кВ и емкостью 5000-8000 пФ, диаметром 52-60 мм и высотой 16 мм с разнонаправленными резьбовыми выводами в виде гаек М4.

Согласно фиг. 2 в заявленном техническом решении применяют шесть конденсаторов (3) С1-С6, например конденсаторы К75-65М напряжением 4 кВ и емкостью 47 мкФ производства ЗАО «ЭЛКОД» цилиндрических алюминиевых корпусах диаметром 95 мм и длиной 155 мм с однонаправленными выводами, конденсаторы серий FCA…Q производства французской фирмы «ТРС» в цилиндрических алюминиевых корпусах с однонаправленными резьбовыми выводами напряжением 2 кВ и емкостью 2,2 мкФ, диаметром 80 мм и длиной 97 мм или типа UNL производства американской фирмы CDE Cornell Dubilier в цилиндрических алюминиевых корпусах с однонаправленными резьбовыми выводами напряжением 1 кВ и емкостью 25 мкФ, диаметром 50 мм и длиной 63 мм.

Благодаря малому диаметру таких конденсаторов их можно использовать при создании скважинных электроразрядных аппаратов диаметром 70-90 мм.

В качестве конденсаторов (3) в заявленном техническом решении могут быть использованы также конденсаторы с проволочными и лепестковыми выводами.

Заявленный емкостный накопитель использоваться в наземных условиях, например, в рельсотронах для магнитного (токового) разгона мишеней, и в скважинных условиях, например, в составе скважинных электроразрядных аппаратов для очистки призабойной зоны нагнетательных, нефтяных и газоконденсатных скважин от отложений, а также межскважинного сейсмопросвечивания и электромагнитного сканирования горных пород.

Заявленный емкостный накопитель работает следующим образом.

Монтаж конденсаторов (3) в одну линию («паровозиком») осуществляется в специальном металлическом тонкостенном лотке, который является заземленной шиной (2). Поверхность лотка изнутри покрыта электроизоляционным лаком. Высоковольтная шина (1) выполнена в виде полосы и расположена непосредственно на заземленной шине 2. Сделано это для минимизации погонной индуктивности шин и повышения электрического КПД емкостного накопителя. Боковые поверхности смежных конденсаторов от высоковольтной и заземленной шин (1, 2) с помощью полос (4) полимерной пленки, а поверхности крайних конденсаторов (3) - с помощью полос полимерной пленки (8), изогнутых в виде буквы «Г», полос полимерной пленки (8) с выступающими за пределы (на фиг. не показаны) конденсаторов (3) или полимерными изоляторами (9) в виде стаканов. Тонкостенный лоток (заземленная шина (2)) с смонтированными в нем высоковольтной шиной (1), конденсаторами (3), муфтами (5) обертывается полимерной пленкой и устанавливается во внешний стальной корпус. Конденсаторы (3) с однонаправленными выводами (6) (как показано на фиг. 1) соединены выводами (6) с высоковольтной и заземленной шинами (1, 2) при помощи латунных муфт (5) параллельно. На муфтах (5) со стороны торцов выполнены отверстия с резьбой под выводы (6) конденсаторов, а со стороны боковой поверхности - отверстия с резьбой для присоединения муфт (6) винтами поочередно к высоковольтной (1) и заземленной (2) шинам.

Общая длина емкостного накопителя аппарата «Plasma Streamer 102» при пяти конденсаторах К75-99В составляет 1100 мм, а вместе с электроникой зарядного устройства и контактором - 1921 мм. При работе емкостного накопителя максимально допустимое напряжение (6 кВ) не используется. Для повышения ресурса конденсаторов емкостного накопителя его рабочее (зарядное) напряжение обычно устанавливается в пределах 2,7-3,5 кВ.

