×
26.08.2017
217.015.d84c

Результат интеллектуальной деятельности: СПОСОБ СЖИГАНИЯ ТВЕРДЫХ УГЛЕРОДОСОДЕРЖАЩИХ ТОПЛИВ ИЛИ ОТХОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэнергетике и может быть использовано для преобразования тепловой энергии в механическую или электрическую энергию, в стационарных и передвижных теплоэлектростанциях, а также в транспортных средствах. Способ сжигания твердых углеродосодержащего топлива и/или отходов включает помол твердых углеродосодержащего топлива и/или отходов, ввод помола твердых углеродосодержащего топлива и/или отходов в камеру сгорания и инициирование. Тонину помола твердых углеродосодержащего топлива и/или отходов доводят до размера не более 1 мкм с образованием микронанокомпозитной смеси помола твердых углеродосодержащего топлива и/или отходов с водой, а затем впрыскивают образованную смесь при помощи капельного дозатора в камеру сгорания, при этом вышеуказанный размер частиц помола твердых углеродосодержащего топлива и/или отходов осуществляют в два этапа, на первом - осуществляют крупный помол, а на втором этапе с помощью кавитационного диспергатора доводят помол до размера не более 1 мкм. Инициирование горения капель микронанокомпозитной смеси помола твердых углеродосодержащего топлива и/или отходов с водой осуществляют с помощью топливоподающего узла за счет использования запаса энергии топлива, с помощью которого производят розжиг пламени в камере сгорания. Изобретение позволяет повысить надежность и эффективность работы установки за счет снижения износа деталей и снижения затрат на подготовку топлива. 1 з.п. ф-лы, 4 ил.

Предлагаемое изобретение относится к области теплоэнергетики, а именно к устройствам получения тепловой и электрической энергии путем сжигания твердого углеродсодержащего топлива, например, угля, шлаковых отвалов теплоэлектростанций, работающих на угле, древесины и т.п.. Это изобретение может быть использовано в стационарных и передвижных теплоэлектростанциях малой энергетики, а также в транспортных средствах, однако широкое применение в теплоэнергетике и на транспорте оно найдет после перевода их на твердое топливо, например, уголь или шлаки, т.к. по себестоимости они вне конкуренции с другими видами топлива, включая нефть и газ.

Известен способ сжигания твердых органических отходов при повышенном давлении [патент РФ №2479792, 14.11.2011 г., 6 F02G 5/04], включающий формирование колец из прессованных, отсортированных твердых органических отходах, которые собирают в блок, имеющий высоту, равную высоте зоны сгорания, помещение блока в зону сгорания при температуре (1450-1500)°C, сжигание блока с образованием потока продуктов сгорания, обеспечение в зоне дожигания полного сгорания твердых частиц с получением потока газов, снижение их температуры за время, меньшее, чем время каталитического образования диоксинов и рекуперацию энергии, в которой энергию потока передают потоку атмосферного воздуха, подаваемого в зону сгорания и на вход зоны дожигания, а выходящий поток сбрасывают в атмосферу.

Однако этот способ не позволяет перерабатывать сыпучие твердые углеродосодержащие отходы, например, шлаковые отвалы теплоэлектростанций.

Известен способ работы парогазовой электростанции на комбинированном топливе (твердом с газообразным или жидким) [патент РФ №2230921, 2004 г., 7 F02C 6/18], включающий процессы сжигания твердого топлива с образованием перегретого пара, смешения полученных продуктов сгорания с водяным паром, расширения газопаровой смеси с преобразованием ее потенциальной энергии в механическую с одновременным преобразованием последней в электрическую, утилизации теплоты отработавших газов, конденсации влаги и сжатия.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что он очень сложен в реализации, малоэффективен и требует больших затрат в процессе эксплуатации.

Известен способ сжигания угля [патент РФ №2230981, 2004 г., 7 F23B 7/00]. Данный способ включает диспергирование и впрыск угля в камеру сгорания, при этом в процессе диспергирования уголь дробят до размера частиц не более 20 мкм и одновременно активируют преимущественно с помощью механических мельниц, которые располагают в непосредственной близости от камеры сгорания.

