×
26.08.2017
217.015.d476

Результат интеллектуальной деятельности: Способ обеспечения теплового режима приборного отсека летательного аппарата

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиационной и ракетной технике. Способ обеспечения теплового режима приборного отсека летательного аппарата заключается в охлаждении аппаратуры (2) двухконтурной системой охлаждения. Теплоотвод осуществляется во внешнем контуре путем испарения низкокипящего хладагента с отводом его паров в атмосферу. Охлаждение аппаратуры (2) приборного отсека во внутреннем контуре системы охлаждения осуществляют кондуктивной передачей тепла от приборов на испарители встроенных в вертикальные силовые сотопанели (3) вертикальных тепловых труб (4). В нижней части сотопанелей (3) размещают охлаждаемые приборы с большим адиабатическим нагревом. В направлении к верхней части сотопанелей (3) размещают приборы с меньшим адиабатическим нагревом. Конденсаторы тепловых труб охлаждают трубным теплообменником (5) внешнего испарительного контура. Изобретение улучшает термостабилизацию бортовой аппаратуры, повышает надежность и снижает энергопотребление. 2 ил.

Изобретение относится к авиационной и ракетной технике и может быть использовано для обеспечения теплового режима приборных отсеков сверх- и гиперзвуковых летательных аппаратов (ЛА).

В современных условиях с увеличением скоростей полета атмосферных ЛА разработка активных систем охлаждения аппаратуры приборных отсеков становится актуальной задачей. Одновременно возрастают требования к агрегатам систем охлаждения в части снижения энергопотребления, повышения надежности, улучшения габаритно-массовых показателей.

Известны способы обеспечения теплового режима приборного отсека ЛА с использованием активных систем охлаждения, например, система тепловой защиты радиоэлектронной аппаратуры сверхзвукового летательного аппарата по а.с. №1840522, B64G 9/00, 2014. Указанная система содержит резервуар с теплоносителем, сообщающийся через регулирующий клапан с испарителем, находящимся в тепловом контакте с охлаждаемой аппаратурой. Испаритель через ряд элементов системы сообщается с забортным пространством. Способ обеспечения теплового режима аппаратуры, реализуемый в известной системе тепловой защиты, заключается в охлаждении аппаратуры испарением жидкого теплоносителя, причем теплоотдача идет через тепловой контакт теплоотдающих элементов конструкции радиоэлектронной аппаратуры с рабочим объемом испарителя, а сброс паров теплоносителя осуществляется в забортное пространство. Недостаток такого способа обеспечения теплового режима аппаратуры заключается в том, что в результате контакта жидкого теплоносителя или его паров непосредственно с охлаждаемой аппаратурой происходит ухудшение термостабилизации аппаратуры и снижение надежности ее функционирования в связи с возникающими значительными градиентами температур.

Известны также способы обеспечения теплового режима приборного отсека ЛА (см. патент РФ 2531210, 2014, В64С 30/00, B64G 1/50) и двухконтурные системы обеспечения теплового режима (СОТР) приборно-агрегатного оборудования ЛА (см. "Системы терморегулирования космических аппаратов", перевод с английского под редакцией Г.И. Воронина, М.: Машиностроение, 1968 г., с. 168-170, ближайший аналог).

Каждая из систем содержит емкость с хладагентом, регулирующий подачу хладагента клапан, газожидкостный теплообменник-испаритель, жидкостная полость которого через регулятор давления связана с окружающей ЛА внешней средой. Способ обеспечения теплового режима приборного оборудования с помощью таких систем заключается в охлаждении аппаратуры приборного отсека циркулирующим газом и охлаждении газа в контуре с испарительным циклом за счет испарения низкокипящего хладагента с отводом его паров в атмосферу. Известный способ на основе двухконтурной СОТР обладает следующими недостатками:

- охлаждение циркулирующим газом не обеспечивает эффективную термостабилизацию аппаратуры вследствие неравномерности ее обдува, а равномерность обдува газом достигается увеличением количества, а также массы и габаритов воздуховодов;

- используемая для реализации способа СОТР имеет повышенную массу и энергопотребление и соответственно пониженную надежность, обусловленные наличием вентиляционного контура.

В современных системах охлаждения приборных отсеков ЛА масса вентиляционной системы составляет до 5% от массы аппаратуры, а энергопотребление - до 20% от энергопотребления приборов.

