×
26.08.2017
217.015.d884

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ АТОМНОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэнергетике. Способ работы атомной электрической станции заключается в том, что тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, далее подают насыщенный пар из парогенератора в паровую турбину и передают механическую энергию вращения вала паровой турбины ротору турбогенератора, при этом отработавший пар из паровой турбины направляют в конденсатор, образовавшийся в конденсаторе паровой турбины конденсат перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята, затем нагретый дистиллят системы газоохлаждения турбогенератора подают в теплообменник-испаритель теплового насоса, далее нагретый дистиллят направляют в теплообменники охлаждения дистиллята, а полученную в теплообменнике-испарителе теплового насоса тепловую энергию преобразуют и подводят в теплообменник-конденсатор теплового насоса, который выполнен в едином корпусе с одним из подогревателей низкого давления первой ступени, в котором происходит нагрев части основного конденсата за счет теплоты от низкокипящего теплоносителя теплового насоса. Изобретение позволяет уменьшить расхода пара из турбины на систему регенеративных подогревателей низкого давления за счет использования тепловых потерь системы газоохлаждения турбогенератора при нагреве основного конденсата в одном из подогревателей низкого давления первой ступени. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на атомных электрических станциях.

Известен способ работы атомной электрической станции [Маргулова Т.Х. Атомные электрические станции: Изд. 2-е, перераб. и дополн. Учебник для вузов. - М.: Высшая школа, 1974. - 359 с: ил.] реализующийся следующим образом: тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора главным циркуляционным насосом, направляют в парогенератор, при этом вырабатываемый в парогенераторе насыщенный пар поступает в цилиндр высокого давления паровой турбины, далее нар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, в турбогенераторе механическая энергия преобразуется в электрическую энергию, а полностью отработавший пар из паровой турбины направляется в конденсатор, где он конденсируется при охлаждении его охлаждающей водой. Образовавшийся конденсат из конденсатора перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор. В регенеративных подогревателях происходит нагрев конденсата и питательной воды паром регенеративных отборов турбины.

Недостатком аналога является малая энергетическая эффективность работы такой атомной электрической станции.

В качестве прототипа принимаем способ работы атомной электрической станции [см. пособие: «Пособие службы подготовки персонала Балаковской АЭС по эксплуатации энергоблока ВВЭР-1000».: том 5, часть 1: «Системы турбинного отделения турбоустановки К-1000-60/1500-2», стр. 231-281 // Мин. РФ по атомной энергии концерн «Росэнергоатом» служба подготовки персонала Балаковской АЭС], заключающийся в том, что тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, далее подают насыщенный пар из парогенератора в цилиндр высокого давления паровой турбины, далее пар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, далее отработавший пар из цилиндров низкого давления паровой турбины направляют в конденсатор, образовавшийся конденсат перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора, теплообменники газоохладителей генератора и теплообменники воздухоохладителей возбудителя и выпрямителя, затем нагретый дистиллят подают в теплообменники охлаждения дистиллята.

Недостатком данного способа работы атомной электрической станции является ее малая энергетическая эффективность вследствие потерь тепловой энергии системы газоохлаждения турбогенератора с охлаждающей водой.

Задачей изобретения является разработка способа работы атомной электрической станции, позволяющего повысить КПД атомной электрической станции.

Технический результат заключается в уменьшении расхода пара из турбины на систему регенеративных подогревателей низкого давления за счет использования тепловых потерь системы газоохлаждения турбогенератора при нагреве основного конденсата в одном из подогревателей низкого давления первой ступени.

Технический результат достигается за счет способа работы атомной электрической станции, заключающегося в том, что тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, далее подают насыщенный пар из парогенератора в цилиндр высокого давления паровой турбины, далее пар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, далее отработавший пар из цилиндров низкого давления паровой турбины направляют в конденсатор, образовавшийся конденсат перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора, теплообменники газоохладителей генератора и теплообменники воздухоохладителей возбудителя и выпрямителя, затем нагретый дистиллят подают в теплообменники охлаждения дистиллята, при этом перед подачей нагретого дистиллята в теплообменники охлаждения дистиллята его предварительно подают в теплообменник-испаритель теплового насоса, а полученную от нагретого дистиллята тепловую энергию преобразуют и подводят в теплообменник-конденсатор теплового насоса, который выполнен в едином корпусе с одним из подогревателей низкого давления первой ступени, в котором происходит нагрев части основного конденсата за счет теплоты от низкокипящего теплоносителя теплового насоса.