В данном способе образуется уголь достаточно крупного помола, а получить его с более низкой тониной при данном способе невозможно. Это приводит к неполному сгоранию угля, часть его остается в шлаках. Следовательно, вышеуказанный способ сжигания угля в камерах сгорания газовых турбин практически неприемлем, в том числе из-за низкой эффективности сгорания угля и большого эрозийного износа лопаток турбин.

Наиболее близким по совокупности признаков к заявляемому способу является способ сжигания угля [патент РФ №2327889, 2006 г., 7 F02C 3/26]. Данный способ включает ультратонкий помол угля, ввод пылеугольной смеси в камеру сгорания и инициирование. При этом тонину ультратонкого помола угля доводят до размера не более 10 мкм и сепарируют, а затем впрыскивают при помощи эжектора в камеру сгорания газовой турбины. Вышеуказанный размер помола и выделение мелкой фракции угля осуществляют с помощью центробежного поля внутри тороидальной вихревой камеры, которую располагают непосредственно перед камерой сгорания газовой турбины. Инициирование сгорания пылеугольной смеси в камере сгорания газовой турбины осуществляют с помощью плазменного источника на парах воды, генерируемых за счет использования энтальпии выходящих газов.

Однако практический опыт авторов изобретения показал, что при помоле частиц угля до 10 мкм и при использовании способа впрыска воздухом (газовый эжектор) происходит обгорание сопла эжекторов. Каналы эжекторов подвержены воздействию абразивных частиц угля и быстро изнашиваются т.к. подача частиц в топку осуществляется воздухом. Содержащиеся абразивные частицы в угле будут истирать стенки тороидальной вихревой камеры. Это значительно снижает надежность работы установки в целом, межремонтную наработку ее и себестоимость вырабатываемой энергии.

Кроме того наличие в прототипе и аналогах требования предварительной сушки угля увеличивает энергозатраты и снижает экономическую эффективность процесса выработки энергии.

Техническим результатом предлагаемого изобретения является повышение надежности и эффективности работы установки, реализующей предлагаемый способ, за счет снижения износа деталей ее и снижения затрат на подготовку топлива.

Заявленный результат достигается тем, что в известном способе сжигания твердого углеродосодержащего топлива и/или отходов включающем помол твердого углеродосодержащего топлива и/или отходов, ввод помола твердого углеродосодержащего топлива и/или отходов в камеру сгорания и инициирование, дополнительно тонину помола твердого углеродосодержащего топлива и/или отходов доводят до размера не более 1 мкм с образованием микронанокомпозитной смеси помола твердых углеродосодержащего топлива и/или отходов с водой, а затем впрыскивают, образованную смесь при помощи капельного дозатора в камеру сгорания, при этом вышеуказанный размер частиц помола твердых углеродсодержащего отходов осуществляют в два этапа, на первом - осуществляют крупный помол, а на втором этапе с помощью кавитационного диспергатора доводят помол до размера не более 1 мкм.

При этом инициирование горения капель микронанокомпозитной смеси помола твердых углеродсодержащего топлива и/или отходов с водой осуществляют с помощью топливоподающего узла за счет использования запаса энергии топлива, с помощью которого производят розжиг пламени в камере сгорания.

Выбор размера частиц помола твердых углеродсодержащих топлива и/или отходов не более 1 мкм и создание с помощью кавитационного диспергатора микронанокомпозитной смеси помола твердого углеродосодержащего топлива и/или отходов с водой, а также дозированная подача ее в камеру сгорания позволяют снизить требования к процессу предварительной подготовки топлива, снизить износ деталей блока помола и таким образом увеличить ресурс работы устройства реализующего предлагаемый способ.

Для осуществления заявляемого способа сжигания твердых углеродосодержащего топлива и/или отходов предлагается установка для производства энергии на твердом топливе.

