×
26.08.2017
217.015.d99d

Результат интеллектуальной деятельности: Охлаждаемая турбинная лопатка (варианты) и способ охлаждения турбинной лопатки

Вид РИД

Изобретение

№ охранного документа
0002623600
Дата охранного документа
28.06.2017
Аннотация: Охлаждаемая турбинная лопатка содержит хвостовик, предназначенный для прикрепления охлаждаемой лопатки к турбинному ротору, аэродинамический профиль, концевой бандаж и один или несколько центральных охлаждающих каналов, ограниченных аэродинамическим профилем. Аэродинамический профиль проходит вдоль радиальной оси от хвостовика и ограничивает один задний охлаждающий канал, который проходит радиально через аэродинамический профиль проксимально к задней кромочной части аэродинамического профиля. Задний канал расположен в пределах расстояния от задней кромочной части, которое составляет менее 25% хордовой длины аэродинамического профиля. Концевой бандаж расположен на радиально внешнем конце аэродинамического профиля, проходит в окружном направлении от аэродинамического профиля и ограничивает внутри себя центральную полость повышенного давления и периферическую полость повышенного давления. Аэродинамический профиль ограничивает одно заднее охлаждающее впускное отверстие, предназначенное для прохождения одного заднего потока охлаждающей текучей среды к указанному одному заднему охлаждающему каналу аэродинамического профиля, а также ограничивает одно заднее выпускное отверстие, предназначенное для выпуска одного заднего потока охлаждающей текучей среды из заднего охлаждающего канала к периферической полости повышенного давления. Концевой бандаж ограничивает по меньшей мере одно отверстие периферической полости, предназначенное для выпуска одного заднего потока охлаждающей текучей среды из периферической полости. Каждый из центральных охлаждающих каналов проходит радиально через центральную часть аэродинамического профиля. Аэродинамический профиль ограничивает центральное охлаждающее впускное отверстие, предназначенное для подачи центрального потока охлаждающей текучей среды к одному или нескольким центральным охлаждающим каналам, и по меньшей мере одно центральное охлаждающее выпускное отверстие, предназначенное для выпуска центрального потока охлаждающей текучей среды из одного или нескольких центральных охлаждающих каналов к центральной полости. Задний охлаждающий канал и один или несколько центральных охлаждающих каналов обеспечивают направление заднего потока и центрального потока охлаждающей текучей среды к разным полостям. При этом указанные один или несколько центральных охлаждающих каналов расположены в пределах расстояния от центра аэродинамического профиля, которое составляет менее 25% хордовой длины аэродинамического профиля. Изобретение направлено на улучшение охлаждения задней кромки аэродинамического профиля и концевого бандажа. 3 н. и 13 з.п. ф-лы, 6 ил.

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к лопатке для турбины, такой как турбина двигателя летательного аппарата или газотурбинного двигателя, паровая турбина и т.д. Более конкретно, данное изобретение относится к охлаждению концевого бандажа турбинной лопатки.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0002] Газотурбинный двигатель содержит турбинную секцию, в которой высокотемпературный сжатый газ расширяется для создания энергии вращающегося вала. Указанная турбинная секция, как правило, содержит множество перемежающихся рядов неподвижных лопаток (сопловых лопаток) и вращающихся лопаток (рабочих лопаток турбины). Каждая вращающаяся лопатка имеет аэродинамический профиль и хвостовик, который прикрепляет вращающуюся лопатку к ротору.

[0003] В некоторых случаях на радиально внешнем конце каждой турбинной лопатки в виде неотъемлемой части выполнен концевой бандаж, так что в смонтированном состоянии ряд лопаток образует наружную поверхность, ограничивающую прохождение высокотемпературных сжатых газов через части аэродинамических профилей лопаток. Указанное выполнение неотъемлемых концевых бандажей приводит к увеличению способности турбинной секции совершать работу благодаря использованию высокотемпературных сжатых газов с улучшением при этом эксплуатационных характеристик турбинного двигателя. К сожалению, неотъемлемые концевые бандажи, расположенные на вращающихся аэродинамических профилях, испытывают высокие напряжения, вызванные воздействием механических и аэродинамических сил, а также высокотемпературной окружающей среды, которым они подвержены..