После сборки емкостного накопителя энергии, подключают к высоковольтной и заземленной шинам (1, 2) емкостного накопителя с его левой стороны источник питания, например, генератора переменного напряжения с высоковольтным выпрямителем (на фиг. не показаны) все конденсаторы (3) одновременно заряжаются. При этом все конденсаторы (3) находятся под одним напряжением, а заряд и запасаемая энергия в каждом конденсаторе (3) пропорциональны его емкости. Общая энергоемкость накопителя равна сумме энергий в каждом конденсаторе (3). Но, в отличие от схемы-прототипа, в предлагаемом накопителе отсутствует перепад напряжений между смежными конденсаторами и повышается электрическая прочность и надежность схемы накопителя. Кроме того, возрастает механические устойчивость и прочность схемы накопителя. По окончании процесса зарядки конденсаторов (3) и срабатывании коммутатора, подключенного вместе с нагрузкой к высоковольтной и заземленной шинам (1, 2) накопителя с правой стороны (на фиг. не показаны), конденсаторы (3) практически синхронно разряжаются и в нагрузке протекает ток равный сумме токов от отдельных конденсаторов (3). В нагрузке, в зависимости от ее типа (индуктивная или резистивная), накапливается магнитная энергия или тепловая энергия и совершается их преобразование в механическую работу (полет снаряда или электрогидравлический удар).

Для ограничения разрядных токов (недопущения К3) в конденсаторах (3) при их низкой собственной индуктивности и работе конденсаторов (3) на взрывающуюся проволочку между выводами соседних конденсаторов и одной из шин (1, 2) включены токоограничивающие (выравнивающие) резисторы (7), величиной 0,15 Ом, выполненные из нихромовой проволоки закрученной в небольшие спирали. При работе емкостного накопителя на резистивную нагрузку или высокой собственной индуктивности конденсаторов вышеуказанные токоограничивающие (выравнивающие) резисторы (7) не устанавливаются.

Расположение смежных конденсаторов одноименными выводами друг против друга и соединение их одноименными выводами механически и электрически обеспечивает:

- сокращение длины и индуктивности емкостного накопителя примерно в 1,49 раза (с 1640 мм до 1100 мм), что увеличивает примерно в 1,22 раза амплитуды разрядного тока и электрогидравлического удара;

- увеличение механической жесткости схемы емкостного накопителя, что упрощает его дальнейшую сборку, изолирование и установку его как «снаряда» в защитный металлический корпус;

- устранение высоких напряжений между смежными конденсаторами и увеличение надежности функционирования емкостного накопителя.

Изолирование боковых поверхностей смежных конденсаторов попарно от первой и второй токопроводящих шин полосами полимерной пленки с поперечным сечением С-образной или прямоугольной формы обеспечивает защиту от электрического пробоя между боковыми поверхностями высоковольтных конденсаторов (рулонами из металлизированной конденсаторной пленки) и токопроводящими высоковольтной и заземленной шинами. Это дополнительно повышает надежность функционирования емкостного накопителя, особенно, если его рабочее напряжение превышает 10 кВ. Кроме того, при этом снижается примерно на 40% расход полимерной пленки.

Применение конденсаторов с однонаправленными выводами позволяет расположить конденсаторы выводами «лицом к лицу», а корпусами - «спина к спине» и тем самым максимально уменьшить длину, вес и индуктивность емкостного накопителя.

Применение конденсаторов с проволочными или лепестковыми выводами позволяет путем изгиба этих выводов приблизить конденсаторы друг к другу и использовать эти выводы для соединения с токоведущими шинами. Это также позволяет сократить длину и вес емкостного накопителя. Кроме того, устраняются механические напряжения в электрических соединениях и снижается механическая нагрузка на шоопировку конденсаторов.

Соединение соседних конденсаторов с помощью упругих или шарнирных элементов позволяет создавать длинные и энергоемкие емкостные накопители без эффекта «коленчатого вала» (с компенсацией осевых биений и без механических напряжений между соседними конденсаторами), что весьма важно при эксплуатации емкостных накопителей в скважинах при сильных перепадах температур (от -30°C на поверхности земли до +115°C на забое скважины).