На фиг. 1 приведена общая блок схема установки, позволяющей реализовать предлагаемый способ.

На фиг. 2 приведен вариант исполнения кавитационного диспергатора, позволяющего на втором этапе довести размер частиц помола до размера не более 1 мкм.

На фиг. 3 приведен вариант исполнения капельного дозатора и накопителя готовой микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой, а также соединений между ними.

На фиг. 4 приведен вариант исполнения капельной печи и блока инициализации горения капель микронанокомпозитной смеси помола твердых углеродсодержащего топлива и/или отходов с водой, осуществляемого за счет использования запаса энергии топлива, с помощью которого производят розжиг пламени в камере сгорания.

Установка для осуществления способа содержит бункер 1 подачи твердого углеродосодержащего топлива и/или отходов в блок 2 помола, накопитель 3 микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой, дозатор 4, камеру сгорания, выполненную в виде капельной печи 5, двигатель 6 с внешним подводом тепла, имеющий механический привод к электрогенератору ЭГ, дымосос 7 и дымовую трубу 8.

Блок помола 2 содержит шредер 9, выполняющий функции измельчителя грубого помола (не менее 1 мм) кусков углеродосодержащего топлива и/или отходов, например, каменного угля, шлаковых отходов теплоэлетростанций и т.п., накопитель 10 и резервуар 11 с водой, из которого она подается в накопитель 10 для смешивания в нем с помолом из шредера 9, а также кавитационный диспергатор 12, например, в виде проточного ультразвукового кавитационного реактора. В блоке помола 2 сборка шредер 9, накопитель 10 и резервуар 11 выполняет первый этап помола, а кавитационный диспергатор 12 второй этап помола.

При этом выход 13 шредера 9 соединен с первым входом 14 накопителя 10, второй вход 15 которого соединен с выходом 16 резервуара 11 с водой, а выход 17 соединен с входом 18 кавитационного диспергатора 12.

Кавитационный диспергатор 12 (см. фиг. 2.) содержит цилиндрическую рабочую камеру 19 в технологическом объеме 20, выполненном в виде сферы, а также входной 21 и выходной 22 сквозные каналы, впрессованные в цилиндрическую камеру 19 технологического объема 20 с соосным расположением их относительно друг друга и оси камеры 19. Цилиндрическая рабочая камера 19 выполняет функции резонатора, а технологический объем 20 функции волновода ультразвуковых колебаний от ультразвуковых преобразователей УЗП. Поверхность сферы технологического объема 20 (волновода) выполнена в виде объемного многогранника, а нормали к его граням ориентированы в центр сферы реактора (в центр цилиндрической рабочей камеры 19). Ультразвуковые преобразователи УЗП закреплены на гранях технологического объема 20 (волновода) и равноудалены от центра сферы (центра цилиндрической рабочей камеры 19). Кавитационный диспергатор 12 содержит также насос 23, вход 24 которого через входной канал 18 соединен с выходом 17 накопителя 10, а выход 25 с входным сквозным каналом 21 технологического объема 20. Выходной сквозной канал 22 технологического объема 20 через краны 26, 27 соединен соответственно с выходами 28, 29 кавитационного диспергатора 12.

При этом выход 29 соединен с входом 30 накопителя 10, а выход 28 соединен с входом 31 накопителя 3 готовой к употреблению микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой (см. фиг. 1).

Краны 26, 27 имеют соответственно входы 32, 33 управления ими, позволяющие управлять направлением подачи микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой из выходного канала 22. Переключение кранов 26, 27 позволяет направлять микронанокомпозитную смесь помола твердых углеродсодержащих топлива и/или отходов с водой либо на повторный помол с целью дальнейшего уменьшения размера частиц помола (при открытом кране 27 и закрытом кране 26), либо направлять ее в накопитель 3 если она готова к употреблению (при закрытом кране 27 и открытом кране 26).

