×
26.08.2017
217.015.d394

Результат интеллектуальной деятельности: КОСМИЧЕСКИЙ МОДУЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной двигательной установки (ДУ). Несущая конструкция корпуса призмы выполнена из n многослойных боковых сотовых панелей, где n=4, 6, 8 …, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие – корпусные. Боковые панели скреплены между собой по периметру в чередующейся последовательности. По периметру каждой боковой панели расположены каркасные уголки, скрепленные разъемными элементами. На внешней поверхности второй торцевой панели закреплена панель ДУ. Бак хранения топлива закреплен с помощью кронштейнов на панели ДУ со стороны внутренней плоскости и размещен в вырезе второй торцевой панели. На внешней плоскости первой торцевой панели установлены бленда ОЭМ, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением. Техническим результатом изобретения является уменьшение массы КМ. 7 ил.

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ), массой до 1000 кг, являющимся обеспечивающими конструктивно-компоновочными устройствами автоматических космических аппаратов (КА) оптико-электронного наблюдения Земли.

Известно техническое решение, принятое при проектировании КМ, предназначенного для создания малых КА различного назначения, запускаемых на орбиту искусственного спутника Земли (см. патент РФ 2389660 от 27.12.2007).

КМ содержит несущую конструкцию, снабженную осевым проемом, систему терморегулирования (СТР), со средством отвода тепла в космическое пространство, двигательную установку с топливным баком, размещенным в осевом проеме несущей конструкции. КМ содержит также систему энергопитания (СЭП) с источником электрической энергии в виде трех солнечных батарей (СБ) с возможностью их раскрытия и бортовую аппаратуру (БА). Несущая конструкция для установки БА КМ выполнена в виде плоской трехслойной панели в форме шестиугольника с несущими слоями и заполнителем, причем ее периметр составлен из чередующихся при его обходе коротких и длинных сторон.

Несущая конструкция выполнена в форме прямой призмы с основанием в виде правильного треугольника, вдоль ребер которой пропущены продольные силовые элементы, при этом боковые стенки призмы ориентированы параллельно длинным сторонам космического модуля. Средства радиосвязи размещены на внешних элементах несущей конструкции. Панель имеет размещенный по ее центру вырез, в который частично введен топливный бак двигательной установки.

СТР снабжена тремя каскадами тепловых труб (ТТ), а средство отвода тепла в космическое пространство выполнено в виде трех радиаторов-излучателей. Каскады ТТ выполнены с обеспечением возможности теплового контакта между ТТ первого и второго каскадов, а также второго и третьего каскадов. Радиаторы-излучатели выполнены в виде прямоугольных трехслойных панелей с сотовым заполнителем, размещенных параллельно боковым стенкам несущей конструкции и тыльными сторонами присоединенных встык к торцам длинных сторон модуля. ТТ первого и второго каскадов проложены внутри сотового заполнителя модуля, при этом ТТ первого каскада на большей части своей длины проложены между боковыми стенками несущей конструкции и торцом модуля с обеспечением теплового контакта с несущими слоями панели модуля.

ТТ второго каскада на большей части своей длины размещена вдоль торцов длинных сторон космического модуля. ТТ третьего каскада проложены внутри сотового заполнителя радиаторов-излучателей с обеспечением теплового контакта с несущими слоями панелей радиаторов-излучателей. При этом установка БА производится на модуле между несущей конструкцией и торцом комического модуля.

На концах силовых элементов размещены узлы соединения для крепления космического модуля к системе разделения смежного блока космической головной части.

Существенные недостатки, характерные для аналога, заключаются в следующем: КМ выполнен по типу горизонтальной компоновки и не имеет жесткого корпуса, обеспечивающего конструктивный интерфейс с целевой нагрузкой - оптико-электронным модулем (ОЭМ) для наблюдения Земли.

В целом рассматриваемый КМ не приспособлен для работы с современными космическими телескопами оптико-электронного наблюдения Земли, имеющими вертикально-продольную базовую ось.

В качестве прототипа к изобретению предлагается многофункциональный КМ вертикальной компоновки AstroSat 1000 of EADS Astrium SAS (см. https://directory.eoportal.org/web/eoportal/satellite-missions/p/pleiades).