[0004] Для увеличения полезного расчетного срока службы турбинной лопатки используют способы охлаждения. Как правило, охлаждение лопаток осуществляют путем извлечения части сжатой рабочей текучей среды (например, воздуха) из компрессора и проведения ее непосредственно к турбинной секции без дополнительного подогрева охлаждающей текучей среды в секции камеры сгорания. Эта охлаждающая текучая среда является источником относительно холодной текучей среды под давлением, которая легко проходит через каналы, выполненные в турбинных лопатках, и обеспечивают их охлаждение. Таким образом, часто выполняют радиальные каналы для проведения охлаждающей текучей среды в радиально наружном направлении от хвостовика лопатки к ее концевой части, в которой охлаждающая текучая среда выпускается.

[0005] Соответственно, специалистами предпринимаются попытки для создания турбинной лопатки с улучшенным охлаждением задней кромки аэродинамического профиля и концевого бандажа.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0006] В соответствии с одним аспектом изобретения охлаждаемая турбинная лопатка содержит хвостовик для прикрепления лопатки к турбинному ротору, аэродинамический профиль, проходящий вдоль радиальной оси от хвостовика, и концевой бандаж, расположенный на радиально внешнем конце аэродинамического профиля. Концевой бандаж проходит в окружном направлении от аэродинамического профиля и ограничивает внутри себя центральную полость повышенного давления и периферическую полость повышенного давления. Аэродинамический профиль ограничивает задний охлаждающий канал, который проходит радиально через аэродинамический профиль проксимально к задней кромочной части аэродинамического профиля. Аэродинамический профиль также ограничивает заднее охлаждающее впускное отверстие, предназначенное для прохождения заднего потока охлаждающей текучей среды к заднему охлаждающему каналу аэродинамического профиля. Аэродинамический профиль также ограничивает по меньшей мере одно заднее выпускное отверстие, предназначенное для выпуска заднего потока охлаждающей текучей среды из заднего охлаждающего канала к периферической полости повышенного давления. Указанный концевой бандаж ограничивает по меньшей мере одно отверстие периферической полости, предназначенное для выпуска заднего потока охлаждающей текучей среды из указанной периферической полости.

[0007] В соответствии с другим аспектом данного изобретения предлагается способ охлаждения турбинной лопатки, содержащей аэродинамический профиль и концевой бандаж, проходящий в окружном направлении от конца аэродинамического профиля. Указанный способ включает создание в концевом бандаже центральной полости повышенного давления и периферической полости повышенного давления, а также разделение подачи охлаждающей текучей среды на центральный охлаждающий поток и периферический охлаждающий поток. Периферический поток направляют через задний охлаждающий канал аэродинамического профиля, проходящий радиально через аэродинамический профиль проксимально к задней кромочной части аэродинамического профиля, для переноса тепла от задней кромочной части аэродинамического профиля к периферическому охлаждающему потоку. Центральный охлаждающий поток направляют через один или несколько центральных охлаждающих каналов, проходящих через центральную часть аэродинамического профиля, для переноса тепла от указанной центральной части к центральному охлаждающему потоку. Периферический охлаждающий поток направляют из заднего охлаждающего канала к указанной периферической полости, а центральный охлаждающий поток направляют от указанных одного или нескольких центральных охлаждающих каналов к центральной полости. Периферический охлаждающий поток выпускают из периферической полости, а центральный охлаждающий поток выпускают из центральной полости.

[0008] Указанный способ также включает проведение заднего потока охлаждающей текучей среды к заднему охлаждающему каналу через заднее охлаждающее впускное отверстие и выпуск указанного потока охлаждающей текучей среды из периферической полости через по меньшей мере одно выпускное отверстие периферической полости.