Данный кавитационный диспергатор позволяет получать частицы помола в интервале от 40 нм до 0.7 мкм при высокой производительности обработки технологических сред в режиме непрерывного потока [см. например, «Проточный ультразвуковой кавитационный реактор», патент РФ №2446874, 2010 г., B01J 19/10, http://www.rusnanonet.ru/equipment/molot/].

Накопитель 3 готовой к употреблению микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой выполнен в виде, например, стального бака объемом не менее 1000 литров.

Выход 34 накопителя 3 соединен с входом 35 дозатора 4 (см. фиг. 1, 3), который содержит нагнетающий насос 36, мерную трубку 37, входной патрубок 38, выходной патрубок 39, обратный патрубок 40, регулировочный стержень 41, установленный в заглушке 42 с возможностью вращения и перемещения вдоль оси мерной трубки 37. В дозаторе 4 имеется также воронка 43 для сбора капель и гидравлический затвор 45.

Капельная печь 5 (см. фиг. 1, 4) содержит горелку 46 и водогрейный котел 47. Горелка 46 содержит трубу 48, к которой приварено днище 49. На нем на стойках 50, 51 установлен испарительный диск 52, к которому по его периметру приварено кольцо 53. В пространство 54, образованное испарительным диском 52 и кольцом 53, подают топливо виде капель 55, которые на раскаленном диске 52 воспламеняются. В днище 50 встроена газовая горелка 56, которая через клапан 57 блока 58 инициализации горения подсоединена к газовому баллону 59. Рядом с газовой горелкой 56 в днище 49 на изоляторе 60 установлен поджигающий электрод 61. Поджог газа газовой горелки 56 производится с помощью электрического разряда, создаваемого между газовой горелкой 56 и поджигающим электродом 61 источником высокого напряжения 62 блока 58 инициализации горения.

Труба 48 горелки 46 помещена в кожух 63, в верхней части которого по периметру его расположен набор сквозных отверстий 64, необходимых для организации поддува воздуха в область испарительного диска 52 через набор сквозных отверстий 65, расположенных в нижней части трубы 48, рядом с испарительным диском 52. Трубка 66 для подачи капель 55 топлива (микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой) на испарительный диск 52 закреплена на кожухе 63 с помощью колец 67, 68, трубок 69, 70 и вставок 71, 72, сборка которых выполняет функции двухконтурного охладителя трубки 66. Последняя соединена с выходом 73 дозатора 4 (см. фиг 1).

Водогрейный котел 47 установлен на горелке 46 и содержит трубу 74 с газоходом 75, выход 76 которого соединен с горячей камерой 77 двигателя 5 (см. фиг. 1, 3), холодная камера 78 которого соединена с холодильником (на фиг.1 не показан). Труба 74 имеет рубашку 79, заполненную теплоносителем 80, например, водой. В рубашке 79 установлен входной 81 и выходной 82 штуцера для подачи воды в водогрейный котел 47 через штуцер 81 и отбора нагретой воды из водогрейного котла 47 через штуцер 82.

В бункере 1 находится углеродосодержащее топливо и/или отходы 83, например, шлаковые отходы теплоэлектростанций или куски каменного угля. В дозаторе 4 имеется капельница 84 с регулятором скорости капания капель 44 в воронку 43 для сбора капель и подачи их через колено 45 гидравлического затвора на выход 73 дозатора 4 и далее через трубку 6 на испарительный диск 52 печи 5.

Заявленный способ реализуется на этой установке следующим образом.

Перед началом работы устройства в бункер 1 загружают углеродосодержащее топливо и/или отходы 83, например, каменный уголь, резервуар 11 заполняют водой, а на входы 32 и 33 кранов 26 и 27 (см. фиг. 2) соответственно подают сигнал закрытия их и таким образом закрывают их.

Далее в горелке 46 капельной печи 5 (см. фиг. 4) с помощью газовой горелки 56 разогревают до красна (около 800-1100°С) испарительный диск 52. Для этого открывают клапан 57 блока 58 инициализации горения и подают в горелку 56 природный газ, а затем поджигают его с помощью электрического разряда, создаваемого источником высокого напряжения 62 между газовой горелкой 56 и поджигающим электродом 61.

