×
26.08.2017
217.015.d8d4

Результат интеллектуальной деятельности: ИЗОЛЯЦИОННЫЕ СИСТЕМЫ С УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ЧАСТИЧНОМУ РАЗРЯДУ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002623493
Дата охранного документа
27.06.2017
Аннотация: Настоящее изобретение касается области изоляции электрических проводов от частичного разряда, в частности способа изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду и изоляционной системы с улучшенной устойчивостью к частичному разряду. Изобретение впервые показывает неожиданный замедляющий эрозию эффект предварительно введенных в смолу связующих веществ, таких как органические соединения кремния, при добавлении наполнителя в виде наночастиц. 2 н. и 6 з.п. ф-лы, 4 ил.

Настоящее изобретение касается в общем области изоляции электрических проводов от частичного разряда, в частности способа изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду и изоляционной системы с улучшенной устойчивостью к частичному разряду.

Во вращающихся электрических машинах, таких как двигатели или генераторы, надежность изоляционной системы в решающей степени ответственна за их эксплуатационную безопасность. Изоляционная система имеет задачу, долговременно электрически изолировать электрические провода (проволоки, катушки, стержни) друг от друга и от пакета стали статора или окружающей среды. Внутри высоковольтной изоляции различают изоляцию между отдельными проводами (изоляция отдельных проводов), между проводами или, соответственно, витками (изоляция проводов или, соответственно, витков) и между проводами и потенциалом массы в области паза и лобовой части обмотки (основная изоляция). Толщина основной изоляции выбрана как в соответствии с номинальным напряжением машины, так и с эксплуатационными и производственными условиями. Конкурентоспособность будущих установок по производству энергии, их распределение и использование в решающей мере зависит от применяемых материалов и используемых технологий изоляции.

Основная проблема у такого рода находящихся под электрической нагрузкой изоляторов заключается в так называемой индуцированной частичным разрядом эрозии с образующимися так называемыми каналами в виде «елки», которые в итоге приводят в электрическому пробою изолятора.

У высоковольтных и средневольтных машин сегодня применяются так называемые импрегнированные слоистые слюдяные изоляции. При этом изготовленные из изолированных отдельных проводов фасонные катушки и провода обматываются слюдяными лентами и предпочтительно в процессе вакуумно-нагнетательной импрегнации (процесс VPI) импрегнируются синтетической смолой. Соединение импрегнирующей смолы с несущей лентой слюды дает сегодняшнюю механическую прочность, а также необходимую устойчивость электрической изоляции к частичному разряду.

Слюдяная бумага соответственно потребностям электротехнической промышленности преобразуется в более стабильную слюдяную ленту. Это происходит путем склеивания слюдяной бумаги с материалом носителя, который обладает большой механической прочностью, с помощью клея. Клей отличается предпочтительно тем, что при температуре помещения он обладает высокой прочностью, чтобы обеспечивать соединение слюды и носителя и при повышенных температурах (60-150°C) переходит в жидкое состояние. Это позволяет наносить его в качестве клея при повышенной температуре в жидкой форме или в смеси с легколетучим растворителем. После охлаждения или удаления растворителя клей находится в твердой, но все же гибкой форме и позволяет, например, наносить слюдяную ленту вокруг стержней Ребеля, состоящих из отдельных проводов и фасонных катушек, при температуре помещения, при этом клеящие свойства клея препятствуют тому, чтобы происходило отслоение слюдяной бумаги от материала носителя. Образовавшаяся таким образом слюдяная лента наматывается в несколько слоев вокруг электрических проводов.