Задачей настоящего изобретения является улучшение термостабилизации бортовой аппаратуры, существенное снижение энергопотребления и повышение надежности работы СОТР в приборном отсеке ЛА, совершающего полет в условиях гравитации.

Поставленная задача решается тем, что для обеспечения теплового режима приборного отсека ЛА с помощью двухконтурной системы охлаждения с теплоотводом во внешнем контуре путем испарения низкокипящего хладагента с отводом его паров в атмосферу, охлаждение аппаратуры приборного отсека во внутреннем контуре системы охлаждения осуществляют кондуктивной передачей тепла от приборов на испарители встроенных в вертикальные силовые панели вертикальных тепловых труб при размещении в нижней части панелей охлаждаемых приборов с большим адиабатическим нагревом, а в направлении к верхней части панелей размещении приборов с меньшим адиабатическим нагревом, при этом интенсивность адиабатического нагрева приборов оценивают величиной, определяемой из соотношения:

где ΔTан - адиабатический нагрев прибора, °С;

i - номер участка полета;

n - число участков полета;

Ni - тепловыделение прибора на i участке полета, Вт;

τi - продолжительность i участка полета, с;

С - теплоемкость прибора, Дж/°С,

а конденсаторы тепловых труб охлаждают трубным теплообменником внешнего испарительного контура.

Кондуктивная передача тепла от приборов на испарители встроенных в вертикальные силовые панели вертикальных тепловых труб (ТТ) обуславливает улучшение термостабилизации аппаратуры вследствие обеспечиваемого тепловыми трубами незначительного перепада температур (несколько градусов) посадочных мест приборов по поверхности панели.

Одним из важных и обязательных условий функционирования ТТ в условиях гравитации, в которых осуществляют полет современные высокоскоростные ЛА, является вертикальная ориентация ТТ и соответственно вертикальное расположение силовых панелей. Следует отметить, что при таком расположении (вертикальном) тепловые трубы функционируют в режиме термосифона, поэтому нет необходимости в капиллярной структуре, что в итоге упрощает конструкцию ТТ и одновременно повышает надежность работы и снижает стоимость.

Предложенное размещение приборов на силовых панелях в месте расположения испарителей встроенных тепловых труб путем размещения в нижней части панелей охлаждаемых приборов с большим адиабатическим нагревом, а в направлении к верхней части панелей размещения приборов с меньшим адиабатическим нагревом, необходимо для работы ТТ в условиях гравитации, чтобы группа приборов, расположенная в районе испарителей одной или нескольких тепловых труб, непосредственно участвовала в теплообмене с этой трубой (трубами).

Такое размещение приборов обуславливается тем, что в условиях гравитации конвективный теплообмен (и в тепловых трубах) при наличии нескольких источников тепла происходит при условии, если прибор с большим тепловыделением расположен ниже по вертикали прибора с меньшим тепловыделением. Предложенное соотношение позволяет определить интенсивность адиабатического нагрева (тепловыделения). При этом ΔTан1≥ΔTан2≥ΔТан3 (см. фиг. 1).

Следует отметить, что в выявленном соотношении тепловыделение прибора Ni, продолжительность участка полета τi, теплоемкость прибора С являются параметрами теплообмена и с их помощью определяют поля температур приборов и сотопанелей.

В предложенном способе обеспечения теплового режима улучшенная термостабилизация бортовой аппаратуры также достигнута тем, что расположенные в верхней части вертикальных панелей конденсаторы тепловых труб охлаждают внешним испарительным контуром. Теплообмен с использованием фазового превращения вещества, что осуществляют, например, в испарительном теплообменнике, является одним из наиболее интенсивных и эффективных методов теплообмена с позиций минимальных значений габаритно-массовых характеристик рабочего тела и устройств, обеспечивающих процесс.

Таким образом, отказ от внутреннего вентиляционного контура и обеспечение теплового режима аппаратуры системой охлаждения, во внутреннем контуре которой реализован кондуктивный теплообмен между приборами и встроенными в вертикальные силовые панели тепловыми трубами, повышает надежность работы СОТР с одновременным существенным снижением энергопотребления.

Пример осуществления способа обеспечения теплового режима приборного отсека показан на фиг. 1 и 2.

На представленных чертежах введены следующие обозначения:

1 - теплоизолированный корпус приборного отсека;

2 - блоки аппаратуры приборного отсека;

3 - силовая сотопанель;

4 - встроенные в силовую сотопанель тепловые трубы;

5 - трубный теплообменник;

6 - емкость с хладагентом;

7 - пусковой пироклапан;

8 - клапан, регулирующий подачу хладагента;

9 - мембранный клапан.