Космический модуль является обеспечивающим устройством в каждом из двух спутников нового поколения Pleiades-1A и Pleiades-1B оптико-электронного наблюдения Земли.

КМ содержит силовой корпус блочного типа, выполненный в виде скрепленных ребер n-гранной правильной призмы, где n=4, 6, 8 …, с торцевыми панелями, имеющими вырезы, один в первой торцевой панели для корпуса ОЭМ, цилиндрической формы, с блендой и второй вырез во второй торцевой панели для крепления блока реактивной двигательной установки. При этом корпус KM AstroSat - 1000 выполнен в виде контейнерного блока, имеющего форму шестигранной призмы (n=6). Вдоль ребер призмы - несущей конструкции пропущены продольные силовые элементы, а боковые грани закрыты боковыми стенками. Закрывают призму первая (верхняя) и вторая (нижняя) торцевые панели. В первой торцевой панели предусмотрен вырез под ОЭМ. Продольная ось призмы совпадает с продольной осью ОЭМ, корпус которого имеет форму цилиндра. На верхнюю часть цилиндра ОЭМ установлена бленда. Второй вырез выполнен во второй торцевой панели и предназначен для крепления блока реактивной двигательной установки.

КМ содержит также плоский бандаж, скрепляющий первую часть корпуса ОЭМ, в месте установки бленды, с силовым корпусом космического модуля. Для скрепления, на внешней плоскости первой торцевой панели по периметру, в каждом углу многогранника (шестигранника, в рассматриваемом примере), установлены основаниями n/2 V-образных элемента силовой части конструкции КМ (три, в рассматриваемом примере). При этом каждый из элементов имеет растяжки, закрепленные основаниями по внешнему периметру, в каждом углу многогранника (шестигранника) панели, и вершинами закрепленные с угловым расстоянием в 360°/(n/2)=720°/n градусов к внутренней поверхности плоского бандажа (в рассматриваемом примере для n=6, угловое расстояние 120°).

Несущая панель, установленная на второй части ОЭМ, скреплена через ферму с интерфейсным диском, на который установлен блок двигательной установки, имеющий корпус в виде цилиндра. При этом блок закреплен в вырезе второй торцевой панели корпуса КМ.

К несущей панели ОЭМ крепится БА, обеспечивающая работу КМ, в частности оптико-волоконный гироскопический измеритель вектора угловой скорости, моноблок регистрации видеоданных и управления ОЭМ, вычислительные средства и другие приборы. Причем для установки аппаратуры используются отдельные приборные панели. Терморегулирование БА осуществляется средствами СТР, включающими ТТ, проложенными в панелях, радиаторы с ТТ, терморегулирующие покрытия и экранно-вакуумную тепловую изоляцию.

Интерфейсные замки для стыка космического модуля со средствами выведения, закреплены на внешней плоскости второй торцевой панели. На второй торцевой панели КМ устанавливаются, через одну грань корпуса призмы, n/2 СБ (три, в конкретном примере). При этом в раскрытом положении каждая из батарей поддерживается двумя штангами, прикрепленными одним концом к боковым торцевым частям СБ, а другим к упорам, расположенным на ребрах призмы корпуса космического модуля.

Боковые стороны конструкции, образованные указанными V-образными элементами, закрыты стенками. Кольцевая форма бандажа дополнена по периметру вытянутыми угловыми выступами. Бандаж играет роль поддерживающей конструкции для ОЭМ в верхней его части и дополнительной скрепляющей детали между корпусом космического модуля и блендой.

Кроме того, в углах на верхней бандажной плоскости и в одном из промежутков между ними крепятся антенны радиосистем. Все антенны размещены таким образом, что при орбитальной ориентации КМ они направлены на Землю (оси направленности антенн сонаправлены продольной оси базовой системы координат КМ).

В качестве основного недостатка в рассмотренном КМ отмечается разделение функций ее конструкции на силовую и тепловую. Использование в прочностной схеме только отдельных внутренних силовых элементов для обеспечения жесткости, прочности, геометрической стабильности и термоупругости приводит к дополнительному увеличению массы КМ.

Технической результатом изобретения является улучшение конструктивно-технологической структуры построения КМ, направленное на уменьшение ее массы.

