×
26.08.2017
217.015.d884

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ АТОМНОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэнергетике. Способ работы атомной электрической станции заключается в том, что тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, далее подают насыщенный пар из парогенератора в паровую турбину и передают механическую энергию вращения вала паровой турбины ротору турбогенератора, при этом отработавший пар из паровой турбины направляют в конденсатор, образовавшийся в конденсаторе паровой турбины конденсат перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята, затем нагретый дистиллят системы газоохлаждения турбогенератора подают в теплообменник-испаритель теплового насоса, далее нагретый дистиллят направляют в теплообменники охлаждения дистиллята, а полученную в теплообменнике-испарителе теплового насоса тепловую энергию преобразуют и подводят в теплообменник-конденсатор теплового насоса, который выполнен в едином корпусе с одним из подогревателей низкого давления первой ступени, в котором происходит нагрев части основного конденсата за счет теплоты от низкокипящего теплоносителя теплового насоса. Изобретение позволяет уменьшить расхода пара из турбины на систему регенеративных подогревателей низкого давления за счет использования тепловых потерь системы газоохлаждения турбогенератора при нагреве основного конденсата в одном из подогревателей низкого давления первой ступени. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на атомных электрических станциях.

Известен способ работы атомной электрической станции [Маргулова Т.Х. Атомные электрические станции: Изд. 2-е, перераб. и дополн. Учебник для вузов. - М.: Высшая школа, 1974. - 359 с: ил.] реализующийся следующим образом: тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора главным циркуляционным насосом, направляют в парогенератор, при этом вырабатываемый в парогенераторе насыщенный пар поступает в цилиндр высокого давления паровой турбины, далее нар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, в турбогенераторе механическая энергия преобразуется в электрическую энергию, а полностью отработавший пар из паровой турбины направляется в конденсатор, где он конденсируется при охлаждении его охлаждающей водой. Образовавшийся конденсат из конденсатора перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор. В регенеративных подогревателях происходит нагрев конденсата и питательной воды паром регенеративных отборов турбины.

Недостатком аналога является малая энергетическая эффективность работы такой атомной электрической станции.

В качестве прототипа принимаем способ работы атомной электрической станции [см. пособие: «Пособие службы подготовки персонала Балаковской АЭС по эксплуатации энергоблока ВВЭР-1000».: том 5, часть 1: «Системы турбинного отделения турбоустановки К-1000-60/1500-2», стр. 231-281 // Мин. РФ по атомной энергии концерн «Росэнергоатом» служба подготовки персонала Балаковской АЭС], заключающийся в том, что тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, далее подают насыщенный пар из парогенератора в цилиндр высокого давления паровой турбины, далее пар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, далее отработавший пар из цилиндров низкого давления паровой турбины направляют в конденсатор, образовавшийся конденсат перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора, теплообменники газоохладителей генератора и теплообменники воздухоохладителей возбудителя и выпрямителя, затем нагретый дистиллят подают в теплообменники охлаждения дистиллята.

Недостатком данного способа работы атомной электрической станции является ее малая энергетическая эффективность вследствие потерь тепловой энергии системы газоохлаждения турбогенератора с охлаждающей водой.

Задачей изобретения является разработка способа работы атомной электрической станции, позволяющего повысить КПД атомной электрической станции.

Технический результат заключается в уменьшении расхода пара из турбины на систему регенеративных подогревателей низкого давления за счет использования тепловых потерь системы газоохлаждения турбогенератора при нагреве основного конденсата в одном из подогревателей низкого давления первой ступени.

Технический результат достигается за счет способа работы атомной электрической станции, заключающегося в том, что тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, далее подают насыщенный пар из парогенератора в цилиндр высокого давления паровой турбины, далее пар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, далее отработавший пар из цилиндров низкого давления паровой турбины направляют в конденсатор, образовавшийся конденсат перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора, теплообменники газоохладителей генератора и теплообменники воздухоохладителей возбудителя и выпрямителя, затем нагретый дистиллят подают в теплообменники охлаждения дистиллята, при этом перед подачей нагретого дистиллята в теплообменники охлаждения дистиллята его предварительно подают в теплообменник-испаритель теплового насоса, а полученную от нагретого дистиллята тепловую энергию преобразуют и подводят в теплообменник-конденсатор теплового насоса, который выполнен в едином корпусе с одним из подогревателей низкого давления первой ступени, в котором происходит нагрев части основного конденсата за счет теплоты от низкокипящего теплоносителя теплового насоса.

