×
26.08.2017
217.015.d584

Результат интеллектуальной деятельности: Способ контроля технического состояния подшипников качения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области метрологии, в частности к методам контроля подшипников. Способ контроля технического состояния подшипников качения заключается в обнаружении дефекта и места повреждения путем измерения и анализа параметров вибрации работающего двигателя, анализа параметров вибрации и сравнении получаемых данных с данными в исходном состоянии, за которое принимаются данные, полученные для полностью исправного двигателя. При этом спектральный анализ вибрации основан на применении оконного преобразования Фурье с использованием весовых функций Гаусса. Временной интервал сигнала разделяется на подинтервалы и преобразование выполняется для каждого из них в отдельности, получаемый набор интегральных данных от функции, описывающей изменения значений виброускорения по времени, аппроксимируется с применением формулы трапеций, определяется коэффициент превышения, выделяющий информативные особенности сигнала, обусловленные дефектами подшипника качения по времени, частоте и амплитуде. Технический результат - повышение точности и расширение функциональных возможностей способов вибрационной диагностики подшипников качения. 3 ил.

Изобретение относится к области диагностики технического состояния машин и может быть использовано в системах диагностики и мониторинга для контроля технического состояния подшипников качения.

Большинство существующих методов диагностирования дефектов машин и механизмов имеет в своей основе одну и ту же диагностическую модель: развитие дефекта вызывает рост амплитуды параметров вибрации на соответствующих частотах.

Задача состоит в применении оптимального способа обработки сигналов. Этот способ должен сводить к минимуму влияние помех и позволять однозначно соотнести полученную характеристику сигнала с видом дефекта. Для того чтобы решить задачу диагностирования по совокупности вибрационных характеристик системы, необходимо выбрать наиболее чувствительные к изменению технического состояния машин диагностические признаки. В большинстве работ, посвященных этой проблеме, информативные диагностические признаки связаны со спектральными характеристиками сигнала: амплитудой, частотой и фазой гармонического сигнала.

Недостатками этих диагностических признаков является их связь сразу с несколькими различными дефектами агрегата и проявление на достаточно поздних стадиях развития дефекта.

Известен способ прогнозирования технического состояния подшипников качения, который осуществляется в два этапа: на первом этапе формируют диагностическую модель, а на втором прогнозируют по этой модели техническое состояние диагностируемого подшипника (RU, 2013756, кл. G01M 13/04, 1994 г.).

Недостатком известного способа является отсутствие возможности максимального приближения датчика к месту крепления диагностируемого подшипника, что приводит к низкой помехоустойчивости при измерениях, снижает достоверность контроля и, следовательно, точность прогнозирования при проведении вибродиагностики технического состояния межвального подшипника качения.

Также известен способ виброакустической диагностики межвальных подшипников качения двухвальных турбомашин (Патент РФ 1807770, МПК G01M 13/04).

Этот способ заключается в следующем. Приводят во вращение один из валов двигателя, затем, обеспечив возможность свободного вращения вала, измеряют амплитудные значения виброускорения и усредненные значения виброускорения, используя последние в качестве пороговых уровней, и по результатам их сравнения судят о наличии и характере дефектов межвальных подшипников.

Недостатком данного способа является ограниченность времени измерения периодической последовательности импульсов, которые выделяются при управлении постоянным опорным напряжением, то есть в конце периода свободного вращения вала, когда интенсивность вибросигнала уменьшается, невозможно измерить амплитуду, количество и частоту следования импульсов.

Известен способ контроля подшипников роторной системы, включающий измерение вибрации по корпусу подшипника, значение амплитуды вибрации, интервалов времени между положительными выбросами амплитуды вибрации. Затем определяют коэффициент вариации между измеренными интервалами времени, а наличие и количество дефектов подшипника определяют по величине интервала времени между выбросами амплитуды вибрации и коэффициенту вариации, сравнивая с экспериментальными эталонными зависимостями. Авторское свидетельство №1719953 А1 SU. Недостатком данного способа диагностики является низкая достоверность контроля. Она обусловлена тем, что устанавливается количество дефектов, но не определяются размер дефекта и его месторасположение в подшипнике и, следовательно, нет возможности установить динамику развития дефекта, что, в свою очередь, снижает достоверность контроля.

Также известен способ диагностики двигателя на определении локализации дефекта, основанный на измерении вибрации работающего двигателя, спектрального анализа вибрации и сравнении получаемых данных с данными в исходном состоянии.