[0009] Эти и другие преимущества и свойства будут более понятны из последующего описания с сопроводительными чертежами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0010] Настоящее изобретение подробно и точно изложено в формуле изобретения, приведенной в конце описания. Вышеупомянутые и другие признаки и преимущества данного изобретения очевидны из последующего подробного описания со ссылкой на сопроводительные чертежи, на которых

[0011] фиг.1 изображает иллюстративную охлаждаемую турбинную лопатку,

[0012] фиг.2 изображает вид сверху иллюстративной охлаждаемой турбинной лопатки,

[0013] фиг.3 изображает иллюстративный вариант выполнения данного изобретения в поперечном разрезе,

[0014] фиг.4 изображает другой иллюстративный вариант выполнения данного изобретения в поперечном разрезе,

[0015] фиг.5 изображает вид сверху конструкции, показанной на фиг.3, в соответствии с первым иллюстративным вариантом выполнения, и

[0016] фиг.6 изображает вид сверху конструкции, показанной на фиг.3, в соответствии со вторым иллюстративным вариантом выполнения.

[0017] В подробном описании объясняются варианты выполнения данного изобретения вместе с его преимуществами и признаками путем примера со ссылкой на данные чертежи.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0018] Как показано на фиг.1, турбинная лопатка 100 содержит аэродинамический профиль 112 и хвостовик 114. Аэродинамический профиль 112 проходит вдоль радиальной оси от хвостовика 114 к концевой части 130 лопатки. Аэродинамический профиль 112 имеет переднюю кромочную часть 116 и заднюю кромочную часть 118, при этом расстояние от передней кромки к задней кромке определяет хордовую длину 117 аэродинамического профиля. Между передней и задней кромками, расположенными на противоположных сторонах аэродинамического профиля 112, проходят по существу вогнутая поверхность 120 со стороны высокого давления и по существу выпуклая поверхность 122 со стороны разрежения. В показанном примере хвостовик 114 лопатки 100 содержит хвостовую часть 124 и элемент 126 пазового замка, взаимодействующий с соответствующим пазом пазового замка на роторе, обеспечивая при этом прикрепление турбинной лопатки 100 к ротору.

[0019] Как показано на фиг.1 и 2, на концевой части 130 лопатки расположен концевой бандаж 128, т.е. он расположен смежно с радиально внешним концом аэродинамического профиля 112 и проходит в окружном направлении (т.е. в направлении, которое по существу перпендикулярно радиальной оси) от аэродинамического профиля 112. Концевой бандаж 128 имеет поверхность, обращенную в радиально внутреннем направлении, и поверхность, обращенную в радиально наружном направлении, причем обе эти поверхности испытывают воздействие высокотемпературного сжатого газа, проходящего через турбинную секцию. Каждый бандаж 128 имеет опорные поверхности 136, 138, которыми он контактирует с опорными поверхностями смежного концевого бандажа смежной лопатки. В радиально наружном направлении от бандажа 128 проходит один или несколько дефлекторов 140 для предотвращения протечки высокотемпературного газа вокруг лопатки.

[0020] Как показано на фиг.1, через центральную часть аэродинамического профиля 112 (например, в пределах расстояния, составляющего приблизительно менее 25% хордовой длины от центра аэродинамического профиля) проходит один или несколько центральных охлаждающих каналов 160, а через заднюю кромочную часть аэродинамического профиля 112 проходит задний охлаждающий канал 162. Один или более центральных охлаждающих каналов 160 и задний охлаждающий канал 162 проходят радиально от хвостовика 114, где в каждый из них поступает поток сжатой охлаждающей текучей среды (которая может представлять собой сжатый воздух или другую текучую среду, полученную из компрессорной секции двигателя, в котором установлена турбинная лопатка), к концевой части 130 лопатки, где указанные потоки охлаждающей текучей среды могут быть направлены к охлаждаемому месту или выпущены иным образом. Например, как показано на фиг.3 и 4, для уменьшения температур материала (например, металла или керамики) в участках концевого бандажа, испытывающих высокие напряжения, используют локализованное направленное ударное охлаждение концевого бандажа 128. В частности, бандаж 128 имеет внутреннюю центральную охлаждающую полость 142, снабжающую требуемые участки охлаждающей текучей средой и обеспечивающую ударное охлаждение указанного бандажа 128. Задний охлаждающий канал 162 может иметь форму сечения, совпадающую с наружной формой задней кромочной части аэродинамического профиля 112.