На фиг. представлена схема атомной электрической станции, в которой может быть реализован данный способ.

Сущность данного способа заключается в следующем: тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, при этом вырабатываемый в парогенераторе насыщенный пар поступает в цилиндр высокого давления паровой турбины, далее пар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, полностью отработавший пар из цилиндров низкого давления паровой турбины направляют в конденсатор, где он конденсируется при охлаждении его охлаждающей водой, образовавшийся конденсат из конденсатора перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора, теплообменники газоохладителей генератора и теплообменники воздухоохладителей возбудителя и выпрямителя, далее нагретый дистиллят системы газоохлаждения турбогенератора подают в теплообменник-испаритель теплового насоса, затем дистиллят охлаждают в теплообменниках охлаждения дистиллята охлаждающей водой из системы технического водоснабжения, полученную от нагретого дистиллята тепловую энергию в теплообменнике-испарителе теплового насоса преобразуют в абсорбере теплового насоса и генераторе теплового насоса, где между генератором теплового насоса и абсорбером теплового насоса происходит тепломассообмен и преобразование энергий низкокипящего теплоносителя, далее тепловую энергию подводят в теплообменник-конденсатор теплового насоса, выполненного в едином корпусе с одним из подогревателей низкого давления первой ступени в системе регенеративных подогревателей низкого давления.

Способ реализуется атомной электрической станцией с абсорбционным тепловым насосом, изображенной на фиг., которая состоит из ядерного реактора 1, главного циркуляционного насоса 2, парогенератора 3, цилиндра высокого давления паровой турбины 4, сепаратора-пароперегревателя 5, цилиндров низкого давления паровой турбины 6, турбогенератора 7, системы газоохлаждения турбогенератора (на фиг. не обозначено), состоящей из теплообменников системы водяного охлаждения обмотки статора генератора 8, теплообменников газоохлаждения генератора 9, теплообменников охлаждения возбудителя и выпрямителя 10, теплообменников охлаждения дистиллята 11, абсорбционного теплового насоса (па фиг. не обозначен), состоящего из теплообменника-испарителя теплового насоса 12, абсорбера теплового насоса 13 и генератора теплового насоса 14, теплообменника-конденсатора теплового насоса 17, также атомная электрическая станция включает конденсатор паровой турбины 15, конденсатный насос 16, систему регенеративных подогревателей низкого давления 18, состоящую из трех подогревателей низкого давления первой ступени 19, двух подогревателей низкого давления второй ступени 20, одного подогревателя низкого давления третей ступени 21 и одного подогревателя низкого давления четвертой ступени 22, а также деаэратора 23, питательного насоса 24 и подогревателей высокого давления 25.

Рассмотрим примеры осуществления способа работы атомной электрической станции.

Пример реализации способа работы атомной электрической станции с использованием абсорбционного теплового насоса (фиг.). Тепловую энергию, отбираемую теплоносителем (на фиг. не обозначено) в активной зоне ядерного реактора 1, направляют главным циркуляционным насосом 2 в парогенератор 3, при этом вырабатываемый в парогенераторе 3 насыщенный пар подают в цилиндр высокого давления паровой турбины 4, далее пар направляют в сепаратор-пароперегреватель 5, откуда перегретый пар поступает в цилиндры низкого давления паровой турбины 6, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора (на фиг. не обозначено), в турбогенераторе 7 механическая энергия преобразуется в электрическую энергию, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора 8, теплообменники газоохладителей генератора 9, теплообменники воздухоохладителей возбудителя и выпрямителя 10, затем нагретый дистиллят подают в теплообменник-испаритель теплового насоса 12, в котором происходит испарение низкокипящего теплоносителя теплового насоса. Испарившийся низкокипящий теплоноситель теплового насоса направляется в абсорбер теплового насоса 13, между генератором теплового насоса 14 и абсорбером теплового насоса 13 происходит тепломассообмен и преобразование энергий низкокипящего теплоносителя, затем дистиллят доохлаждают в теплообменниках охлаждения дистиллята 11 охлаждающей водой из системы технического водоснабжения.