Таким образом осуществляется инициирование горения капель микронанокомпозитной смеси помола твердых углеродсодержащего топлива и/или отходов с водой за счет использования запаса энергии топлива (например, природного газа), с помощью которого производят розжиг пламени в камере сгорания.

Далее готовят микронанокомпозитную смесь помола твердых углеродосодержащего топлива и/или отходов с водой. Для этого углеродосодержащее топливо и/или отходы 83, например, каменный уголь, из бункера 1 направляют в шредер 9, в котором он перемалывается до размера частиц не более 1.5 мм. Это первый этап помола. Затем с выхода 13 шредера 9 помол каменного угля через вход 14 передается в накопитель 10, в котором он смешивается с водой, поступающей через вход 15 в накопитель 10 с выхода 16 резервуара 11, в пропорции 60% объемных воды и 40% объемных помола каменного угля.

На втором этапе помола на вход 33 крана 27 подают сигнал открытия и таким образом открывают его. Смесь воды и помола с выхода 16 накопителя 10 через вход 18 диспергатора 12 поступает на вход 24 насоса 23 (см. фиг. 2). Насос 23 через входной канал 21 подает смесь помола с водой в рабочую камеру 19 технологического объема 20 диспергатора 12. При выходе из канала 21 в расширяющийся объем рабочей камеры 19 технологического объема 20 вода смеси кавитирует с образованием газовых пузырьков в рабочей камере 19. При подаче напряжения на пьезоэлектрические элементы ультразвуковых преобразователей УЗП электрические колебания преобразуются в ультразвуковые колебания. На резонансной частоте колебаний, осуществляется передача энергии колебаний с наибольшей интенсивностью по нормали к стенкам рабочей камеры 19. Под воздействием ультразвуковых колебаний кавитационные пузырьки с силой схлопываются. Энергия схлопывания разрушает частицы грубого помола, находящиеся с непосредственной близости от пузырька, а смесь помола с водой, подаваемая с небольшим напором насосом 23 в рабочую камеру 19, подвергается гомогенизации и уменьшению размера частиц помола до величины не более 1 мкм. В выходном канале 22 путем отбора проб (отбор проб на фиг. 2 не показан) осуществляют контроль размера частиц помола.

Если размер частиц помола не достиг величины меньше 1 мкм, то смесь воды и помола через открытый кран 27 с выхода 29 направляют на вход 30 накопителя 10. Таким образом, смесь помола с водой возвращается в накопитель 10, а из него насосом 23 диспергатора 12 закачивается в рабочую камеру 19 технологического объема 20 где частицы помола снова подвергаются разрушению за счет энергия схлопывания газовых пузырьков в рабочей камере 19 и затем через кран 27 снова подаются в накопитель 10 и т.д. Если размер частиц помола достиг величины меньше 1 мкм (находится в интервале от 40 нм до 0.7 мкм), то на вход 33 крана 27 подают сигнал закрытия и таким образом закрывают его, а на вход 32 крана 26 подают сигнал открытия и таким образом открывают его. При этом смесь помола с водой с выхода 28 диспергатора 12 через вход 31 поступает в накопитель 3 готовой к употреблению микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой.

С выхода 34 накопителя 3 микронанокомпозитная смесь помола твердых углеродсодержащих топлива и/или отходов с водой поступает на вход 35 дозатора 4 (см. фиг. 1, 3). При этом нагнетающий насос 36 закачивает микронанокомпозитную смесь помола с водой из накопителя 3 в мерную трубку 37 через входной патрубок 38. В мерной трубке 37 поток микронанокомпозитной смеси помола с водой разделяется на два: основной поток Ф1 и обратный поток Ф2. Перемещение регулировочного стержня 41, например, путем ввинчивания или вывинчивания его, позволяет регулировать зазор h между торцом стержня 41 и торцом выходного патрубка 39 и таким образом количество текучей смеси помола, проходящей в выходной патрубок 39 и далее в капельницу 84. Регулятором 85 устанавливают необходимую скорость подачи капель в на выход 73 дозатора 4 через воронку 43 и колено 45 гидравлического затвора.