На фиг. представлена схема атомной электрической станции, в которой может быть реализован данный способ.

Сущность данного способа заключается в следующем: тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, при этом вырабатываемый в парогенераторе насыщенный пар поступает в цилиндр высокого давления паровой турбины, далее пар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, полностью отработавший пар из цилиндров низкого давления паровой турбины направляют в конденсатор, где он конденсируется при охлаждении его охлаждающей водой, образовавшийся конденсат из конденсатора перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора, теплообменники газоохладителей генератора и теплообменники воздухоохладителей возбудителя и выпрямителя, далее нагретый дистиллят системы газоохлаждения турбогенератора подают в теплообменник-испаритель теплового насоса, затем дистиллят охлаждают в теплообменниках охлаждения дистиллята охлаждающей водой из системы технического водоснабжения, полученную от нагретого дистиллята тепловую энергию в теплообменнике-испарителе теплового насоса преобразуют в абсорбере теплового насоса и генераторе теплового насоса, где между генератором теплового насоса и абсорбером теплового насоса происходит тепломассообмен и преобразование энергий низкокипящего теплоносителя, далее тепловую энергию подводят в теплообменник-конденсатор теплового насоса, выполненного в едином корпусе с одним из подогревателей низкого давления первой ступени в системе регенеративных подогревателей низкого давления.

Способ реализуется атомной электрической станцией с абсорбционным тепловым насосом, изображенной на фиг., которая состоит из ядерного реактора 1, главного циркуляционного насоса 2, парогенератора 3, цилиндра высокого давления паровой турбины 4, сепаратора-пароперегревателя 5, цилиндров низкого давления паровой турбины 6, турбогенератора 7, системы газоохлаждения турбогенератора (на фиг. не обозначено), состоящей из теплообменников системы водяного охлаждения обмотки статора генератора 8, теплообменников газоохлаждения генератора 9, теплообменников охлаждения возбудителя и выпрямителя 10, теплообменников охлаждения дистиллята 11, абсорбционного теплового насоса (па фиг. не обозначен), состоящего из теплообменника-испарителя теплового насоса 12, абсорбера теплового насоса 13 и генератора теплового насоса 14, теплообменника-конденсатора теплового насоса 17, также атомная электрическая станция включает конденсатор паровой турбины 15, конденсатный насос 16, систему регенеративных подогревателей низкого давления 18, состоящую из трех подогревателей низкого давления первой ступени 19, двух подогревателей низкого давления второй ступени 20, одного подогревателя низкого давления третей ступени 21 и одного подогревателя низкого давления четвертой ступени 22, а также деаэратора 23, питательного насоса 24 и подогревателей высокого давления 25.

Рассмотрим примеры осуществления способа работы атомной электрической станции.

Пример реализации способа работы атомной электрической станции с использованием абсорбционного теплового насоса (фиг.). Тепловую энергию, отбираемую теплоносителем (на фиг. не обозначено) в активной зоне ядерного реактора 1, направляют главным циркуляционным насосом 2 в парогенератор 3, при этом вырабатываемый в парогенераторе 3 насыщенный пар подают в цилиндр высокого давления паровой турбины 4, далее пар направляют в сепаратор-пароперегреватель 5, откуда перегретый пар поступает в цилиндры низкого давления паровой турбины 6, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора (на фиг. не обозначено), в турбогенераторе 7 механическая энергия преобразуется в электрическую энергию, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора 8, теплообменники газоохладителей генератора 9, теплообменники воздухоохладителей возбудителя и выпрямителя 10, затем нагретый дистиллят подают в теплообменник-испаритель теплового насоса 12, в котором происходит испарение низкокипящего теплоносителя теплового насоса. Испарившийся низкокипящий теплоноситель теплового насоса направляется в абсорбер теплового насоса 13, между генератором теплового насоса 14 и абсорбером теплового насоса 13 происходит тепломассообмен и преобразование энергий низкокипящего теплоносителя, затем дистиллят доохлаждают в теплообменниках охлаждения дистиллята 11 охлаждающей водой из системы технического водоснабжения.