[0021] Указанные радиальные охлаждающие каналы, камеры, полости повышенного давления и охлаждающие каналы, рассматриваемые в данном документе, могут быть выполнены с помощью ряда технологических процессов, таких как электрохимическое сверление. Один такой вид электрохимического сверления известен как электролитическая обработка фасонных труб (STEM), которая обеспечивает обработку канала, имеющего относительно большое соотношение глубины к диаметру, как это имеет место в случае радиальных охлаждающих каналов турбинной лопатки. При сверлении методом STEM каналы выполняют путем анодного растворения с использованием трубчатых катодов с изоляционным внутренним покрытием. Метод STEM позволяет создавать каналы с переменными диаметрами по их длине.

[0022] В дополнение к варьированию диаметра по длине канала сверление методом STEM позволяет также создавать каналы с некруглыми поперечными сечениями. Например, начальная часть охлаждающего канала может быть выполнена путем перемещения электрода в радиальном направлении в турбинную лопатку при условиях, обеспечивающих получение кругового в сечении канала с зазором, распределенным равномерно вокруг электрода. Затем указанный электрод может быть передвинут в направлении, поперечном продольной оси электрода (т.е. в направлении одной стороны стенки канала). После этого выполняют удаление дополнительного материала из этой же стороны стенки канала с созданием тем самым канала с эксцентриковым поперечным сечением. Указанный процесс может быть воспроизведен в различных направлениях для создания канала с требуемым поперечным сечением.

[0023] Как показано на фиг.5, внутренняя центральная охлаждающая камера 142 содержит центральную полость 144 и периферическую полость 146, образованные концевым бандажом 128. Центральные каналы 160 для охлаждающей аэродинамический профиль текучей среды проходят радиально через аэродинамический профиль 112 в концевой бандаж 128 и пересекают центральную полость 144. Задний охлаждающий канал 162 расположен вблизи задней кромки лопатки, при этом указанный канал 162 пересекает периферическую полость 146, а не центральную полость 144. В соответствии с этим иллюстративным вариантом выполнения охлаждающая текучая среда, которая прошла через указанный канал 162, создает повышенное давление в периферической полости 146, но не в центральной полости 144. В показанном варианте выполнения охлаждающий воздух, создавший повышенное давление в периферической полости 146, может быть выпущен через одно или несколько отверстий 156 периферической полости. Однако следует отметить, что в других вариантах выполнения предусматривается проточное сообщение между центральной полостью и периферической полостью. В соответствии с такими вариантами выполнения выпуск из центральной полости 144 в основной газовый поток может уменьшать или исключать необходимость в выпуске воздуха из периферической полости 146 в основной газовый поток, например, через отверстие 156 периферической полости.

[0024] Как показано на фиг.5, задний охлаждающий канал 162 имеет круглое поперечное сечение. Однако следует отметить, что указанный охлаждающий канал также может иметь поперечное сечение в форме, которая более точно совпадает с наружной формой аэродинамического профиля, при этом удовлетворяются требования к минимальной толщине стенок при расположении в относительной близости к задней кромке аэродинамического профиля и обеспечивается требуемая площадь поперечного сечения для размещения необходимого количества и/или скорости потока охлаждающей текучей среды. Например, как показано на фиг.6, иллюстративная конфигурация сечения указанного канала 162 имеет первую стенку, которая по существу параллельна одной наружной поверхности аэродинамического профиля, и вторую стенку, по существу параллельную другой наружной поверхности аэродинамического профиля. Соответственно, указанный канал 162 выполнен так, чтобы удовлетворять требованиям к минимальной толщине стенок с одновременным обеспечением улучшенного охлаждения задней кромки аэродинамического профиля.

[0025] В результате в соответствии с этим вариантом выполнения указанный канал 162 может быть расположен в непосредственной близости к задней кромке аэродинамического профиля (например, в пределах расстояния, составляющего менее приблизительно 25% хордовой длины от кромки аэродинамического профиля) со снижением тем самым рабочих температур материала и улучшенным соответствием техническим требованиям к пластической деформации. Путем создания давления в периферической полости 146, а не в центральной полости 144 указанное размещение охлаждающего канала 162 эффективно изолирует более горячую текучую среду канала 162 внутри периферической полости 146 от центральной полости 144, обеспечивая возможность последующей подачи более горячей текучей среды в область концевого бандажа, которая требует меньшего охлаждения и/или имеет более высокую несущую способность. Такое размещение также обеспечивает возможность большего охлаждения текучей среды, находящейся внутри центральной полости 144, и ее использования в областях концевого бандажа, требующих большего охлаждения и/или имеющих меньшую несущую способность. Получающееся в результате снижение рабочей температуры конструкции концевого бандажа обеспечивает увеличение фактического срока службы части конструкции и/или обеспечивает возможность работы той же части конструкции в окружающей среде с более высокой температурой без ухудшения фактического срока службы.