Для достижения технического результата в КМ, содержащем силовой корпус блочного типа, выполненный в виде скрепленных ребер n-гранной правильной призмы, где n=4, 6, 8 …, с торцевыми панелями, имеющими вырезы, один вырез - в первой торцевой панели для корпуса ОЭМ, имеющего цилиндрическую форму, с блендой, и второй вырез - во второй торцевой панели для крепления блока реактивной двигательной установки, плоский бандаж, скрепляющий первую часть корпуса ОЭМ, в месте установки бленды, с силовым корпусом КМ, n/2 V-образных элемента силовой части конструкции, установленных на внешней плоскости первой торцевой панели, несущую панель, установленную на второй части ОЭМ, скрепленную через ферму с интерфейсным диском, блок двигательной установки с корпусом цилиндрической формы, установленным на интерфейсный диск и закрепленным в вырезе второй торцевой панели корпуса КМ, интерфейсные замки для стыка космического модуля со средствами выведения, закрепленные на внешней плоскости второй торцевой панели, n/2 солнечных батарей, установленных через одну грань, на внешней плоскости второй торцевой панели, при этом каждый из элементов силовой части конструкции имеет растяжки, закрепленные основаниями по внешнему периметру, в каждом углу многогранника панели, и вершинами закрепленные с угловым расстоянием в 720°/n градусов к внутренней поверхности плоского бандажа, в отличие от известного несущая конструкция корпуса призмы выполнена из n многослойных боковых сотовых панелей, где n=4, 6, 8 …, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие - корпусные, при этом все боковые панели скреплены между собой по периметру в чередующейся последовательности, а также с первой и второй корпусными торцевыми панелями, с указанными вырезами под ОЭМ и реактивную двигательную установку, при этом по периметру каждой боковой панели расположены каркасные уголки, которые между собой скреплены разъемными элементами, образуя форму правильной призмы, на второй торцевой панели по внешнему периметру установлены силовые фитинги, в которые закреплены замки для стыка с ракетой-носителем и узлы раскрытия солнечных батарей со стороны установки приборных панелей, на внутренней поверхности второй торцевой панели установлены, со стороны корпусных панелей, V-образные элементы силовой ферменной части конструкции, которые своими основаниями закреплены в углах многогранника второй торцевой панели, направленные вершинами в сторону несущей панели ОЭМ, при этом вершины V-образных силовых элементов закреплены в базовые отверстия кронштейнов несущей панели указанного ОЭМ, установленной во второй части его корпуса, на внешней поверхности второй торцевой панели закреплена панель двигательной установки, при этом бак хранения топлива закреплен с помощью кронштейнов на панели двигательной установки со стороны внутренней плоскости и размещен в вырезе второй торцевой панели, на внешней плоскости первой торцевой панели установлены бленда ОЭМ, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением.

Заявляемое решение космического модуля иллюстрируется следующими материалами:

фиг. 1 - аксонометрическое изображение конструкции корпуса КМ;

фиг. 2 - аксонометрическое изображение КМ со стороны первой (верхней) торцевой панели, укомплектованной для штатной работы, с установленным ОЭМ;

фиг. 3 - вид на КМ со стороны второй (нижней) торцевой панели космического модуля;

фиг. 4 - аксонометрическое изображение размещения бака ДУ на панели;

фиг. 5 - аксонометрическое изображение размещения силовых элементов конструкции на нижней торцевой панели КМ;

фиг. 6 - аксонометрическое изображение корпуса ОЭМ с установленной несущей панелью;

фиг. 7 - компоновка приборной панели.

В общем случае несущая конструкция корпуса призмы состоит из n многослойных боковых сотовых панелей, где n=4, 6, 8 …, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие - корпусные. При этом все боковые панели скреплены между собой по периметру в чередующейся последовательности, а также с первой и второй корпусными торцевыми панелями. В торцевых панелях предусмотрены вырезы под ОЭМ и реактивную ДУ. По периметру каждой боковой панели расположены каркасные уголки, которые между собой скреплены разъемными элементами, образуя форму правильной призмы.