Полностью отработавший пар из цилиндров низкого давления паровой турбины 6 направляется в конденсатор паровой турбины 15, где он конденсируется при охлаждении его охлаждающей водой. Образовавшийся конденсат из конденсатора паровой турбины 15 перекачивается конденсатным насосом 16 через систему регенеративных подогревателей низкого давления 18, состоящую из трех подогревателей низкого давления первой ступени 19, при этом к теплообменнику конденсатору теплового насоса 17, выполненному в едином корпусе с одним из подогревателей низкого давления первой ступени 19, подводится тепловая энергия от низкокипящего теплоносителя теплового насоса, полученная от дистиллята системы газоохлаждения турбогенератора, тем самым достигается технический результат, затем конденсат подогревается в двух подогревателях низкого давления второй ступени 20, одном подогревателе низкого давления третей ступени 21 и одном подогревателе низкого давления четвертой ступени 22, деаэрируется в деаэраторе 24, затем питательным насосом 23 подается в подогреватели высокого давления 25 и далее в парогенератор 3.

Способ работы атомной электрической станции, заключающийся в том, что тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, далее подают насыщенный пар из парогенератора в цилиндр высокого давления паровой турбины, далее пар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, далее отработавший пар из цилиндров низкого давления паровой турбины направляют в конденсатор, образовавшийся конденсат перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора, теплообменники газоохладителей генератора и теплообменники воздухоохладителей возбудителя и выпрямителя, затем нагретый дистиллят подают в теплообменники охлаждения дистиллята, отличающийся тем, что перед подачей нагретого дистиллята в теплообменники охлаждения дистиллята его предварительно подают в теплообменник-испаритель теплового насоса, а полученную от нагретого дистиллята тепловую энергию преобразуют и подводят в теплообменник-конденсатор теплового насоса, который выполнен в едином корпусе с одним из подогревателей низкого давления первой ступени, в котором происходит нагрев части основного конденсата за счет теплоты от низкокипящего теплоносителя теплового насоса.
СПОСОБ РАБОТЫ АТОМНОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Showing 41-50 of 58 items.
24.10.2019
№219.017.da5d

Заполнитель искусственный пористый для легких бетонов

Изобретение относится к отрасли производства строительных материалов, в частности аналога гранулированного пеностекла – заполнителя искусственного пористого, применяемого в качестве заполнителя при приготовлении легких и силикатных бетонов, а также в качестве засыпок для теплоизоляции кровель,...
Тип: Изобретение
Номер охранного документа: 0002704085
Дата охранного документа: 23.10.2019
24.11.2019
№219.017.e555

Способ подготовки сточных вод свиноводческих комплексов для сельскохозяйственного использования

Изобретение относится к очистке и утилизации сточных вод, в частности к способу подготовки сточных вод животноводческих комплексов для сельскохозяйственного использования. Способ обеспечивает последовательный ввод в сточные воды свинокомплексов и свиноферм для сельскохозяйственного...
Тип: Изобретение
Номер охранного документа: 0002706971
Дата охранного документа: 21.11.2019
01.12.2019
№219.017.e889

Устройство автоматического получения и обработки изображений

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в качестве аппаратно-программного комплекса автоматического получения и обработки изображений с субматричным фотоприемным устройством для повышения качества формируемого изображения из RAW изображения...
Тип: Изобретение
Номер охранного документа: 0002707714
Дата охранного документа: 28.11.2019
13.12.2019
№219.017.ec98