Укорочение выводов конденсаторов (в выпускаемых конденсаторах длина только одного резьбового вывода может достигать 15% длины корпуса конденсатора) позволяет уменьшить примерно на 20% длину и вес емкостного накопителя.

Разнос токоведущих шин по азимуту на угол от 0 до 180° (от расположения шин друг на дружке до диаметрально противоположного) позволяет использовать пространство внутри стального защитного корпуса более рационально и разнообразно. Кроме того, это позволяет увеличить ширину и токопропускную способность токопроводящих шин и уменьшить их погонную индуктивность, особенно при расположении шин друг на дружке.

Таким образом, предлагаемое изобретение позволяет снизить индуктивность, повысить механическую и электрическую прочность емкостного накопителя, при одновременном уменьшении его длины, веса.

Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.


ЕМКОСТНЫЙ НАКОПИТЕЛЬ ЭНЕРГИИ
ЕМКОСТНЫЙ НАКОПИТЕЛЬ ЭНЕРГИИ
ЕМКОСТНЫЙ НАКОПИТЕЛЬ ЭНЕРГИИ
ЕМКОСТНЫЙ НАКОПИТЕЛЬ ЭНЕРГИИ
ЕМКОСТНЫЙ НАКОПИТЕЛЬ ЭНЕРГИИ
Источник поступления информации: Роспатент

Showing 1-8 of 8 items.
27.06.2014
№216.012.d818

Способ добычи метана из угольных пластов

Изобретение относится к горному делу и может быть применено при добыче метана из угольных пластов. Способ включает бурение или вскрытие старой вертикальной скважины в месте метано-угольной залежи, определение мощности пласта в разрезе скважины, определение марочного состава углей, подведение к...
Тип: Изобретение
Номер охранного документа: 0002521098
Дата охранного документа: 27.06.2014
27.06.2015
№216.013.5a1e

Способ добычи метана из угольных пластов

Изобретение относится к области добычи метана в зоне угольных пластов. Технический результат - увеличение добычи угольного метана, уменьшение энергозатрат, повышение безопасности и экологичности процесса. По способу создают акустические, электрические, механические и гидродинамические...
Тип: Изобретение
Номер охранного документа: 0002554611
Дата охранного документа: 27.06.2015
12.01.2017
№217.015.6469

Скважинный источник плазменно-импульсного воздействия

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит корпус, в котором расположен блок управления, накопитель энергии и плазменный излучатель, устройство подачи металлического...
Тип: Изобретение
Номер охранного документа: 0002589442
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7be0

Способ изготовления тампонажного материала для ремонтно-изоляционных работ в нефтяных и газовых скважинах

Изобретение относится к нефтяной промышленности и может быть использовано для проведения ремонтно-изоляционных работ в нефтяных и газовых скважинах. Техническим результатом изобретения является повышения долговечности и надежности слоя тампонажного материала, образовавшегося после отверждения...
Тип: Изобретение
Номер охранного документа: 0002600576
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7c70

Способ и устройство воздействия на нефтенасыщенные пласты и призабойную зону горизонтальной скважины

Группа изобретений относится к области нефтяной и газовой промышленности для интенсификации притока нефти. Способ включает доставку и размещение в горизонтальном окончании скважины устройства, оснащенного накопительным блоком электроэнергии, излучателем с двумя электродами, которые замыкаются...
Тип: Изобретение
Номер охранного документа: 0002600249
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7d05

Скважинный источник плазменно-импульсного воздействия с контактором-разрядником

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит корпус, в котором расположен блок управления, соединенный с накопителем электрической энергии, и плазменный излучатель,...
Тип: Изобретение
Номер охранного документа: 0002600502
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.abad

Скважинный источник плазменно-импульсного воздействия

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит накопитель электрической энергии, механизм подачи металлического проводника, состыкованный с плазменным излучателем, который в...
Тип: Изобретение
Номер охранного документа: 0002612352
Дата охранного документа: 07.03.2017
26.08.2017
№217.015.e2e4