[0026] В соответствии с данным изобретением ударное охлаждение может быть создано в концевом бандаже путем направления охлаждающей текучей среды от заднего охлаждающего канала или от указанного одного или нескольких охлаждающих центральных каналов через одно или несколько ударных отверстий с образованием одного или нескольких потоков ударной охлаждающей текучей среды, направленных к заданной поверхности. Указанное одно или несколько ударных отверстий могут быть выполнены в виде неотъемлемой части лопатки, при этом это отверстие или отверстия могут быть выполнены литьем в указанной части лопатки или могут быть получены механической обработкой после создания отливки. Примеры ударного охлаждения, которое направлено на сопряжение между аэродинамическим профилем и бандажом, находящихся в единой ударной связке, показаны на фиг.3 и 4. Фиг.3 иллюстрирует ударное охлаждение, направленное в охлаждающую камеру 142, которая обычно открыта. Фиг.4 иллюстрирует ударное охлаждение в охлаждающей камере 142, которая имеет форму узкого канала. Более узкий канал, показанный на фиг.4, обеспечивает увеличенную скорость охлаждающей текучей среды и, соответственно, улучшенный перенос тепла ниже по потоку от ударной зоны. Однако следует понимать, что возможны другие конфигурации удара/потока.

[0027] Обратимся к показанному на фиг.3 схематическому виду в разрезе иллюстративного варианта выполнения. В этом варианте центральная полость 144 содержит герметизированную или в основном герметизированную камеру, расположенную в концевом бандаже 128 и ограниченную им. Центральная полость 144 принимает сжатую охлаждающую текучую среду из одного или нескольких центральный охлаждающих каналов 160 внутри аэродинамического профиля 112, обеспечивая поток сжатой ударной охлаждающей текучей среды. В иллюстративном варианте выполнения эта центральная полость 144 изолирована достаточно (т.е. выпуск достаточно ограничен) так, что в центральной полости 144 может поддерживаться повышенное давление посредством одного или нескольких центральных охлаждающих каналов 160. Таким образом, текучая среда обычным способом поступает в лопатку, например, в области элемента пазового соединения или хвостовой части, проходит через хвостовую часть в аэродинамическую часть 112 и затем вдоль нее к концевому бандажу 128.

[0028] В примере, показанном на фиг.3, текучая среда проходит из аэродинамической части в находящуюся под давлением центральную полость 144 внутри концевого бандажа 128. Затем указанная текучая среда проводится из находящейся под давлением камеры через по меньшей мере одно ударное отверстие 150 и направляется в требуемое место (т.е. в ударную зону 152, например, на заднюю заданную поверхность или стенку концевого бандажа) внутри концевого бандажа 128. На фиг.3 показан вариант выполнения ударного охлаждения концевого бандажа, в котором сопряжение между аэродинамическим профилем и бандажом является заданной ударной зоной. Однако ударные отверстия могут быть направлены к ударным зонам в других местах концевого бандажа. Следует понимать, что ударное охлаждение обеспечивает возможность теплопередачи для локализованного участка по сравнению с более распространенными потоками, проходящими в канале. В варианте выполнения, показанном на фиг.3, дополнительно предусматриваются турбулизаторы внутри охлаждающей камеры (камер) 142 (например, в области сопряжения) для дополнительного улучшения передачи тепла к охлаждающей текучей среде. В иллюстративном варианте выполнения суммарная площадь сечения ударных отверстий меньше, чем суммарная площадь сечения одного или более центральных охлаждающих каналов 160. В результате центральная полость 144 находится под повышенным давлением. Несмотря на то, что указанное обстоятельство обеспечивает лучшую ударную теплопередачу, тем не менее, это не является необходимым. Суммарная площадь ударных отверстий может превышать суммарную площадь сечения одного или нескольких центральных охлаждающих каналов, при этом ударное воздействие по-прежнему будет обеспечиваться, хотя и при сниженной интенсивности.