В качестве примера реализации, на фиг. 1 представлен корпус КМ, с несущей конструкцией, вертикальной компоновки, выполненной в виде прямой правильной шестигранной призмы (n=6), содержащей шесть трехслойных панелей, состоящих из двух несущих слоев и сотового заполнителя. Из указанных панелей три приборных: 1 - первая; 2 вторая; 3 третья, с проложенными внутри ТТ, и три корпусные: 4 - четвертая; 5 - пятая; 6 - шестая. Закрывает призму сверху и снизу соответственно первая (верхняя для примера конкретного КМ) 7 и вторая (нижняя) 8 торцевые трехслойные сотовые панели. По периметру, внутри каждой панели, расположены каркасные уголки, которые между собой соединяются штифтовыми (направляющими) и резьбовыми (скрепляющими) элементами, образуя при этом форму правильной шестигранной призмы. В углах шестигранников, с внутренних сторон верхней 7 и нижней 8 торцевых панелей, вдоль граней призмы, установлены уголковые крепления 9, ограниченной длины, обеспечивающие дополнительную жесткость, прочность и устойчивость корпуса призмы. В верхней торцевой панели предусмотрен круговой вырез под ОЭМ, а в нижней торцевой панели - вырез под размещение топливного бака, установленного на панели ДУ.

На фиг. 2 представлен КМ в сборке с ОЭМ и размещенным на ней оборудованием и приборами. На внешней плоскости первой (верхней) торцевой панели КМ установлены: бленда 10 ОЭМ, первая 11 и вторая 12 панели высокоскоростной радиолинии (ВРЛ), на которых установлена бортовая аппаратура (БА) ВРЛ - передатчики Х-диапазона, блоки наведения антенн. На установочных кронштейнах, закрепленных к верхней плоскости, верхней торцевой панели, установлены перенацеливаемые антенны ВРЛ - первая 13 и вторая 14 соответственно. На верхней торцевой панели также закреплен электромагнитный исполнительный орган (ЭМИО) 15 системы ориентации КМ. Со стороны верхнего торца бленды 10, на ее наружной поверхности крепится антенна служебного канала управления (СКУ) 16, установленная на кронштейне 17.

Таким образом, на внешней плоскости первой торцевой панели установлены бленда ОЭМ, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением.

Со стороны граней второй торцевой панели крепятся узлы раскрытия трех СБ 18, 19, 20 по сторонам установки приборных панелей 1-3. Кроме того, на фиг. 2 показаны:

21, 22 - два тяговых модуля (ТМ), каждый из которых включает в себя электроракетный двигатель (ЭРД) и блок газораспределения;

23, 24 - радиаторы тяговых модулей;

25, 26 - радиаторы аккумуляторных батарей (АБ), первый и второй соответственно;

27, 28 - бленды первого и второго звездных датчиков (ЗД) соответственно;

29 - радиатор ОЭМ.

Показаны также оси базовой системы координат KM (XYZ)KM и образованные ими строительные плоскости I-IV. Остальные обозначения соответствуют ранее введенным на фиг. 1.

На фиг. 3 представлен вид КМ со стороны нижней (второй) торцевой панели 8, на которой со стороны внешней поверхности (оси «минус YKM»), закреплена панель ДУ 30, представляющая собой плоскую трехслойную панель с сотовым наполнителем, выполненную в виде шестигранника. В свою очередь, на панели ДУ 30 установлено оборудование хранения и подачи топлива, восемь газовых двигателей (ГД1…8), позиции с 31 по 38 соответственно, и два ТМ: 39 и 40. Панель ДУ 30 сверху закрывается радиационным экраном. На нижней торцевой панели со стороны верхней плоскости также установлены антенны системы астронавигации (АСН) 41, 42 и СКУ 43. Кроме того, на фиг. 3 показаны узлы 44 механизмов раскрытия СБ, радиаторы для ТМ 45 и 46, а также бленда 47 третьего ЗД 48.

На второй (нижней) торцевой панели 8 по внешнему периметру установлены силовые фитинги 49-51, в которые закрепляются замки для организации разделяемого стыка КП с ракетой-носителем.

На панели ДУ 30, представленной на фиг. 4, введены обозначения топливного бака 52 и кронштейнов его крепления 53 и 54. При этом топливный бак 52, закрепленный с помощью кронштейнов на панели ДУ 30, размещается в вырезе второй (нижней) торцевой панели 8 (см. фиг. 1).