Способ заблаговременной дегазации угольных пластов

Изобретение относится к горному делу и может быть использовано для заблаговременной дегазации угольных пластов любой стадии метаморфизма, а также других полезных ископаемых, подлежащих или находящихся в разработке подземным (шахтным) способом. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002626104
Дата охранного документа: 21.07.2017
Showing 1-9 of 9 items.
27.06.2014
№216.012.d818

Способ добычи метана из угольных пластов

Изобретение относится к горному делу и может быть применено при добыче метана из угольных пластов. Способ включает бурение или вскрытие старой вертикальной скважины в месте метано-угольной залежи, определение мощности пласта в разрезе скважины, определение марочного состава углей, подведение к...
Тип: Изобретение
Номер охранного документа: 0002521098
Дата охранного документа: 27.06.2014
27.06.2015
№216.013.5a1e

Способ добычи метана из угольных пластов

Изобретение относится к области добычи метана в зоне угольных пластов. Технический результат - увеличение добычи угольного метана, уменьшение энергозатрат, повышение безопасности и экологичности процесса. По способу создают акустические, электрические, механические и гидродинамические...
Тип: Изобретение
Номер охранного документа: 0002554611
Дата охранного документа: 27.06.2015
12.01.2017
№217.015.6469

Скважинный источник плазменно-импульсного воздействия

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит корпус, в котором расположен блок управления, накопитель энергии и плазменный излучатель, устройство подачи металлического...
Тип: Изобретение
Номер охранного документа: 0002589442
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7be0

Способ изготовления тампонажного материала для ремонтно-изоляционных работ в нефтяных и газовых скважинах

Изобретение относится к нефтяной промышленности и может быть использовано для проведения ремонтно-изоляционных работ в нефтяных и газовых скважинах. Техническим результатом изобретения является повышения долговечности и надежности слоя тампонажного материала, образовавшегося после отверждения...
Тип: Изобретение
Номер охранного документа: 0002600576
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7c70

Способ и устройство воздействия на нефтенасыщенные пласты и призабойную зону горизонтальной скважины

Группа изобретений относится к области нефтяной и газовой промышленности для интенсификации притока нефти. Способ включает доставку и размещение в горизонтальном окончании скважины устройства, оснащенного накопительным блоком электроэнергии, излучателем с двумя электродами, которые замыкаются...
Тип: Изобретение
Номер охранного документа: 0002600249
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7d05

Скважинный источник плазменно-импульсного воздействия с контактором-разрядником

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит корпус, в котором расположен блок управления, соединенный с накопителем электрической энергии, и плазменный излучатель,...
Тип: Изобретение
Номер охранного документа: 0002600502
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.abad

Скважинный источник плазменно-импульсного воздействия

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит накопитель электрической энергии, механизм подачи металлического проводника, состыкованный с плазменным излучателем, который в...
Тип: Изобретение
Номер охранного документа: 0002612352
Дата охранного документа: 07.03.2017
26.08.2017
№217.015.e2e4

Способ заблаговременной дегазации угольных пластов

Изобретение относится к горному делу и может быть использовано для заблаговременной дегазации угольных пластов любой стадии метаморфизма, а также других полезных ископаемых, подлежащих или находящихся в разработке подземным (шахтным) способом. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002626104
Дата охранного документа: 21.07.2017
15.11.2019
№219.017.e1e6

Способ добычи газа путем разложения газогидратов на газ и воду физическими полями вызванной самогазификации

Изобретение относится к нефтегазовой промышленности, в частности к разложению газогидратов на газ и воду за счет самогазификации газогидратов, вызванной физическими полями механической, электрической, сейсмической энергии, а также акустической, гидроакустической и гидродинамической кавитацией с...
Тип: Изобретение
Номер охранного документа: 0002706039
Дата охранного документа: 13.11.2019
+ добавить свой РИД