У высоко- и средневольтных двигателей и генераторов применяются слоистые слюдяные изоляции. При этом изготовленные из изолированных отдельных проводов фасонные катушки обматываются слюдяными лентами и в процессе вакуумно-нагнетательной импрегнации (VPI = vacuum pressure impregnation) импрегнируются синтетической смолой. При этом применяется слюда в виде слюдяной бумаги, при этом в рамках импрегнации находящиеся в слюдяной бумаге между отдельными частицами полости заполняются смолой. Соединение импрегнирующей смолы и материала носителя слюды дает механическую прочность изоляции. Электрическая прочность получается за счет множества граничных поверхностей твердое вещество-твердое вещество применяемой слюды. Образовавшееся таким образом наслоение из органических и неорганических материалов образует микроскопические граничные поверхности, устойчивость которых к отдельным разрядам и тепловым нагрузкам определяется свойствами слюдяных пластинок. Посредством трудоемкого процесса VPI даже мельчайшие полости в изоляции должны заполняться смолой, чтобы сократить до минимума количество внутренних граничных поверхностей газ-твердое вещество.

Для дополнительного улучшения устойчивости описывается применение заполнителей в виде наночастиц.

Соединение импрегнирующей смолы и ленты-носителя слюды дает сегодняшнюю механическую прочность, а также необходимую устойчивость электрической изоляции к частичному разряду.

Наряду с процессом VPI, существует также технология Resin Rich (обогащения смолой) для изготовления и импрегнации слюдяной ленты, то есть изоляционной ленты, и поэтому, следовательно, изоляционной системы.

Основным отличием двух технологий является конструкция и изготовление собственной изоляционной системы катушек. В то время как система VPI является готовой только после пропитки и после затвердевания обмотки в печи с циркуляцией воздуха, отдельно затвердевший под действием температуры и давления каркас катушки Resin Rich уже до монтажа в статор представляет собой функционирующую и контролируемую изоляционную систему.

Процесс VPI работает с пористыми лентами, которые в вакууме и при последующей подаче в пропиточный резервуар избыточного давления после затвердевания в печи с циркуляцией воздуха преобразуются в прочную и непрерывную изоляционную систему.

В противоположность этому изготовление катушек Resin Rich является более трудоемким, так как каждый каркас катушки или стержень обмотки должен изготавливаться отдельно в специальных прессах для спекания, что приводит к повышению удельной стоимости отдельной катушки. При этом применяются слюдяные ленты, которые импрегнированы полимерным изоляционным материалом, находящимся в так называемом состоянии B. Это означает, что полимер, чаще всего ароматические эпоксидные смолы (BADGE (диглицидиловый эфир бисфенола A), BFDGE (диглицидиловый эфир бисфенола F), эпоксидированный фенол-новолак, эпоксидированный крезол-новолак и ангидриды или амины в качестве отвердителей), является частично сшитым и при этом имеет неклейкое состояние, но при повторном нагреве может снова расплавляться и затем отверждаться и таким образом приводиться в окончательную форму. Так как смола вводится в избытке, при последующем прессовании она может течь во все полости и впадины для достижения соответствующего качества изоляции. Избыточная смола в процессе прессования выпрессовывается из заготовки.

Из литературы известно, что применение наполнителей в виде наночастиц в полимерных изоляционных материалах приводит к значительным улучшениям изоляции в отношении электрической долговечности.

Недостатком известных систем, в частности систем на основе эпоксидных смол, является быстрое разрушение полимерной матрицы под действием частичного разряда, которое здесь называется эрозией. Вследствие применения полимерной матрицы с устойчивыми к эрозии наночастицами (окись алюминия, двуокись кремния) происходит ее раскрытие, вызванное начавшимся разложением полимера, так называемой деградацией полимера.

В основе настоящего изобретения лежит задача сделать возможной изоляционную систему с улучшенной устойчивостью к частичному разряду.

По одному аспекту изобретения предоставляется способ изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду, включающий в себя следующие шаги способа:

- приготовление изоляционной ленты, которая включает в себя слюдяную бумагу и материал носителя, склеенные посредством клея друг с другом;

- обматывание электрического провода изоляционной лентой и

- импрегнация намотанной вокруг провода изоляционной ленты синтетической смолой, отличающийся тем, что в систему синтетической смолы перед добавлением наполнителя в виде наночастиц добавляется связующее вещество.