Локализацию дефекта осуществляют в широком диапазоне частот [заяв. №2005113946/06, G01M 15/00, опубл. 20.11.2006, БИ №32] - прототип. Недостаток способа в том, что обнаружение дефекта не всегда возможно на ранних стадиях его появления и развития.

В основу предлагаемого изобретения положена техническая задача, заключающаяся в повышении точности диагностики, расширении функциональных возможностей способа оценки параметров технического состояния и раннего выявления дефектов подшипников качения.

Указанная задача решается путем локализации дефекта, основанным на измерении вибрации работающего подшипника, анализе параметров вибрации и сравнении получаемых данных с базовыми значениями. Временной интервал сигнала разделяется на подинтервалы. На каждом из этих подинтервалов выполняется преобразование Фурье с применением функции Гаусса. Таким образом осуществляется переход к частотно-временному (частотно-координатному) представлению сигналов, когда в пределах каждого подинтервала сигнал "считается" стационарным. Результатом преобразования является семейство спектров, которым отображается изменение сигнала по интервалам сдвига окна преобразования.

Таким образом, в результате измерений параметров вибрации оборудования получаем набор интегральных данных d1 d2, …, dN от функции, описывающей изменения значений виброускорения по времени ƒ(t), определяемый следующим образом:

где [ti, ti+Ti] - промежутки времени, для которых справедливо: t1≤tb, tN+TN≥te, ti<ti+1, ti+1-ti<Ti, Ti>0, i=1-N. Здесь N характеризует число временных интервалов,

tb - время начала регистрации сигнала, te - время ее окончания.

При этом интервалы измерения интегральных характеристик Ti, в (1), постоянны и равны T, меньшему, чем весь временной интервал, на котором анализируется сигнал. Каждое последующее значение di получается путем сдвига предыдущего отрезка (окна) на одну и ту же величину Δ<Т. Полученные интегральные характеристики аппроксимируем с помощью формулы трапеций:

где τ=Т/(М-1) - шаг интегрирования;

ƒj - значение сигнала в момент времени tj=ti+(j-1)τ, j=1-M;

М≥3 - число моментов времени в окне длины Т.

Величину сдвига Δ согласовываем со значением шага интегрирования τ, выбрав ее кратной τ. Таким образом, получим «скользящее» вдоль временного отрезка [tb, te] окно и набор соответствующих значений интеграла di от сигнала. После этого, в окне с длиной Т1≠Т, выполняем преобразование Фурье, затем сдвигаем окно на заданную величину Δ1≠Δ и снова выполняем преобразование Фурье и т.д.

Для устранения явления «растекания» спектра используется весовая функция Гаусса γ(t), резко спадающая к краям окна и практически уравнивающая значения сигнала на них:

где t - временная переменная;

ω - частотная переменная (ω=mω0);

τ - шаг по оси времени (τ=nτ0);

α - константа, определяющая «ширину» окна (α>0).

Таким образом, на каждом временном отрезке длины T1 получаем полное оконное преобразование Фурье функции ƒ(t):

где T1 - длина временного отрезка;

ƒ(t) - аналоговый сигнал.

Функция ƒ(t), является функцией от времени, частоты и амплитуды, то есть позволяет получить трехмерную зависимость ускорения от частоты сигнала и времени, показанную на фигуре 1.

Данный способ позволяет учесть не только превышение уровня вибрации на определенной частоте, но и время его проявления, что позволяет выделить информативные особенности сигнала.

Нормируемым параметром, для оценки технического состояния подшипника качения, при этом является коэффициент превышения kпр, представляющий собой область пространства, ограниченную по оси ординат плоскостью Z, применяемую в качестве фиксированного порогового значения. Пороговое значение определяется индивидуально для каждого подшипника качения (фиг. 2). В математическом смысле, коэффициент превышения kпр равен сумме объемов, ограниченных пороговым значением Z, и определяется по формуле:

где χ(t) - единичная функция Хевисайда:

χ(t)=1 при t≥0,

Аппроксимируя интегральные характеристики с применением формулы трапеций (2), получим:

где F=(c(ω,t)-Z)⋅χ(c(ω,t)-Z).

Применение указанного метода позволяет выделять на координатной оси и анализировать особенности как стационарных, так и нестационарных сигналов. По спектру сигнала можно судить о наличии в его составе гармонических колебаний, определять соотношение между амплитудами этих колебаний и конкретизировать локальность колебаний по интервалу сигнала.