Таким образом, на внешней поверхности второй торцевой панели закреплена панель двигательной установки, при этом бак хранения топлива закреплен с помощью кронштейнов на панели двигательной установки со стороны внутренней плоскости и размещен в вырезе второй торцевой панели.

На внутренней поверхности второй торцевой панели КМ установлены, со стороны корпусных панелей, V-образные элементы силовой ферменной части конструкции, которые своими основаниями закреплены в углах многогранника второй торцевой панели, направленные вершинами в сторону несущей панели оптико-электронного модуля.

В конкретной рассматриваемой КМ (см. фиг. 5), три скрепляющих V-образных силовых элемента 55 фермы установлены своими основаниями по краям шестигранника второй (нижней) торцевой панели 8 со стороны корпусных панелей 4-6 (см. фиг. 1), направленные вершинами в сторону несущей панели оптико-электронного модуля (оси «плюс YKM»).

На нижней торцевой панели 8 со стороны нижней плоскости (см. фиг. 5) установлены также никель-водородные АБ1 56 и АБ2 57 со своим блоком коммутации 58. Корпуса АБ1 56 и АБ2 57 охватывают, со стороны боковых поверхностей, контурные тепловые трубы (КТТ) 59 и 60 соответственно.

При этом вершины V-образных силовых элементов закреплены в базовые отверстия кронштейнов несущей панели ОЭМ, установленной во второй части его корпуса. Вершины V-образных силовых элементов 55 закрепляются в базовые отверстия кронштейнов сплошной несущей панели 61 ОЭМ, выполненной в виде правильного треугольника со срезанными вершинами, установленной на корпусе 62 ОЭМ (см. фиг. 6). На нижнюю плоскость несущей панели ОЭМ также крепятся приборы 63, входящие в состав ОЭМ, терморегулирование которого осуществляется с помощью ТТ 64 и радиатора 29 (см. фиг. 2 и фиг. 6).

На нижней плоскости несущей панели 61, в местах условных вершин треугольника, установлены три ЗД 27, 28, 47 (см. фиг. 3), с угловым расстоянием в 120°. При этом компоновка КМ выполнена таким образом, что ЗД с блендами, выступающими над поверхностями корпусных панелей шестигранника, находятся посередине в междуреберном пространстве призмы. Кроме того, на фиг. 6 показаны: оси связанного базиса системы оптико-электронного наблюдения (СОЭН) Земли (0XYZ)СОЭН, включающей ОЭМ и БА регистрации видеоданных и управления космическим модулем; оси крепления ОЭМ на КМ (оси одного из базовых кронштейнов крепления на несущей панели ОЭМ) (0XYZ)Б; базовые оси ЗД 28 (OXYZ)ЗД28 (для примера).

Боковые стороны призмы корпуса (см. фиг. 1) образованы трехслойными сотовыми панелями, три из которых предназначены для установки приборного состава КМ. Каждая из приборных панелей включает в себя закладные втулки, предназначенные для крепления приборов, и элементы СТР-ТТ (всего 6), а также электрические нагреватели.

В качестве примера, на фиг. 7 представлена компоновка приборной панели 1, на которой показана установка приборов и ТТ 65. Кроме того, указана постановка панели в строительных осях КА (XYZ)КА, определяющих построение силового корпуса призмы (см. фиг. 1). Таким образом, приборная панель является силовым элементом корпуса КМ и КА одновременно. На приборных панелях исходя из равномерного распределения моментов инерции КА относительно строительных осей, размещен приборный состав служебной бортовой аппаратуры КМ и ОЭМ.

ОЭМ при компоновке в предлагаемом КМ размешается в одном месте, на V-образных элементах силовой части конструкции (в рассмотренном примере в трех опорных точках), установленных на внутренней поверхности второй торцевой панели. В прототипе ОЭМ на КМ крепится в двух местах, одним из которых (первой частью которого) является бандажное крепление, поддерживаемое V-образными элементами силовой части конструкции, установленными на внешней плоскости первой торцевой панели. Таким образом, масса КМ-прототипа увеличивается на массу бандажа.