По другому аспекту изобретения предоставляется изоляционная система с улучшенной устойчивостью к частичному разряду, которая имеет намотанную вокруг электрического провода изоляционную ленту, включающую в себя соединенную с материалом носителя слюдяную ленту, при этом изоляционная лента импрегнирована смолой, отличающаяся тем, что импрегнированная изоляционная лента пропитана наполнителем в виде наночастиц, который по меньшей мере частично агломерирован посредством связующего вещества.

Известно, что неорганические частицы, в противоположность полимерному изоляционному материалу, не подвергаются повреждениям и разрушениям под действием частичного разряда, или подвергаются только в очень ограниченном объеме. При этом результирующее замедляющее эрозию действие неорганических частиц зависит, в частности, от диаметра частиц и образующейся при этом поверхности частиц. При этом оказывается, что чем больше удельная поверхность частиц, тем больше действие на частицы, замедляющее эрозию. Неорганические наночастицы имеют очень большие удельные поверхности, составляющие 50 г/м2 или более.

В принципе, у изоляционного материала без наполнителя или на основе слюды на основе эпоксидных смол под действием частичного разряда происходит быстрое разрушение полимерной матрицы. При реализации полимерной матрицы с устойчивым к эрозии наполнителем в виде наночастиц (окись алюминия, двуокись кремния) происходит раскрытие наполнителя, вызванное деградацией полимера.

С возрастающей продолжительностью эрозии постепенно происходит образование прочно прилипающего, плоского слоя на поверхности опытного образца, состоящего из раскрывшегося наполнителя в виде наночастиц. Вследствие этого вызванного эродированным полимером сшивания частиц наполнителя в виде наночастиц происходит пассивирование поверхности, и полимер под пассивирующим слоем эффективно защищается от дальнейшей эрозии под действием частичного разряда.

Неожиданно было установлено, что при применении связующих веществ, в частности силанов, в импрегнирующей смоле и/или в смоле Resin Rich могло достигаться замедление эрозии.

Связующие вещества чаще всего представляют собой кремний-органические соединения, которые посредством реакций конденсации химически присоединяются к поверхности наполнителей или наночастиц. Благодаря связующим веществам улучшается присоединение частиц к полимерной матрице, благодаря чему улучшается устойчивость к эрозии. Это зависит непосредственно от поверхности наполнителя, из-за чего применение связующих веществ на частицах с малыми диаметрами улучшает устойчивость к эрозии в особенной мере. Такого рода покрытие соответствует первому слою в модели Multi Core проф. Танака в Tanaka et al., Dependence of PD Erosion Depth on the Size of Silica Fillers; Takahiro Imai*, Fumio Sawa, Tamon Ozaki, Toshio Shimizu, Ryouichi Kido, Masahiro Kozako and Toshikatsu Tanaka; Evaluation of Insulation Properties of Epoxy Resin with Nano-scale Silica Particles Toshiba Research Cooperation.

Удалось показать, что применение органосиланов синергетическим образом может использоваться с наночастицами, при этом связующие вещества, такие как силаны, подмешиваются в импрегнирующую смолу или смолу Resin Rich.

Один из особенно предпочтительных вариантов осуществления изобретения заключается в синергетическом использовании описанной модели пассивирующего слоя под действием частичного разряда и улучшении замедления эрозии при применении органосиланов в высоковольтных изоляционных системах на основе слюды. Это достигается, когда добавленные органосиланы положительно влияют на образование и образ действия образующегося под действием частичного разряда пассивирующего слоя. Повышенная устойчивость к эрозии может объясняться спонтанным спеканием частиц, которое катализируется применением органосиланов, и образованием как бы керамического слоя. При этом применение органических силанов не ограничивается применением для покрытия наночастиц, а может, как здесь впервые описано, также осуществляться путем непосредственного добавления в качестве компонента к формуле реактивной смолы.

Ниже поясняются возможные основные принципы для предпочтительно улучшенной устойчивости к эрозии за счет применения органических силанов в формуле смолы.