[0029] Текучая среда в послеударном состоянии проходит из ударной зоны 152 через охлаждающую камеру (камеры) 148 к одному или нескольким выпускным отверстиям 156, 158 периферической полости и поступает в основной газовый поток. Охлаждающая текучая среда также может выходить из выпускного отверстия 156 периферической полости непосредственно из охлаждающей камеры 142. Несмотря на то, что на фиг.3 показана по меньшей мере одна камера 142, тем не менее следует понимать, что проводящий теплоноситель канал (каналы) аэродинамического профиля может выполнять функцию этой полости. В этом случае ударные отверстия будут выходить из указанного проводящего теплоноситель канала аэродинамического профиля и направлять теплоноситель к наружной камере (камерам) турбинной лопатки.

[0030] На схематическом виде в разрезе, изображенном на фиг.4, показано, что в другом варианте выполнения центральная полость 144, которая герметизирована или в основном герметизирована и расположена внутри концевого бандажа 128, используется так, что ударное охлаждение, выполняемое через ударные отверстия 150, направлено через ударную зону 152, которая может превышать ударную зону варианта выполнения, показанного на фиг.3. Кроме того, послеударная охлаждающая текучая среда направляется через охлаждающие камеры 142, которые обеспечивают теплопередачу посредством потока в канале ниже по потоку от ударной зоны 152. Затем отработанная охлаждающая текучая среда проходит к одному или нескольким выпускным отверстиям 156 периферической полости и выпускается в основной газовый поток. Охлаждающая текучая среда также может выходить у выпускного отверстия 156 непосредственно из камеры 142. Более того, в любом из вышерассмотренных вариантов выполнения послеударная охлаждающая текучая среда также может выходить через поверхность, по которой она наносит ударное воздействие, через отверстия тонкого слоя. Соответственно, в этом случае не требуется, чтобы указанная текучая среда проходила через охлаждающие камеры поле ударного воздействия.

[0031] Два возможных вида сверху конструкции, показанной на фиг.3, схематически изображены на фиг.5 и 6. На фиг.5 ударные отверстия 150 выходят в соединенные охлаждающие камеры 142. На фиг.6 показан второй возможный вариант выполнения, в котором смежные охлаждающие камеры 142 не соединены. Следует понимать, что возможно использование любого количества камер 142 и отверстий 150, при этом указанные камеры могут быть изолированы или соединены в зависимости от необходимости или требования, например для обеспечения потока в канале ниже по потоку от ударной зоны (зон).

[0032] Несмотря на то, что данное изобретение подробно описано в отношении лишь ограниченного количества вариантов выполнения, следует хорошо понимать, что данное изобретение не ограничивается рассмотренными вариантами выполнения. Наоборот, данное изобретение может быть видоизменено с включением любого количества вариантов, изменений, замен или эквивалентных конструкций, не рассмотренных в данном документе, но которые подпадают под сущность и объем правовой охраны данного изобретения. Кроме того, несмотря на то, что были рассмотрены различные варианты выполнения данного изобретения, следует понимать, что аспекты данного изобретения могут включать только некоторые из приведенных вариантов выполнения. Соответственно, данное изобретение не должно рассматриваться как ограниченное вышеприведенным описанием, оно ограничено лишь объемом правовой охраны, изложенным в прилагаемой формуле изобретения.


Охлаждаемая турбинная лопатка (варианты) и способ охлаждения турбинной лопатки
Охлаждаемая турбинная лопатка (варианты) и способ охлаждения турбинной лопатки
Охлаждаемая турбинная лопатка (варианты) и способ охлаждения турбинной лопатки
Охлаждаемая турбинная лопатка (варианты) и способ охлаждения турбинной лопатки
Охлаждаемая турбинная лопатка (варианты) и способ охлаждения турбинной лопатки
Источник поступления информации: Роспатент

Showing 51-60 of 353 items.
27.12.2014
№216.013.163a

Установка для определения кпд секции паровой турбины, установка для расчёта истинного кпд секции среднего давления паровой турбины и установка для управления паровой турбиной