Панель двигательной установки в предлагаемой КМ закрепляется непосредственно на второй торцевой панели. В прототипе ДУ также закрепляется на второй торцевой панели, но при этом используется дополнительная ферменная конструкция с интерфейсным диском. Таким образом, ОЭМ устанавливается в КМ, второй своей частью, через крепление к интерфейсному диску модульного блока ДУ и через него - ко второй (нижней) торцевой панели космического модуля.

В данном случае масса прототипа увеличивается на массу фермы и интерфейсного диска.

Все приборы служебного борта и ОЭМ в предлагаемом КМ размещаются на боковых сотовых панелях, являющихся несущими конструкциями корпуса призмы и радиаторами СТР. Т.е. приборные панели одновременно обеспечивают температурные условия работы приборного состава и одновременно являются силовыми элементами корпуса призмы. В прототипе для части приборного состава, расположенного на несущей панели ОЭМ, требуются при установке отдельные приборные панели со своими средствами терморегулирования.

Таким образом, масса прототипа увеличивается на массу приборных панелей и элементов СТР, отдельно устанавливаемых на КМ.

На второй торцевой панели, в предлагаемом КМ, по внешнему периметру установлены силовые фитинги, в которые закреплены замки для стыка с ракетой-носителем и узлы раскрытия солнечных батарей. Выбор места размещения указанных элементов при компоновке КМ, с расположением их со стороны установки приборных панелей, являющихся элементами несущей конструкции, позволил исключить дополнительные крепления для СБ. В прототипе в раскрытом положении каждая из батарей поддерживается двумя штангами, прикрепленными одним концом к боковым торцевым частям СБ, а другим к упорам, расположенным на ребрах призмы корпуса КМ.

Таким образом, указаны основные места компоновки КМ, по которым принимались технические решения, направленные на уменьшение массы конструкции космического модуля.

В результате сравнительной оценки масса заявляемой КМ примерно на 10-12 кг меньше массы КМ-прототипа.

При этом функциональное предназначение рассматриваемых КМ одинаковое - они являются обеспечивающими конструктивно-компоновочными устройствами автоматических КА, предназначенных для оптико-электронного зондирования Земли. Они принадлежат также к одному классу малых КМ, массой до 1000 кг.

Космический модуль, содержащий силовой корпус блочного типа, выполненный в виде скрепленных ребер n-гранной правильной призмы, где n=4, 6, 8…, с торцевыми панелями, имеющими вырезы, один вырез - в первой торцевой панели для корпуса оптико-электронного модуля, имеющего цилиндрическую форму, с блендой, и второй вырез - во второй торцевой панели для крепления блока реактивной двигательной установки, плоский бандаж, скрепляющий первую часть корпуса оптико-электронного модуля в месте установки бленды, с силовым корпусом космического модуля, n/2 V-образных элемента силовой части конструкции, установленных на внешней плоскости первой торцевой панели, несущую панель, установленную на второй части оптико-электронного модуля, скрепленную через ферму с интерфейсным диском, блок двигательной установки с корпусом цилиндрической формы, установленным на интерфейсный диск и закрепленным в вырезе второй торцевой панели корпуса космического модуля, интерфейсные замки для стыка космического модуля со средствами выведения, закрепленные на внешней плоскости второй торцевой панели, n/2 солнечных батарей, установленных через одну грань, на внешней плоскости второй торцевой панели, при этом каждый из элементов силовой части конструкции имеет растяжки, закрепленные основаниями по внешнему периметру, в каждом углу многогранника панели, и вершинами закрепленные с угловым расстоянием в 720°/n градусов к внутренней поверхности плоского бандажа, отличающийся тем, что несущая конструкция корпуса призмы выполнена из n многослойных боковых сотовых панелей, где n=4, 6, 8…, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие - корпусные, при этом все боковые панели скреплены между собой по периметру в чередующейся последовательности, а также с первой и второй корпусными торцевыми панелями, с указанными вырезами под оптико-электронный модуль и реактивную двигательную установку, при этом по периметру каждой боковой панели расположены каркасные уголки, которые между собой скреплены разъемными элементами, образуя форму правильной призмы, на второй торцевой панели по внешнему периметру установлены силовые фитинги, в которые закреплены замки для стыка с ракетой-носителем и узлы раскрытия солнечных батарей со стороны установки приборных панелей, на внутренней поверхности второй торцевой панели установлены, со стороны корпусных панелей, V-образные элементы силовой ферменной части конструкции, которые своими основаниями закреплены в углах многогранника второй торцевой панели, направленные вершинами в сторону несущей панели оптико-электронного модуля, при этом вершины V-образных силовых элементов закреплены в базовые отверстия кронштейнов несущей панели указанного оптико-электронного модуля, установленной во второй части его корпуса, на внешней поверхности второй торцевой панели закреплена панель двигательной установки, при этом бак хранения топлива закреплен с помощью кронштейнов на панели двигательной установки со стороны внутренней плоскости и размещен в вырезе второй торцевой панели, на внешней плоскости первой торцевой панели установлены бленда оптико-электронного модуля, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением.
КОСМИЧЕСКИЙ МОДУЛЬ
КОСМИЧЕСКИЙ МОДУЛЬ
КОСМИЧЕСКИЙ МОДУЛЬ
КОСМИЧЕСКИЙ МОДУЛЬ
КОСМИЧЕСКИЙ МОДУЛЬ
КОСМИЧЕСКИЙ МОДУЛЬ
КОСМИЧЕСКИЙ МОДУЛЬ
КОСМИЧЕСКИЙ МОДУЛЬ
Источник поступления информации: Роспатент