Органические силаны активируются под действием частичного разряда и приводят, например, посредством реакции конденсации к сшиванию наночастиц посредством образующихся соединений силоксана.

POSS (polyhedral oligomeric silsesquioxanes), (ПОСС, полиэдральные олигомерные силсескиоксаны), представляют собой минимальную возможную единицу органических силанов в виде наночастиц и обеспечивают возможность сшивания наночастиц под влиянием энергий частичного разряда.

Органические силаны (одно- или многофункциональные) своими реактивными группами обеспечивают возможность сшивания наночастиц путем химических реакций с реактивными группами на поверхности наночастиц.

В соответствии с изобретением получаются особенно предпочтительные варианты осуществления с формулами реактивных смол, которые состоят из следующих компонентов.

Основу смолы образует, например, эпоксидная смола и/или полиуретановая смола.

Отвердитель включает в себя в качестве функциональной группы, например, ангидрид, ароматический амин и/или алифатический амин.

Наполнитель в виде наночастиц имеет, например, размер частиц от 2,5 до 70 нм, в частности от 5 до 50 нм в концентрации от 5 до 70 вес.%, в частности от 10 до 50 вес.%, на основе SiO2 Al2O3. Возможно содержание других наполнителей, добавок, пигментов.

Связующим веществом служит предпочтительно органическое соединение кремния, такое как органосилан и/или POSS. Они имеются, также предпочтительно, в синтетической смоле в концентрации от 0,1 до 45 вес.%, в частности от 1 до 25 вес.%.

Применение связующих веществ, таких как органические соединения кремния, как части формулы смолы в комбинации с вышеназванными компонентами, дает следующее преимущество, что возможно применение связующего вещества, то есть силана, как части реактивной смолы в более высоких концентрациях, чем при применении силанов в качестве связующих веществ частиц перед добавлением в реактивную смолу. Благодаря применению органосилана как части формулы смолы возможно, кроме того, применение существенно большего количества силанов, так как многообразие применяемых органических силанов увеличено, когда они не должны прикрепляться к поверхностям частиц в виде покрытий.

Вследствие поясненных преимуществ спектр применяемых органосиланов очень широк. Обычно применяются силаны, которые содержат одну или несколько функциональных групп с достаточной реактивностью и могут вступать в реакцию с поверхностью частиц. Применяемые силаны могут иметь от 1 до 4 функциональных групп.

На фиг.1 схематично показан принципиальный механизм сшивания частиц в реакционной смеси на примере бифункционального органосилана. В принципе, силаны могут иметь от одной до четырех реактивных функциональных групп, чтобы оказывать положительное влияние на устойчивость к эрозии. Эти функциональные группы обладают тем свойством, что они могут реагировать с поверхностью частиц, благодаря чему получается большое многообразие органосиланов.

Предложенный на фиг.1 механизм сшивания частиц бифункциональным силаном; R1 = гидрокси, алкокси, галоген, глицидокси; R2 = алкил, глицидокси, винил, ангидрид пропил-янтарной кислоты, метакрилоксипропил проявляет замещение остатков R1 у силана наночастицами. R2 может быть также амидным, сульфидным, оксидным или H. При этом «амидный, оксидный и сульфидный» означает, что имеются другие органические остатки R’2, присоединенные к кремнию азотом, кислородом или серой.

Частицы 1 и 2 замещением остатков R2 на ядре 3 кремния, например, при повышении 4 температуры, обе соединяются с ним и поэтому находятся в непосредственной близости друг от друга, сшиты ядром 3 кремния.

Потенциал нанотехнологии снова проявляется здесь при применении наполнителей в виде наночастиц в комбинации с предлагаемыми изобретением силанами, например, в применяемых в настоящее время изоляционных материалах на основе слюды.