Система охлаждения устройства включает два контура - внутренний контур охлаждения, который образуют вертикальные тепловые трубы 4, встроенные в вертикальных силовых панелях 3, и разомкнутый внешний испарительный контур, содержащий мембранный клапан 9, трубный теплообменник 5, соединенный трубопроводами с емкостью с хладагентом 6 через пусковой пироклапан 7 и регулирующий подачу хладагента клапан 8.

Трубный теплообменник 5 внешнего испарительного контура может быть выполнен как одноходовым (как показано на приведенной схеме), так и двухходовым - в зависимости от плотности теплового потока, поступающего от конденсаторов тепловых труб к рабочему телу внешнего испарительного контура, и от других параметров.

Предложенный способ обеспечения теплового режима приборного отсека летательного аппарата осуществляют следующим образом.

В теплоизолированном корпусе приборного отсека 1 предварительно каждую группу блоков аппаратуры 2 размещают на силовых сотопанелях 3 с двух сторон в месте расположения испарителей встроенных тепловых труб 4 в соответствии с величиной интенсивности адиабатического нагрева приборов, определенной по приведенному соотношению, в порядке уменьшения интенсивности адиабатического нагрева блоков снизу вверх.

В полете ЛА при функционировании блоков аппаратуры 2 происходит их нагрев и соответственно нагрев в тепловых трубах 4 низкокипящего рабочего тела, которое, испаряясь, охлаждает приборные блоки. Поднимаясь вверх, пары хладагента тепловых труб в районе конденсатора охлаждаются через стенки трубного теплообменника 5 внешнего испарительного контура, который задействуется при достижении определенной температуры сотопанелей 3. Пары хладагента тепловых труб 4 при охлаждении конденсируются и конденсат по стенкам труб стекает вниз - в зону испарителей.

Задействование внешнего испарительного контура происходит подрывом пускового пироклапана 7, при этом жидкий хладагент из емкости 6 поступает в регулирующий клапан 8 и в трубный теплообменник 5, где происходит охлаждение конденсаторов тепловых труб 4.

При испарении хладагента во внешнем испарительном контуре повышается давление, при достижении давления насыщенных паров кипения хладагента происходит прорыв мембранного клапана 9 и пары хладагента выбрасываются в атмосферу.

Совокупность новых признаков предложенного технического решения - осуществление кондуктивной передачей тепла от приборов на испарители встроенных в вертикальные силовые панели вертикальных тепловых труб при размещении в нижней части панелей охлаждаемых приборов с большим, определенным по соотношению, адиабатическим нагревом, а в направлении к верхней части панелей размещении приборов с меньшим адиабатическим нагревом, и охлаждение конденсаторов тепловых труб трубным теплообменником внешнего испарительного контура - позволяет получить эффективный, обусловленный взаимосвязью признаков технический результат: улучшение термостабилизации бортовой аппаратуры, повышение надежности работы СОТР с одновременным существенным снижением энергопотребления.

Резюмируя изложенное, можно заключить, что в приборном отсеке ЛА, совершающего полет в условиях гравитации, реализован новый способ обеспечения теплового режима аппаратуры. Основной положительный эффект состоит в улучшении характеристик системы охлаждения и конструкции отсека, таких как, более точное термостатирование посадочных мест приборов, сниженные габаритно-массовые показатели и отсутствие электропотребления.


Способ обеспечения теплового режима приборного отсека летательного аппарата
Способ обеспечения теплового режима приборного отсека летательного аппарата
Способ обеспечения теплового режима приборного отсека летательного аппарата
Способ обеспечения теплового режима приборного отсека летательного аппарата
Источник поступления информации: Роспатент

Showing 91-100 of 178 items.
03.07.2018
№218.016.69eb

Ракета в транспортно-пусковом контейнере

Изобретение относится к ракетной технике, а именно к устройствам, обеспечивающим сохранность ракеты при ее размещении в транспортно-пусковом контейнере (ТПК) на носителях, транспортно-заряжающих машинах, базах долговременного хранения. Ракета в транспортно-пусковом контейнере содержит...
Тип: Изобретение
Номер охранного документа: 0002659450
Дата охранного документа: 02.07.2018
06.07.2018
№218.016.6cdd

Крепежное соединение деталей из материалов с разными коэффициентами теплового расширения