Изобретение относится к энергетике. Установка для определения кпд секции паровой турбины, которая содержит физическое вычислительное устройство с материальным машиночитаемым носителем информации, содержащим код. Указанный код предназначен для определения кпд секции паровой турбины на основании...
Тип: Изобретение
Номер охранного документа: 0002537114
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1709

Щеточное уплотнение (варианты) и турбомашина

Группа изобретений относится к щеточным уплотнениям, сохраняющим работоспособность в условиях обратного потока и предназначенным для ограничения переноса находящейся под давлением текучей среды между первой и второй камерами вдоль движущегося вала. Противоположные ограничительные пластины...
Тип: Изобретение
Номер охранного документа: 0002537325
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19c2

Способ и аппарат для процесса восстановления антигена

Группа изобретений относится к способу восстановления антигена в образце ткани, фиксированной формальдегидом, и к набору, использующемуся в данном способе. Способ включает инкубирование образца ткани, фиксированной формальдегидом, в первом растворе для восстановления антигена при температуре...
Тип: Изобретение
Номер охранного документа: 0002538022
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a83

Выпускное устройство для паровой турбины

Выпускное устройство (400) для двухпоточной паровой турбины (401) обеспечивает отдельный внешний выпускной канал (320) из верхней части (316) выпускного отверстия (315) первой секции (305) турбины и отдельный внешний выпускной канал (325) из нижней части (317) выпускного отверстия первой секции...
Тип: Изобретение
Номер охранного документа: 0002538215
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a98

Контейнер для спрессовывания порошка в заготовку (варианты) и способ оптимизации использования материала во время горячего изостатического прессования (варианты)

Изобретение относится к области формирования заготовок с помощью горячего изостатического прессования. Способ и контейнер (201, 301) обеспечивают регулирование деформаций контейнера (201, 301) во время воздействия высоких температур и давлений в процессе горячего изостатического прессования для...
Тип: Изобретение
Номер охранного документа: 0002538236
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1aa5

Контейнер для прессования порошка для получения заготовки (варианты) и способ улучшения использования материала во время горячего изостатического прессования

Изобретение относится к способу и контейнеру формования заготовок с использованием горячего изостатического прессования. Способ и контейнер обеспечивают регулирование объема контейнера с получением заготовки заданной формы и размера исходя из выбранной загрузки металлического порошка для...
Тип: Изобретение
Номер охранного документа: 0002538249
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.203b

Устройство прямого испарения и система рекуперации энергии

Изобретение относится к энергетике. Устройство прямого испарения для использования в системе рекуперации энергии в органическом цикле Ренкина содержит корпус, имеющий входное отверстие для газообразного источника тепла и выходное отверстие для газообразного источника тепла и ограничивающий...
Тип: Изобретение
Номер охранного документа: 0002539699
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.2187

Компонент системы газификации

Изобретение относится к компонентам системы газификации и, более конкретно, к механизмам гашения потока в таких системах газификации. В одном варианте выполнения изобретения в компоненте системы газификации, таком как узел (14) интенсивного охлаждения или скруббер (19), может содержаться объем...
Тип: Изобретение
Номер охранного документа: 0002540031
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2261

Способ и устройство для планирования сканирования с использованием ультрафиолетового излучения

Изобретение предлагает способ определения местоположения одного или более образцов ткани по существу круглой формы, размещенных на твердом носителе. Способ включает этапы подачи света с заданной длиной волны на образец ткани, в котором этот свет вызывает автофлуоресценцию, идентификацию...
Тип: Изобретение
Номер охранного документа: 0002540254
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23b3

Система, содержащая газификатор, система, содержащая камеру охлаждения, и система, содержащая водоподающий насос

Изобретение относится к химической промышленности. Система газификации содержит газификатор (16), состоящий из реакционной камеры (62) и камеры охлаждения (64), скруббер (20), линию перекачки синтетического газа (86), проходящую от камеры охлаждения (64) к скрубберу (20), первого возвратного...
Тип: Изобретение
Номер охранного документа: 0002540592
Дата охранного документа: 10.02.2015
Showing 51-60 of 295 items.
20.12.2014
№216.013.1047