На фиг.2-4 в каждом случае эталонные пробы, которые представляют собой опытные пробные образцы (изображены прерывистыми линиями), противопоставляются вариантам осуществления изобретения. Опытные образцы соответствуют в уменьшенной форме уровню техники в отношении изолированных медных проводов в статорах гидро- и турбогенераторов. Они измеряются под нагрузкой электрического поля до электрического пробоя. Так как электрическая прочность изоляционной системы при эксплуатационной нагрузке составляет несколько десятилетий, длительные электрические испытания происходят при многократно превышенных напряженностях электрического поля.

Показанный на фиг.2 график представляет собой средние значения электрической долговечности соответственно семи пробных образцов при трех разных нагрузках поля для соответственно стандартной изоляционной системы (слюда) и изоляционной системы, наполненной наночастицами/силаном. Ненаполненные системы (наименование Micalastic (Микаластик)) имеют при этом долю, равную приблизительно 50 вес.% слюды и 50 вес.% смолы. Указанная доля наночастиц уменьшает соответственно долю смолы. Доля слюды всегда остается постоянной.

Показанные на фиг.2 кривые долговечности ненаполненных и наполненных наночастицами высоковольтных изоляционных систем (Micalastic (черный) и Micalastic с наночастицами 10 вес.% (диаметр приблизительно 20 нм) и органическим силаном (3-глицидоксипропилтриметоксисилан, 5 вес.%) отчетливо показывают, что названные последними системы обладают значительно большей долговечностью при одинаковой нагрузке.

На фиг.3 показаны соответствующие кривые долговечности ненаполненных и наполненных наночастицами высоковольтных изоляционных систем (Micalastic (черный) и Micalastic с наночастицами 10 вес.% (диаметр приблизительно 20 нм), октаметилтрисилоксан 2,5 вес.%. Здесь также снова можно хорошо видеть почти параллельное смещение долговечности в направлении увеличения времени.

Наконец, также на фиг.4 показаны кривые долговечности ненаполненных и наполненных наночастицами высоковольтных изоляционных систем (Micalastic (черный) и Micalastic с наночастицами 10 вес.% (диаметр приблизительно 20 нм), POSS (2,5 вес.%).

Когда сравнивают долговечность соответствующих групп, оказывается, что достигаются улучшения в долговечности от 20 до 30 раз. Оба графика долговечности имеют одинаковый подъем, так что кажется допустимым непосредственный перенос увеличения долговечности на эксплуатационные условия.

При этом возможны изоляции с долей наночастиц до 35 вес.%.

Изобретение впервые показывает неожиданный, замедляющий эрозию эффект связующих веществ, таких как органические соединения кремния, которые имеются в смоле, при добавлении наполнителя в виде наночастиц. Благодаря вводу связующего вещества в смолу перед наполнителем в виде наночастиц достигаются неожиданно хорошие результаты. Рассматривается, можно ли объяснить хорошие результаты, которые пояснены на фиг.2-4, своего рода сшиванием наночастиц при сшивании частиц с органосиланами. Во всяком случае, может быть впечатляюще показано, что подмешивание связующих веществ к смоле перед добавлением наполнителя в виде наночастиц может приводить к значительным преимуществам.


ИЗОЛЯЦИОННЫЕ СИСТЕМЫ С УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ЧАСТИЧНОМУ РАЗРЯДУ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ
ИЗОЛЯЦИОННЫЕ СИСТЕМЫ С УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ЧАСТИЧНОМУ РАЗРЯДУ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ
ИЗОЛЯЦИОННЫЕ СИСТЕМЫ С УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ЧАСТИЧНОМУ РАЗРЯДУ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 551-560 of 1,427 items.
10.04.2016
№216.015.2e16

Устройство преобразования напряжения

Изобретение относится к области электротехники и может быть использовано для потребителей, питающихся от сети. Техническим результатом является повышение точности установки отношения паразитных индуктивностей трансформатора между рабочими режимами. Устройство преобразования напряжения с по...
Тип: Изобретение
Номер охранного документа: 0002579751
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e54