Полностью отработавший пар из цилиндров низкого давления паровой турбины 6 направляется в конденсатор паровой турбины 15, где он конденсируется при охлаждении его охлаждающей водой. Образовавшийся конденсат из конденсатора паровой турбины 15 перекачивается конденсатным насосом 16 через систему регенеративных подогревателей низкого давления 18, состоящую из трех подогревателей низкого давления первой ступени 19, при этом к теплообменнику конденсатору теплового насоса 17, выполненному в едином корпусе с одним из подогревателей низкого давления первой ступени 19, подводится тепловая энергия от низкокипящего теплоносителя теплового насоса, полученная от дистиллята системы газоохлаждения турбогенератора, тем самым достигается технический результат, затем конденсат подогревается в двух подогревателях низкого давления второй ступени 20, одном подогревателе низкого давления третей ступени 21 и одном подогревателе низкого давления четвертой ступени 22, деаэрируется в деаэраторе 24, затем питательным насосом 23 подается в подогреватели высокого давления 25 и далее в парогенератор 3.

Способ работы атомной электрической станции, заключающийся в том, что тепловую энергию, отбираемую теплоносителем в активной зоне ядерного реактора, главным циркуляционным насосом направляют в парогенератор, далее подают насыщенный пар из парогенератора в цилиндр высокого давления паровой турбины, далее пар направляют в сепаратор-пароперегреватель, затем перегретый пар поступает в цилиндры низкого давления паровой турбины, при этом механическую энергию вращения вала паровой турбины передают ротору турбогенератора, далее отработавший пар из цилиндров низкого давления паровой турбины направляют в конденсатор, образовавшийся конденсат перекачивают конденсатным насосом через систему регенеративных подогревателей низкого давления в деаэратор, а затем питательным насосом через систему регенеративных подогревателей высокого давления в парогенератор, при этом осуществляют постоянное охлаждение системы газоохлаждения турбогенератора путем циркуляции охлаждающего дистиллята через теплообменники системы водяного охлаждения обмотки статора генератора, теплообменники газоохладителей генератора и теплообменники воздухоохладителей возбудителя и выпрямителя, затем нагретый дистиллят подают в теплообменники охлаждения дистиллята, отличающийся тем, что перед подачей нагретого дистиллята в теплообменники охлаждения дистиллята его предварительно подают в теплообменник-испаритель теплового насоса, а полученную от нагретого дистиллята тепловую энергию преобразуют и подводят в теплообменник-конденсатор теплового насоса, который выполнен в едином корпусе с одним из подогревателей низкого давления первой ступени, в котором происходит нагрев части основного конденсата за счет теплоты от низкокипящего теплоносителя теплового насоса.
СПОСОБ РАБОТЫ АТОМНОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Showing 31-40 of 58 items.
27.04.2019
№219.017.3c5c

Машина трения (варианты)

Изобретение относится к технике испытаний триботехнических свойств конструкционных твердых, пластичных и жидких смазочных материалов в условиях торцового трения, а также может быть использовано при триботехнических испытаниях композиционных материалов, покрытий на металлической и полимерной...
Тип: Изобретение
Номер охранного документа: 0002686121
Дата охранного документа: 24.04.2019
20.05.2019
№219.017.5c7c

Способ определения потерь активной электроэнергии в трансформаторе и устройство для его реализации

Изобретение относится к электрическим аппаратам и может быть использовано для интегрального измерения потерь активной электрической энергии в трансформаторах электрических станций и подстанций. Технический результат: повышение точности измерения потерь активной электрической энергии и упрощение...
Тип: Изобретение
Номер охранного документа: 0002687893
Дата охранного документа: 16.05.2019
07.06.2019
№219.017.74ee

Способ подготовки сточных вод животноводческих комплексов для сельскохозяйственного использования

Изобретение относится к утилизации сточных вод животноводческих комплексов и может быть использовано в сельском хозяйстве для подготовки жидких отходов животноводческих комплексов и ферм для орошения и удобрения сельскохозяйственных угодий. Для осуществления способа в сточные воды вводят...
Тип: Изобретение
Номер охранного документа: 0002690813
Дата охранного документа: 05.06.2019
03.07.2019
№219.017.a438