Капли 44 с выхода 73 дозатора 4 поступают в трубку 66 капельной печи 5. Из трубки 66 они в виде капель 55 топлива (микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой) падают на испарительный диск 52 горелки 46 капельной печи 5.

В процессе сжигания топлива капли 55 вода капли на раскаленном диске 52 испаряется, превращаясь при этом перегретый пар. В присутствии углерода, а именно микронаночастиц углеродсодержащих топлива - каменного угля, термически образуется смесь водорода H2 с оксидом углерода CO по реакции , т.е. синтез-газ. Этот газ при температуре в горелке 46 и внутри трубы 74 водогрейного котла 47 около 500-800°C сгорает с выделением тепла. Поддув воздуха в область испарительного диска 52 через набор сквозных отверстий 65, расположенных в нижней части трубы 48, рядом с испарительным диском 52 позволяет интенсифицировать процесс горения.

Далее высокоэнтальпийный поток газа с выхода 76 капельной печи 5 направляется на горячую камеру 77 двигателя 6 с вешним подводом тепла. В камере 77 поток газа проходя через теплообменники двигателя 6 (на фги. 1 теплообменники не показаны), энтальпия газового потока понижается (газ отдает тепло двигателю 6), и он, уже охлажденный, поступает в дымосос 7 и далее в дымовую трубу 8, из которой он выбрасывается уже в атмосферу. Электрогенератор ЭГ двигателя 6 при этом вырабатывают электроэнергию, которая передается потребителю.

Следует отметить, что реализация предлагаемого способа возможна и на других устройствах, позволяющих преобразовывать химическую энергию микронанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой в тепловую и электрическую энергию путем сжигания смеси помола с водой в различного вида камерах сгорания, генерирующих при этом тепловую энергию, которая затем с помощью средств преобразования тепловой энергии газового потока может быть преобразована в электрическую энергию. Конкретный вид установки не влияет на сущность заявляемого решения.

Преимущество заявляемого способа состоит в том, что использование микронанокомпозитной смесь помола с водой существенно снижает износ деталей установки реализующей предлагаемый способ и, соответственно, все виды затрат, включая эксплуатационные, обеспечивая при этом высокую эффективность и надежность процесса получения тепловой и электрической энергии в сочетании с низкой себестоимостью.


СПОСОБ СЖИГАНИЯ ТВЕРДЫХ УГЛЕРОДОСОДЕРЖАЩИХ ТОПЛИВ ИЛИ ОТХОДОВ
СПОСОБ СЖИГАНИЯ ТВЕРДЫХ УГЛЕРОДОСОДЕРЖАЩИХ ТОПЛИВ ИЛИ ОТХОДОВ
СПОСОБ СЖИГАНИЯ ТВЕРДЫХ УГЛЕРОДОСОДЕРЖАЩИХ ТОПЛИВ ИЛИ ОТХОДОВ
СПОСОБ СЖИГАНИЯ ТВЕРДЫХ УГЛЕРОДОСОДЕРЖАЩИХ ТОПЛИВ ИЛИ ОТХОДОВ
СПОСОБ СЖИГАНИЯ ТВЕРДЫХ УГЛЕРОДОСОДЕРЖАЩИХ ТОПЛИВ ИЛИ ОТХОДОВ
Источник поступления информации: Роспатент

Showing 1-10 of 31 items.
10.03.2014
№216.012.a9a4

Способ получения низкозастывающих зимних сортов топлив депарафинизацией

Изобретение относится к депарафинизации нефтепродуктов. Изобретение касается способа получения низкозастывающих зимних сортов топлив депарафинизацией нефтепродуктов путем смешения сырья с поверхностно-активным веществом, охлаждения до температуры депарафинизации с последующим выделением...
Тип: Изобретение
Номер охранного документа: 0002509143
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ad7f