Избирательное управление двигателем переменного тока или двигателем постоянного тока

Изобретение относится к области электротехники и может быть использовано для управления приводами, используемыми на подводных лодках. Техническим результатом является обеспечение возможности избирательного управления двигателями переменного или постоянного тока. В устройстве (1) для...
Тип: Изобретение
Номер охранного документа: 0002579439
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e6b

Газовая турбина и способ балансировки вращающейся части газовой турбины

Газовая турбина содержит систему балансировки вращающейся части, включающую балансировочный весовой элемент и крепежный элемент. Балансировочный весовой элемент выполнен с первым и вторым отверстиями, при этом первое и второе отверстия выполнены с возможностью съемной установки крепежного...
Тип: Изобретение
Номер охранного документа: 0002579613
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eb0

Способ и блок управления для распознавания манипуляций в сети транспортного средства

Изобретение относится к контролю информационной безопасности. Технический результат - обеспечение безопасности сети транспортного средства. Способ распознавания манипулирования в по меньшей мере одной сети транспортного средства транспортного средства, имеющий следующие этапы: определение...
Тип: Изобретение
Номер охранного документа: 0002580790
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2ecd

Усилительное устройство для управляемого возврата мощности потерь

Изобретение относится к усилительным устройствам и может быть использовано в мощных передатчиках. Достигаемый технический результат - уменьшение модуляционных нелинейностей и уменьшение нелинейных искажений. Усилительное устройство для начального сигнала (s), имеющего начальную частоту (f),...
Тип: Изобретение
Номер охранного документа: 0002580025
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30a5

Электростатический инжектор частиц для высокочастотного ускорителя заряженных частиц

Изобретение относится к области ускорительной техники. На входе первого объемного резонатора предусмотрен электрод, который подключен к источнику постоянного напряжения и на основе которого формируется потенциальная яма, которая обуславливает ускорение частиц, испускаемых источником ионов, к...
Тип: Изобретение
Номер охранного документа: 0002580950
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.32d0

Пробоотборное устройство для отбора проб капель и газа в узких каналах газовой турбины или любого другого устройства с масляным сапуном

Группа изобретений относится к области техники измерения выбросов от газовых турбинных двигателей в целях соблюдения государственных и региональных стандартов окружающей среды. Аналитическое устройство (100) для анализа состава текучей среды, такой как масляный туман, газовой турбины содержит...
Тип: Изобретение
Номер охранного документа: 0002581086
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.368c

Газовая турбина и способ изготовления такой газовой турбины

Газовая турбина содержит устройство с внешним и внутренним корпусами и уплотнительным кольцом, а также дополнительное устройство с дополнительным внутренним и дополнительным внешним корпусами. Внешний и внутренний корпуса устройства расположены с образованием между ними канала охлаждения....
Тип: Изобретение
Номер охранного документа: 0002581287
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.372c

Способ изготовления турбинного диска и турбина

Турбина включает турбинный диск и другую турбинную часть, между которыми образована полость. Турбинный диск содержит первый и второй выступы. Первый и второй выступы образованы так, что обеспечивается возможность закрепления балансировочного грузика между первым выступом и вторым выступом....
Тип: Изобретение
Номер охранного документа: 0002581296
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37e3

Миниатюрная магнитная проточная цитометрия

Группа изобретений относится к области магнитного обнаружения клеток, а именно к магнитной проточной цитометрии. Устройство для магнитной проточной цитометрии включает в себя магниторезестивный датчик, проточную камеру, которая предназначена для прохождения потока клеточной суспензии, и участок...
Тип: Изобретение
Номер охранного документа: 0002582391
Дата охранного документа: 27.04.2016
Showing 551-560 of 943 items.
10.03.2016
№216.014.cc21

Ключный замок и устройство с ключным замком

Изобретение относится к ключному замку и применяется в технике безопасности на железнодорожном транспорте для предохранения обслуживаемых вручную переводных элементов. Ключный замок содержит коммуникационное устройство для беспроводного соединения с постом централизации. Для автономного...
Тип: Изобретение
Номер охранного документа: 0002577160
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc39

Лопатка для турбомашины и турбомашина, содержащая такую лопатку.