Защитная транспортная система дорожных конструкций и способ её возведения

Изобретение относится к системам защиты грунтовых оснований дорожных конструкций для обеспечения надежности и безопасности при сейсмических воздействиях и мерзлых грунтах. Технический результат: сохранение стабильной прочности и устойчивости в период оттаивания дорожных конструкций на участках...
Тип: Изобретение
Номер охранного документа: 0002708769
Дата охранного документа: 11.12.2019
23.02.2020
№220.018.057e

Берегозащитное грунтоармированное сооружение в условиях слабых грунтов на наполняемом основании и способ его возведения

Изобретение относится к водохозяйственному проектированию и может быть использовано при строительстве комплекса сооружений инженерной защиты. Сущность изобретения - использование грунтонаполняемой оболочки основания, заполняемой пульпой из донных отложений, для возведения на ней...
Тип: Изобретение
Номер охранного документа: 0002714732
Дата охранного документа: 19.02.2020
09.06.2020
№220.018.25b5

Способ получения сульфида кальция из фосфогипса

Изобретение относится к способу получения сульфида кальция из фосфогипса и может найти применение в химической промышленности, например, в препаративном неорганическом синтезе и при производстве полупроводниковых или люминесцентных материалов. Способ изготовления образцов сульфида кальция...
Тип: Изобретение
Номер охранного документа: 0002723027
Дата охранного документа: 08.06.2020
21.06.2020
№220.018.2877

Стенд для динамических испытаний виброизоляторов

Изобретение относится к машиностроению, а именно к конструкциям стендов для испытаний виброизоляторов. Стенд содержит раму, подвижную верхнюю опорную плиту и неподвижную нижнюю опорную плиту, механизм предварительного осевого нагружения с силоизмерителем, направляющий механизм верхней опорной...
Тип: Изобретение
Номер охранного документа: 0002723975
Дата охранного документа: 18.06.2020
21.06.2020
№220.018.2899

Конвейер для транспортирования сыпучих и кусковых материалов

Изобретение относится к области машиностроения, в частности к конвейерам для транспортирования сыпучих и кусковых материалов. Конвейер включает продольные борта, днище и привод. Днище состоит из нескольких подвижных элементов в виде пластин. Пластины кинематически связаны с продольными бортами,...
Тип: Изобретение
Номер охранного документа: 0002724041
Дата охранного документа: 18.06.2020
03.07.2020
№220.018.2dcb

Датчик механических величин

Изобретение относится к измерительной технике, предназначено для преобразования динамических механических величин, в том числе вибрационного и ударного ускорения в электрический сигнал, и может быть использовано в различных отраслях, в частности, строительной, для сейсмических измерений,...
Тип: Изобретение
Номер охранного документа: 0002725203
Дата охранного документа: 30.06.2020
03.07.2020
№220.018.2df1

Керамическая масса

Изобретение относится к производству керамики строительного назначения, в частности рядового керамического кирпича. Техническим результатом является разработка керамической массы, обеспечивающей получение эффективного керамического кирпича на основе природного глинистого сырья и техногенных...
Тип: Изобретение
Номер охранного документа: 0002725204
Дата охранного документа: 30.06.2020
Showing 21-22 of 22 items.
19.01.2018
№218.016.00cc

Винтовой конвейер с гибким рабочим органом

Винтовой конвейер с гибким рабочим органом содержит привод (1) и смонтированный в цилиндрическом желобе (2) гибкий винт (3), выполненный в виде двух коаксиально расположенных спирально изогнутых стержней (4, 5). Наружный стержень выполнен в виде овальной пряди каната двойной правой...
Тип: Изобретение
Номер охранного документа: 0002629733
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.02a1

Исполнительное устройство для прецизионного позиционирования исполнительного элемента

Изобретение относится к мехатронике и может быть использовано в промышленных системах управления технологическими процессами, в узлах медицинской техники, в прецизионных системах позиционирования, в устройствах активной и адаптивной оптики. Исполнительное устройство содержит систему управления...
Тип: Изобретение
Номер охранного документа: 0002630074
Дата охранного документа: 05.09.2017
+ добавить свой РИД