Электроискровой генератор энергии

Изобретение относится к энергетическим установкам, предназначенным для получения электрической энергии из газового электрического разряда. Техническим результатом является повышение стабильности, надежности и эффективности преобразования энергии при работе, который достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002510130
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad80

Импульсный электроискровой генератор энергии

Изобретение относится к электроэнергетике и может быть использовано в системах электроснабжения различных сфер народного хозяйства. Достигаемый технический результат - снижение затрат энергии от внешнего первичного источника электрической энергии. Импульсный электроискровой генератор энергии...
Тип: Изобретение
Номер охранного документа: 0002510131
Дата охранного документа: 20.03.2014
20.06.2014
№216.012.d268

Роторный электрогидравлический двигатель

Изобретение относится к машиностроению, в частности к двигателям, работающим на основе электрогидравлического эффекта. Роторный электрогидравлический двигатель содержит корпус, электроды, размещенные в рабочих камерах, выполненных в форме усеченного конуса, большое основание которого сопряжено...
Тип: Изобретение
Номер охранного документа: 0002519635
Дата охранного документа: 20.06.2014
10.08.2014
№216.012.e773

Роторный электрогидравлический двигатель

Изобретение относится к машиностроению, в частности к двигателям, работающим на основе электрогидравлического эффекта. Роторный электрогидравлический двигатель содержит корпус, набор размещенных в полости корпуса на диске рабочих камер с электродами, выполненных в форме усеченных конусов....
Тип: Изобретение
Номер охранного документа: 0002525044
Дата охранного документа: 10.08.2014
27.11.2014
№216.013.0abb

Трансзвуковой водометный движитель судна

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. Трансзвуковой водометный движитель судна содержит входной и выходной водовод, ускоритель потока текучей среды. Входной водовод, выход которого соединен с входом ускорителя потока текучей среды,...
Тип: Изобретение
Номер охранного документа: 0002534155
Дата охранного документа: 27.11.2014
20.05.2015
№216.013.4c94

Импульсный источник напряжения

Изобретение относится к электротехнике и к импульсной силовой электронике, в частности к преобразователям постоянного напряжения в переменное - инверторам и регуляторам напряжения, и предназначено для использования в автономных системах электропитания и в электроприводах перспективных...
Тип: Изобретение
Номер охранного документа: 0002551118
Дата охранного документа: 20.05.2015
20.07.2015
№216.013.6239

Способ получения авиационного бензина б95/130

Изобретение описывает способ получения авиационного бензина Б-95/130 на основе бензина, содержащего компоненты каталитического риформинга, изомеризации, алкилирования с добавлением антиокислительной присадки, тетраэтилсвинца и красителя, при этом в качестве основы используется фракция,...
Тип: Изобретение
Номер охранного документа: 0002556692
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64c9

Стенд для отработки всеглубинного пускового устройства арбалетного типа для необитаемых подводных аппаратов

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Стенд для отработки всеглубинного пускового устройства арбалетного типа для необитаемых подводных аппаратов содержит...
Тип: Изобретение
Номер охранного документа: 0002557348
Дата охранного документа: 20.07.2015
20.11.2015
№216.013.92ce

Устройство преобразования энергии магнитного поля ферромагнитного сердечника в тепловую или электрическую энергию

Изобретение относится к области электротехники и может быть использовано в автономных системах освещения, обогрева и т.п. Устройство содержит источник электрического тока в виде аккумуляторной батареи, генератор постоянного по направлению и линейно меняющегося во времени пилообразного тока...
Тип: Изобретение
Номер охранного документа: 0002569200
Дата охранного документа: 20.11.2015
Showing 1-10 of 36 items.
10.03.2014
№216.012.a9a4