Лопатка для турбомашины, в частности газовой турбины, расположена на турбинном роторе и содержит перо и хвостовую часть, выполненные за одно целое с лопаткой, проход для подачи охлаждающего воздуха в хвостовой части для направления охлаждающего воздуха в охладитель и отвод охлаждающего воздуха,...
Тип: Изобретение
Номер охранного документа: 0002577688
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cc9b

Электрическая машина с замкнутым, автономным контуром охлаждающей среды

Изобретение касается электрической машины с жидкостным охлаждением. Технический результат - повышение эффективности охлаждения. Электрическая машина имеет основное тело, роторный вал и теплообменник. В основном теле, содержащем статор, расположены охлаждающие каналы для жидкой охлаждающей...
Тип: Изобретение
Номер охранного документа: 0002577773
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.cd5f

Лопатка газовой турбины

Лопатка газовой турбины содержит хвостовик и перо лопатки с входной и выходной кромками и вершиной, систему каналов для охлаждающего воздуха, простирающихся от отверстия для охлаждающего воздуха в хвостовике посредством извилистого змеевидного канала к расположенному в зоне выходной кромки...
Тип: Изобретение
Номер охранного документа: 0002575842
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cd66

Способ компьютерного моделирования технической системы

Изобретение относится к области компьютерного моделирования технических систем. Технический результат - обеспечение более точного и надежного прогнозирования рабочих параметров за счет применения нейронной сети при моделировании. Способ для компьютерного моделирования технической системы, при...
Тип: Изобретение
Номер охранного документа: 0002575417
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.cdb9

Разрядник защиты от перенапряжений с растяжимой манжетой

Разрядник (1) защиты от перенапряжений с колонкой варисторных элементов содержит растяжимую манжету (8) для размещения натяжных элементов (4) и фиксации их в радиальном направлении. Форма манжеты предусматривает заданные зоны деформации, за счет чего при неисправности и перегрузке манжета (8)...
Тип: Изобретение
Номер охранного документа: 0002575917
Дата охранного документа: 27.02.2016
20.02.2016
№216.014.cdfd

Сопловая лопатка с охлаждаемой платформой для газовой турбины

Узел платформы для поддержки сопловой лопатки для газовой турбины содержит поверхность прохождения газа, расположенную так, чтобы контактировать с потоковым рабочим газом, по меньшей мере, один охлаждающий канал. Охлаждающий канал имеет форму для направления охлаждающей текучей среды в...
Тип: Изобретение
Номер охранного документа: 0002575260
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.cead

Устройство для монтажа и демонтажа конструктивного элемента стационарной газовой турбины, стационарная газовая турбина и способ монтажа и демонтажа конструктивного элемента стационарной газовой турбины

Изобретение относится к способу и устройству для монтажа и демонтажа конструктивного элемента в виде горелки или переходной трубы газовой турбины на стационарной газовой турбине. Устройство содержит двухколейную рельсовую систему, по которой передвигается рамная тележка, несущий узел для...
Тип: Изобретение
Номер охранного документа: 0002575109
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cf3d

Способ компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора

Изобретение относится к способу компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора. Управляемая данными модель обучается предпочтительно в областях тренировочных данных с низкой плотностью. Оценщик плотности выдает для наборов...
Тип: Изобретение
Номер охранного документа: 0002575328
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf4e

Способ для динамической авторизации мобильного коммуникационного устройства

Изобретение относится к области технического обслуживания. Технический результат - ограничение открытого доступа к сетям с обслуживаемыми установками. Способ для динамической авторизации мобильного коммуникационного устройства для сети, при котором ассоциированный с коммуникационным устройством...
Тип: Изобретение
Номер охранного документа: 0002575400
Дата охранного документа: 20.02.2016
+ добавить свой РИД