Один из возможных способов реализации контроля технического состояния подшипников качения поясняется чертежом (фиг. 3), где обозначены: подшипниковый узел 1, первичный измерительный преобразователь (акселерометр) 2, предварительный усилитель 3, аналого-цифровой преобразователь 4 и ПЭВМ 5.

Сигналы с акселерометров подаются на предварительный усилитель, обеспечивающий усиление сигнала пропорционально виброускорению. После усиления сигналы поступают на аналого-цифровой преобразователь и далее на ПЭВМ для последующей обработки и анализа.

Данное изобретение направлено на расширение технических возможностей систем мониторинга и диагностики и, в отличие от существующих, позволяет повысить точность и достоверность контроля технического состояния подшипников качения в процессе их эксплуатации, путем анализа параметров вибрации, с учетом как амплитудно-частотных характеристик, так и времени их проявления.

Способ контроля технического состояния подшипников качения, заключающийся в обнаружении дефекта и места повреждения путем измерения и анализа параметров вибрации работающего двигателя, анализа параметров вибрации и сравнении получаемых данных с данными в исходном состоянии, за которое принимаются данные, полученные для полностью исправного двигателя, отличающийся тем, что основывается на применении оконного преобразования Фурье с использованием весовых функций Гаусса, позволяющих избежать явления «растекания спектра» при вырезке оконных отрезков и повысить точность диагностики технического состояния подшипников, при этом временной интервал сигнала разделяется на подинтервалы и преобразование выполняется для каждого из них в отдельности, получаемый набор интегральных данных от функции, описывающей изменения значений виброускорения по времени, аппроксимируется с применением формулы трапеций, определяется коэффициент превышения, выделяющий информативные особенности сигнала, обусловленные дефектами подшипника качения по времени, частоте и амплитуде.
Способ контроля технического состояния подшипников качения
Способ контроля технического состояния подшипников качения
Способ контроля технического состояния подшипников качения
Способ контроля технического состояния подшипников качения
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
20.06.2016
№217.015.0536

Способ стендовых акустико-эмиссионных измерений на образцах материалов при криогенных температурах

Использование: для стендовых акустико-эмиссионных измерений при криогенных температурах. Сущность изобретения заключается в том, что способ стендовых акустико-эмиссионных измерений на образцах материалов при криогенных температурах включает проведение испытаний путем применения специального...
Тип: Изобретение
Номер охранного документа: 0002587637
Дата охранного документа: 20.06.2016
Showing 1-4 of 4 items.
20.06.2016
№217.015.0536

Способ стендовых акустико-эмиссионных измерений на образцах материалов при криогенных температурах

Использование: для стендовых акустико-эмиссионных измерений при криогенных температурах. Сущность изобретения заключается в том, что способ стендовых акустико-эмиссионных измерений на образцах материалов при криогенных температурах включает проведение испытаний путем применения специального...
Тип: Изобретение
Номер охранного документа: 0002587637
Дата охранного документа: 20.06.2016
16.05.2019
№219.017.5201

Электрический подводный движитель

Изобретение относится к основным элементам судового оборудования и может быть использовано в качестве подводного движителя для их перемещения в жидких средах, например в речной или морской водах. Электрический подводный движитель содержит шихтованный сердечник статора из электротехнической...
Тип: Изобретение
Номер охранного документа: 0002687397
Дата охранного документа: 13.05.2019
18.12.2019
№219.017.ee1e

Импульсный движитель для морских сред

Изобретение относится к основным элементам судового оборудования и может быть использовано в качестве подводного движителя для морских сред. Импульсный движитель для морских сред содержит по меньшей мере один корпус с каналом для впуска и выпуска воды, в котором установлены электроды для...
Тип: Изобретение
Номер охранного документа: 0002709082
Дата охранного документа: 13.12.2019
05.06.2023
№223.018.7756

Способ вибродиагностики электродвигателей постоянного тока с применением метода вейвлет-анализа

Изобретение относится к испытанию электрических машин постоянного тока. Способ диагностирования технического состояния электродвигателей постоянного тока для наземного и водного транспорта с электродвижением заключается в том, что выполняют измерение и амплитудно-частотно-временной анализ...
Тип: Изобретение
Номер охранного документа: 0002769990
Дата охранного документа: 12.04.2022
+ добавить свой РИД