Устройство компенсации колебаний высотных сооружений

Изобретение относится к области сейсмостойкого строительства и может быть использовано для сейсмозащиты высотных сооружений от влияния кинематического воздействия в диапазоне низких частот. Устройство компенсации сейсмических колебаний высотного сооружения включает опору верхней части...
Тип: Изобретение
Номер охранного документа: 0002693064
Дата охранного документа: 01.07.2019
31.07.2019
№219.017.ba56

Гидротехническое устройство для сбора нефти с поверхности водоемов

Изобретение относится к защите поверхности водоемов от растекания по ней нефтяного загрязнения. Устройство включает регулирующую емкость, образованную гибкой оболочкой и жестким водосливным щитом. Устройство дополнительно снабжено обеззараживающей емкостью, установленной на берегу за...
Тип: Изобретение
Номер охранного документа: 0002695860
Дата охранного документа: 29.07.2019
10.09.2019
№219.017.c987

Способ анализа и контроля состояния технической установки, содержащей множество динамических систем

Изобретение относится к области контроля и анализа состояния сложных многопараметрических объектов. Техническим результатом является повышение оперативности оценки состояния сложной динамической технической установки. Способ заключается в том, что с помощью динамической модели системы...
Тип: Изобретение
Номер охранного документа: 0002699685
Дата охранного документа: 09.09.2019
02.10.2019
№219.017.ce49

Способ и устройство безопасной обработки служебно-технологических команд в инфокоммуникационных системах

Изобретение относится к области передачи служебно-технологических команд, сформированных на основе нелинейных рекуррентных последовательностей. Технический результат заключается в повышении скрытности передачи и приема служебно-технологических команд и уменьшении времени на их обработку. Способ...
Тип: Изобретение
Номер охранного документа: 0002700400
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d0d6

Проходческий взрывонавалочный комплекс

Использование относится к области горного дела, в частности к проходческому взрывонавалочному комплексу. Комплекс включает приемную клиновую часть с погрузочным модулем, бункер для взрывонавалки с опорной рамой, разгрузочную скребковую часть, механизм самопередвижки, насосную станцию, пульт...
Тип: Изобретение
Номер охранного документа: 0002700388
Дата охранного документа: 16.09.2019
06.10.2019
№219.017.d2ed

Конвейер для транспортирования сыпучих и кусковых материалов

Конвейер содержит став, желоб, транспортирующий элемент, откидной борт, силовые цилиндры и элементы управления приводом, в том числе распределители. Желоб соединен со ставом шарнирно, с возможностью изменения в процессе работы угла его наклона относительно горизонта посредством силового...
Тип: Изобретение
Номер охранного документа: 0002702211
Дата охранного документа: 04.10.2019
18.10.2019
№219.017.d78d

Способ получения ферритов и хромитов со структурой шпинели

Изобретение относится к способу получения твердых растворов со структурой шпинели на основе ферритов и хромитов переходных элементов и может найти применение в химической промышленности в процессах органического синтеза для производства бутадиена и углеводородов из синтез-газа. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002703251
Дата охранного документа: 15.10.2019
Showing 21-22 of 22 items.
19.01.2018
№218.016.00cc

Винтовой конвейер с гибким рабочим органом

Винтовой конвейер с гибким рабочим органом содержит привод (1) и смонтированный в цилиндрическом желобе (2) гибкий винт (3), выполненный в виде двух коаксиально расположенных спирально изогнутых стержней (4, 5). Наружный стержень выполнен в виде овальной пряди каната двойной правой...
Тип: Изобретение
Номер охранного документа: 0002629733
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.02a1

Исполнительное устройство для прецизионного позиционирования исполнительного элемента

Изобретение относится к мехатронике и может быть использовано в промышленных системах управления технологическими процессами, в узлах медицинской техники, в прецизионных системах позиционирования, в устройствах активной и адаптивной оптики. Исполнительное устройство содержит систему управления...
Тип: Изобретение
Номер охранного документа: 0002630074
Дата охранного документа: 05.09.2017
+ добавить свой РИД