Способ получения низкозастывающих зимних сортов топлив депарафинизацией

Изобретение относится к депарафинизации нефтепродуктов. Изобретение касается способа получения низкозастывающих зимних сортов топлив депарафинизацией нефтепродуктов путем смешения сырья с поверхностно-активным веществом, охлаждения до температуры депарафинизации с последующим выделением...
Тип: Изобретение
Номер охранного документа: 0002509143
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ad7f

Электроискровой генератор энергии

Изобретение относится к энергетическим установкам, предназначенным для получения электрической энергии из газового электрического разряда. Техническим результатом является повышение стабильности, надежности и эффективности преобразования энергии при работе, который достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002510130
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad80

Импульсный электроискровой генератор энергии

Изобретение относится к электроэнергетике и может быть использовано в системах электроснабжения различных сфер народного хозяйства. Достигаемый технический результат - снижение затрат энергии от внешнего первичного источника электрической энергии. Импульсный электроискровой генератор энергии...
Тип: Изобретение
Номер охранного документа: 0002510131
Дата охранного документа: 20.03.2014
20.06.2014
№216.012.d268

Роторный электрогидравлический двигатель

Изобретение относится к машиностроению, в частности к двигателям, работающим на основе электрогидравлического эффекта. Роторный электрогидравлический двигатель содержит корпус, электроды, размещенные в рабочих камерах, выполненных в форме усеченного конуса, большое основание которого сопряжено...
Тип: Изобретение
Номер охранного документа: 0002519635
Дата охранного документа: 20.06.2014
10.08.2014
№216.012.e773

Роторный электрогидравлический двигатель

Изобретение относится к машиностроению, в частности к двигателям, работающим на основе электрогидравлического эффекта. Роторный электрогидравлический двигатель содержит корпус, набор размещенных в полости корпуса на диске рабочих камер с электродами, выполненных в форме усеченных конусов....
Тип: Изобретение
Номер охранного документа: 0002525044
Дата охранного документа: 10.08.2014
27.11.2014
№216.013.0abb

Трансзвуковой водометный движитель судна

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. Трансзвуковой водометный движитель судна содержит входной и выходной водовод, ускоритель потока текучей среды. Входной водовод, выход которого соединен с входом ускорителя потока текучей среды,...
Тип: Изобретение
Номер охранного документа: 0002534155
Дата охранного документа: 27.11.2014
20.05.2015
№216.013.4c94

Импульсный источник напряжения

Изобретение относится к электротехнике и к импульсной силовой электронике, в частности к преобразователям постоянного напряжения в переменное - инверторам и регуляторам напряжения, и предназначено для использования в автономных системах электропитания и в электроприводах перспективных...
Тип: Изобретение
Номер охранного документа: 0002551118
Дата охранного документа: 20.05.2015
20.07.2015
№216.013.6239

Способ получения авиационного бензина б95/130

Изобретение описывает способ получения авиационного бензина Б-95/130 на основе бензина, содержащего компоненты каталитического риформинга, изомеризации, алкилирования с добавлением антиокислительной присадки, тетраэтилсвинца и красителя, при этом в качестве основы используется фракция,...
Тип: Изобретение
Номер охранного документа: 0002556692
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64c9

Стенд для отработки всеглубинного пускового устройства арбалетного типа для необитаемых подводных аппаратов

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Стенд для отработки всеглубинного пускового устройства арбалетного типа для необитаемых подводных аппаратов содержит...
Тип: Изобретение
Номер охранного документа: 0002557348
Дата охранного документа: 20.07.2015
20.11.2015
№216.013.92ce

Устройство преобразования энергии магнитного поля ферромагнитного сердечника в тепловую или электрическую энергию

Изобретение относится к области электротехники и может быть использовано в автономных системах освещения, обогрева и т.п. Устройство содержит источник электрического тока в виде аккумуляторной батареи, генератор постоянного по направлению и линейно меняющегося во времени пилообразного тока...
Тип: Изобретение
Номер охранного документа: 0002569200
Дата охранного документа: 20.11.2015
+ добавить свой РИД