Установка, содержащая вращательный механизм, и установка, содержащая ротор

Уплотнительный узел (86), расположенный между вращающимся компонентом (82) и неподвижным компонентом (84) вращательного механизма, содержит зубцы (94) и гребешки (96). Зубцы (94) расположены в первых осевых местах (89) на расстоянии друг от друга вдоль оси вращения вращающегося компонента (82)....
Тип: Изобретение
Номер охранного документа: 0002535589
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.10fe

Приводная система и устройство для подъема

Группа изобретений относится к подъемным механизмам. Установка для применения в качестве буровой лебедки содержит двигатель, второй двигатель, планетарную трансмиссию, соединенную с двигателями, и катушку, соединенную с трансмиссией и имеющую внутренний объем для размещения двигателей и...
Тип: Изобретение
Номер охранного документа: 0002535773
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.112d

Устройство для электроимпульсной обработки

Изобретение относится к электроимпульсной обработке. Устройство содержит дисковый нож, двигатель, соединенный с указанным ножом с обеспечением его вращения, систему управления электрическим разрядом, функционально соединенную с дисковым ножом и заготовкой и обеспечивающую резание заготовки...
Тип: Изобретение
Номер охранного документа: 0002535820
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.117a

Турбинная установка, содержащая роторную машину, и турбинная установка, содержащая балансировочный груз

Турбинная установка содержит роторную машину (12, 14, 24) и балансировочный груз (78). Роторная машина содержит вращающийся компонент (62) с канавкой (76), имеющей основание (84) и пару наклонных сторон (86), сходящихся друг к другу в первом направлении (66) от основания (84) с образованием...
Тип: Изобретение
Номер охранного документа: 0002535897
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.126d

Газификатор (варианты)

Изобретение относится к газификаторам, а более конкретно к узлу охлаждающей камеры для газификатора. Газификатор (10) содержит камеру (14) сгорания, в которой обеспечивается сгорание горючего топлива для производства синтетического горючего газа, охлаждающую камеру (16), содержащую жидкий...
Тип: Изобретение
Номер охранного документа: 0002536140
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.163a

Установка для определения кпд секции паровой турбины, установка для расчёта истинного кпд секции среднего давления паровой турбины и установка для управления паровой турбиной

Изобретение относится к энергетике. Установка для определения кпд секции паровой турбины, которая содержит физическое вычислительное устройство с материальным машиночитаемым носителем информации, содержащим код. Указанный код предназначен для определения кпд секции паровой турбины на основании...
Тип: Изобретение
Номер охранного документа: 0002537114
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1709

Щеточное уплотнение (варианты) и турбомашина

Группа изобретений относится к щеточным уплотнениям, сохраняющим работоспособность в условиях обратного потока и предназначенным для ограничения переноса находящейся под давлением текучей среды между первой и второй камерами вдоль движущегося вала. Противоположные ограничительные пластины...
Тип: Изобретение
Номер охранного документа: 0002537325
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19c2

Способ и аппарат для процесса восстановления антигена

Группа изобретений относится к способу восстановления антигена в образце ткани, фиксированной формальдегидом, и к набору, использующемуся в данном способе. Способ включает инкубирование образца ткани, фиксированной формальдегидом, в первом растворе для восстановления антигена при температуре...
Тип: Изобретение
Номер охранного документа: 0002538022
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a83

Выпускное устройство для паровой турбины

Выпускное устройство (400) для двухпоточной паровой турбины (401) обеспечивает отдельный внешний выпускной канал (320) из верхней части (316) выпускного отверстия (315) первой секции (305) турбины и отдельный внешний выпускной канал (325) из нижней части (317) выпускного отверстия первой секции...
Тип: Изобретение
Номер охранного документа: 0002538215
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a98

Контейнер для спрессовывания порошка в заготовку (варианты) и способ оптимизации использования материала во время горячего изостатического прессования (варианты)

Изобретение относится к области формирования заготовок с помощью горячего изостатического прессования. Способ и контейнер (201, 301) обеспечивают регулирование деформаций контейнера (201, 301) во время воздействия высоких температур и давлений в процессе горячего изостатического прессования для...
Тип: Изобретение
Номер охранного документа: 0002538236
Дата охранного документа: 10.01.2015
+ добавить свой РИД