Изобретение относится к болтовым соединениям деталей, выполненных из материалов с разными коэффициентами теплового расширения, и может быть использовано в различных отраслях техники, включая конструкции высокоскоростных летательных аппаратов. Крепежное соединение деталей из материалов с разными...
Тип: Изобретение
Номер охранного документа: 0002660308
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6d5c

Способ радиооптической маскировки надводного корабля

Изобретение относится к способам комбинированной маскировки надводного корабля от радиолокационных, радиотехнических и оптико-электронных средств обнаружения и самонаведения противокорабельных крылатых ракет (ПКР). Для радиооптической маскировки надводного корабля (1) в движении и на стоянке от...
Тип: Изобретение
Номер охранного документа: 0002660518
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6eb5

Способ изготовления деталей из титановых псевдо - α - сплавов

Изобретение может быть использовано для получения сверхпластической штамповкой изделий сложной формы. Осуществляют вакуумно-дуговую выплавку слитка из сплава ВТ20 и изготовление детали сверхпластической деформацией слитка при скорости деформации 10 с с последующими термической обработкой. При...
Тип: Изобретение
Номер охранного документа: 0002660461
Дата охранного документа: 06.07.2018
12.07.2018
№218.016.6f7f

Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем...
Тип: Изобретение
Номер охранного документа: 0002661050
Дата охранного документа: 11.07.2018
13.07.2018
№218.016.70d4

Система обеспечения теплового режима приборного отсека летательного аппарата

Система обеспечения теплового режима приборного отсека летательного аппарата (ЛА) содержит теплоизолированный корпус и двухконтурную систему охлаждения с разомкнутым внешним испарительным контуром, внутренним контуром в виде контурных тепловых труб, установленных на теплонапряженных приборах и...
Тип: Изобретение
Номер охранного документа: 0002661178
Дата охранного документа: 12.07.2018
24.07.2018
№218.016.7440

Топливозаборник

Изобретение относится к области авиации, в частности к конструкциям топливных систем летательных аппаратов. Капиллярный топливозаборник состоит из капиллярных экранов и заборной трубы. Форма капиллярного экрана повторяет контур расходного отсека. Вход заборной трубы подведен ко дну расходного...
Тип: Изобретение
Номер охранного документа: 0002662106
Дата охранного документа: 23.07.2018
09.08.2018
№218.016.7913

Способ крепления термопар

Изобретение относится к области измерения температуры с использованием термопар, а именно к способам крепления термопар к объектам, подверженным деформациям вследствие линейных расширений при высоких температурах и вибрационным воздействиям, например к корпусам летательных аппаратов. Гибкий...
Тип: Изобретение
Номер охранного документа: 0002663277
Дата охранного документа: 03.08.2018
25.08.2018
№218.016.7f0a

Защитный экран от ионизирующего излучения для бортового комплекса оборудования

Изобретение относится к области радиационной защиты объектов. Защитный экран от ионизирующего излучения для бортового комплекса оборудования представляет собой двухслойную структуру, помещенную на наружную поверхность приборной рамы, располагающейся в приборном отсеке. Внешний слой представляет...
Тип: Изобретение
Номер охранного документа: 0002664715
Дата охранного документа: 22.08.2018
05.09.2018
№218.016.8346

Способ повышения реактивной тяги в турбореактивном двухконтурном двигателе и турбореактивный двухконтурный двигатель для его реализации

Способ повышения реактивной тяги в турбореактивном двухконтурном двигателе включает подачу окислительного и горючего рабочего тела в проточный тракт первого контура, их смесеобразование, сгорание и последующее истечение из него продуктов сгорания с получением механической энергии для вращения...
Тип: Изобретение
Номер охранного документа: 0002665760
Дата охранного документа: 04.09.2018
Showing 91-100 of 100 items.
25.07.2019
№219.017.b8d9

Устройство для пакетирования штучных изделий

Изобретение относится к устройствам для пакетирования штучных изделий и может быть использовано в упаковочной технике, в пищевой и других отраслях промышленности. Устройство для пакетирования штучных изделий состоит из подающего конвейера 1, стоппера 4, датчика 7, механизма подъема изделий 8,...
Тип: Изобретение
Номер охранного документа: 0002695398
Дата охранного документа: 23.07.2019
01.11.2019
№219.017.dc4f

Шахтная установка для передачи тепла на большие расстояния при малых температурных перепадах