Showing 301-310 of 372 items.
11.03.2019
№219.016.d9d4

Резервированный счетчик для формирования меток времени

Использование: в области вычислительной и импульсной техники при построении высоконадежных резервированных систем для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002379829
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.d9e0

Резервированный счетчик

Изобретение используется в области вычислительной и импульсной техники для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит n-разрядный счетчик, блок из n мажоритарных...
Тип: Изобретение
Номер охранного документа: 0002379828
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.da87

Устройство для старта полезного груза с планет без атмосферы

Изобретение относится к космической технике, в частности к устройствам доставки полезного груза с Луны на Землю, например для транспортировки с Луны одноатомного газа гелий 3 (Hе), который может быть использован в качестве дополнительного источника термоядерной энергии. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002368543
Дата охранного документа: 27.09.2009
11.03.2019
№219.016.dac1

Система теплозащиты космического аппарата

Изобретение относится к конструкции теплозащиты космического аппарата, выводимого ракетой-носителем в космическое пространство. Система теплозащиты космического аппарата содержит экранно-вакуумную тепловую изоляцию (ЭВТИ). Для ЭВТИ предусмотрено устройство обеспечения ее прочностных и...
Тип: Изобретение
Номер охранного документа: 0002360849
Дата охранного документа: 10.07.2009
11.03.2019
№219.016.db2c

Блок центробежных вентиляторов

Изобретение относится к вентиляторостроению, может быть использовано в составе систем терморегулирования изделий космической техники и обеспечивает уменьшение поперечных габаритов и расширение компоновочных возможностей блока центробежных вентиляторов. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002415306
Дата охранного документа: 27.03.2011
11.03.2019
№219.016.db53

Устройство для фиксации ручного инструмента

Изобретение относится к приспособлениям для фиксации ручного инструмента и касается устройства для фиксации ручного инструмента. Устройство для фиксации ручного инструмента, содержащее закрепленную на основании гребенку с зубцами, выполненными в виде лепестков, зазор между которыми, а также...
Тип: Изобретение
Номер охранного документа: 0002414342
Дата охранного документа: 20.03.2011
11.03.2019
№219.016.db6b

Анод электроракетного двигателя с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Анод электроракетного двигателя с замкнутым дрейфом электронов включает корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с...
Тип: Изобретение
Номер охранного документа: 0002421630
Дата охранного документа: 20.06.2011
11.03.2019
№219.016.dc11

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Изобретение относится к управлению ориентацией космического аппарата (КА) с неподвижными относительно корпуса КА панелями солнечных батарей (СБ). Способ управления включает гравитационную ориентацию КА и его закрутку вокруг продольной оси (минимального момента инерции). При нахождении Солнца...
Тип: Изобретение
Номер охранного документа: 0002457158
Дата охранного документа: 27.07.2012
11.03.2019
№219.016.dc1a