Изобретение относится к теплотехнике, в частности к системам обеспечения теплового режима на основе контурных тепловых труб. Шахтная установка для передачи тепла на большие расстояния при малых температурных перепадах содержит термоэлектрическую батарею и контурную тепловую трубу. Холодный спай...
Тип: Изобретение
Номер охранного документа: 0002704570
Дата охранного документа: 29.10.2019
10.11.2019
№219.017.dfdb

Способ обеспечения теплового режима приборного отсека летательного аппарата

Изобретение относится к ракетно-авиационной технике, а более конкретно к обеспечению теплового режима в отсеках. При обеспечении теплового режима приборного отсека в летательном аппарате (ЛА) корпус отсека, включающий две оболочки, выполняют с внутренним расположением герметизирующей оболочки....
Тип: Изобретение
Номер охранного документа: 0002705402
Дата охранного документа: 07.11.2019
22.01.2020
№220.017.f8aa

Способ тепловакуумных испытаний космического аппарата

Изобретение относится к наземным испытаниям космических аппаратов (КА), корпус которых выполнен с боковыми гранями из сотопанелей (СП), содержащих аксиальные (вертикальные) и горизонтальные коллекторные тепловые трубы. На СП установлены тепловые эквиваленты или штатные приборы КА. В первом...
Тип: Изобретение
Номер охранного документа: 0002711407
Дата охранного документа: 17.01.2020
22.04.2020
№220.018.17b4

Способ селекции морской цели оптико-электронной системой летательного аппарата

Изобретение относится к автономным системам конечного наведения летательных аппаратов (ЛА). Достигаемый технический результат - селекция морской цели (МЦ) оптико-электронной системы (ОЭС) конечного наведения ЛА, в том числе в условиях естественных и преднамеренных помех, посредством...
Тип: Изобретение
Номер охранного документа: 0002719393
Дата охранного документа: 17.04.2020
07.06.2020
№220.018.24c0

Способ расчета статических поправок

Изобретение относится к комплексу методов геофизической разведки, включающему сейсморазведку методом отраженных волн общей глубинной точки (MOB ОГТ) и электроразведку методом малоглубинных зондирований становлением поля в ближней зоне (мЗСБ), и может быть использовано для учета скоростных...
Тип: Изобретение
Номер охранного документа: 0002722861
Дата охранного документа: 04.06.2020
29.06.2020
№220.018.2c5f

Способ напорного дозирования пенообразователя для установок автоматического пожаротушения и устройство для его осуществления

Способ напорный дозирования пенообразователя в воде для автоматических установок пенного пожаротушения содержит этапы, на которых используют два отдельно выполненные полностью идентичные каналы дозирования пенообразователя, причем один канал используют в качестве основного, рабочего, канала, а...
Тип: Изобретение
Номер охранного документа: 0002724836
Дата охранного документа: 25.06.2020
06.07.2020
№220.018.2fe6

Устройство для подачи листовых заготовок в упаковочную машину

Изобретение относится к устройствам для пищевой, химической и других отраслей промышленности. Устройство для подачи листовых заготовок в упаковочную машину состоит из установленного на раме накопителя с приемным участком и захватным участком, в накопитель помещаются заготовки. Устройство...
Тип: Изобретение
Номер охранного документа: 0002725694
Дата охранного документа: 03.07.2020
23.05.2023
№223.018.6f20

Способ локализации отделов головного мозга

Изобретение относится к вычислительной технике, а именно к локализации отделов головного мозга. Способ содержит этапы, на которых: получают изображения магнитно-резонансной томографии в формате DICOM; конвертируют изображения из формата DICOM в формат BIDS; обрабатывают конвертированные...
Тип: Изобретение
Номер охранного документа: 0002743608
Дата охранного документа: 20.02.2021
16.06.2023
№223.018.7d10

Способ экспрессной изоляции поглощающей зоны в скважине при высокодебитном межпластовом перетоке из вышележащего высоконапорного пласта, насыщенного крепкими рассолами, и пакерное оборудование для его осуществления

Изобретение относится к нефтяной и газовой промышленности, в частности, к способам изоляции зоны гидроразрыва пласта и катастрофического поглощения в условиях межпластового перетока из рапопроявляющего в поглощающий пласт. Для осуществления способа экспрессной изоляции поглощающей зоны в...
Тип: Изобретение
Номер охранного документа: 0002741978
Дата охранного документа: 01.02.2021
+ добавить свой РИД