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению ориентацией космического аппарата (КА) и может быть использовано при выполнении экспериментов и исследований на его борту. Способ включает гравитационную ориентацию КА, после которой производят закрутку КА вокруг выставленной на центр Земли оси КА. Закрутку...
Тип: Изобретение
Номер охранного документа: 0002457159
Дата охранного документа: 27.07.2012
11.03.2019
№219.016.dc36

Осевой вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий ракетно-космической техники. Техническим результатом изобретения является повышение технологичности и вибропрочности осевого вентилятора. Указанный технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002450166
Дата охранного документа: 10.05.2012
Showing 291-298 of 298 items.
04.04.2018
№218.016.31f7

Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных...
Тип: Изобретение
Номер охранного документа: 0002645267
Дата охранного документа: 19.02.2018
10.05.2018
№218.016.3c0c

Способ управления стационарным плазменным двигателем

Изобретение относится к исследованию и эксплуатации электроракетных стационарных плазменных двигателей. В способе, включающем запуск двигателя, сравнение измеренных значений разрядного тока с верхним допустимым его значением, и в случае превышения предельного значения выключение двигателя с...
Тип: Изобретение
Номер охранного документа: 0002647749
Дата охранного документа: 19.03.2018
18.05.2018
№218.016.5146

Устройство подачи рабочего тела и способ эксплуатации устройства подачи рабочего тела

Изобретение относится к устройствам и системам газобаллонной подачи рабочего тела в ракетные двигатели (РД) космических аппаратов (КА). Устройство подачи рабочего тела, содержащее емкость с двумя полусферами радиусом r, а также штуцер, вытеснитель, выполненный в виде корпуса в форме полого...
Тип: Изобретение
Номер охранного документа: 0002653266
Дата охранного документа: 07.05.2018
26.07.2018
№218.016.7517

Способ преобразования энергии при энергоснабжении космического аппарата

Изобретение относится к системам энергоснабжения космических аппаратов (КА). Способ преобразования энергии при энергоснабжении КА включает подачу на электроды металл-водородного аккумулятора постоянного электрического тока при его заряде в кислородно-водородном цикле газовой смесью из компонент...
Тип: Изобретение
Номер охранного документа: 0002662320
Дата охранного документа: 25.07.2018
07.09.2018
№218.016.84fa

Топливный бак двигательной установки космического аппарата

Изобретение относится к космической технике. Топливный бак двигательной установки (ДУ) космического аппарата (КА) содержит корпус, образованный герметично соединенными между собой полусферами со штуцерами для подсоединения газовых магистралей и фланцами для закрепления топливных магистралей,...
Тип: Изобретение
Номер охранного документа: 0002666110
Дата охранного документа: 05.09.2018
11.10.2018
№218.016.9004

Способ подачи топлива из бака в камеру сгорания жидкостного ракетного двигателя космического аппарата

Изобретение относится к области космической техники. Способ подачи топлива из бака в камеру сгорания жидкостного ракетного двигателя (ЖРД) космического аппарата (КА) включает вытеснение топлива из сжимающей полости, образованной эластичной перегородкой бака, внешним механическим давлением газа...
Тип: Изобретение
Номер охранного документа: 0002669243
Дата охранного документа: 09.10.2018
12.04.2023
№223.018.43c4

Устройство терморегулирования космического аппарата

Изобретение относится к космической технике и может использоваться в космических аппаратах (КА) в качестве устройства для регулирования температуры. Устройство терморегулирования КА содержит подвижный защитный экран, продольные П-образные направляющие планки движения экрана, установочные...
Тип: Изобретение
Номер охранного документа: 0002793702
Дата охранного документа: 04.04.2023
14.05.2023
№223.018.565d

Мобильное устройство визуализации контроля технологического процесса с применением технологии дополненной реальности

Изобретение относится к информационной технике. Технический результат - обеспечение сопоставления реального изделия и его 3D-модели в процессе контроля технологического процесса с применением технологии дополненной реальности. Такой результат достигается тем, что в мобильное устройство...
Тип: Изобретение
Номер охранного документа: 0002739901
Дата охранного документа: 29.12.2020
+ добавить свой РИД