×
25.08.2017
217.015.d360

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности для определения механизма процессов окисления товарных смазочных масел или механизма старения работающих. Способ определения интенсивности процессов окисления смазочных масел включает нагревание пробы испытуемого смазочного масла постоянной массы, перемешивание, фотометрирование, определение коэффициента поглощения светового потока окисленным смазочным маслом и испаряемости взвешиванием до и после испытания. Затем осуществляют построение графических зависимостей, по которым определяют параметры процессов окисления. При этом пробы смазочного масла постоянной массы термостатируют минимум при трех температурах с перемешиванием, через установленное постоянное время пробу окисленного смазочного масла взвешивают, определяют массу испарившегося масла и коэффициент испаряемости как отношение массы испарившегося масла к массе пробы до испытания. Далее отбирают часть окисленной пробы для фотометрирования и определения коэффициента поглощения светового потока. Затем по полученным данным коэффициента поглощения светового потока и коэффициента испаряемости определяют показатель термоокислительной стабильности как их сумму, определяют приращение скорости изменения показателя термоокислительной стабильности как частное от деления приращения показателя термоокислительной стабильности за установленное постоянное время к этому времени окисления. После чего строят графические зависимости показателя термоокислительной стабильности и приращения скорости его изменения от времени окисления и приращения скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют интенсивность процессов окисления от времени окисления, коэффициента поглощения светового потока и температуры окисления. Техническим результатом является повышение информативности способа за счет оценки влияния продуктов окисления на интенсивность процессов окисления. 4 ил.

Изобретение относится к измерительной технике, в частности для определения механизма процессов окисления товарных смазочных масел или механизма старения работающих.

Известен способ определения термоокислительной стабильности смазочных материалов, заключающийся в том, что смазочный материал постоянной массы нагревают в термостойком стакане, как минимум при трех температурах, превышающих температуру начала окисления, и перемешивают стеклянной мешалкой с постоянной скоростью вращения не более 12 часов, причем через равные промежутки времени отбирают пробы для фотометрирования, определяют коэффициент поглощения светового потока окисленного масла и испаряемость взвешиванием пробы до и после испытания, строят графические зависимости этих параметров от температуры испытания, а термоокислительную стабильность смазочного материала определяют по критической температуре работоспособности, температуре начала окисления и температуре начала испарения (Патент РФ №2274850 С1, дата приоритета 30.08.2004, дата публикации 20.04.2006, авторы: Ковальский Б.И. и др. RU).

Наиболее близким по технической сущности и достигаемому результату к заявленному является способ определения термоокислительной стабильности смазочных материалов, принятый в качестве прототипа, согласно которому пробу смазочного материала испытывают в течение постоянного времени от максимальной температуры, превышающей температуру начала окисления с последующим ступенчатым ее понижением до значения, при котором наступает стабилизация коэффициента поглощения светового потока, затем температуру испытания смазочного материала ступенчато повышают до максимальной и повторно ее снижают до стабилизации коэффициента поглощения светового потока, установленный цикл изменения температуры повторяют до принятого значения коэффициента поглощения светового потока, отбирают пробу окисленного смазочного материала после каждой температуры испытания, фотометрируют, определяют коэффициент поглощения светового потока, испаряемость, скорость окисления и ее приращение, строят графические зависимости приращения скорости окисления и испаряемости от температуры испытания и скорости окисления смазочного материала от коэффициента поглощения светового потока, а термоокислительную стабильность испытуемого смазочного материала определяют по количеству циклов колебаний приращения скорости окисления до установленного значения коэффициента поглощения светового потока и по предельной температуре работоспособности, определяемой температурой, при которой приращение скорости окисления и испаряемости равны нулю (Патент РФ №2318206 С1, дата приоритета 15.06.2006, дата публикации 27.02.2008, авторы: Ковальский Б.И. и др. RU, прототип).

Недостатком аналога и прототипа является то, что известные способы обладают недостаточной информативностью об интенсивности процессов окисления, так как не учитывают влияние состава продуктов окисления.

Задачей изобретения является повышение информативности способа за счет оценки влияния продуктов окисления на интенсивность процессов окисления.

Для решения поставленной задачи в способе определения интенсивности процессов окисления смазочных масел, включающем нагревание пробы испытуемого смазочного масла постоянной массы, перемешивание, фотометрирование, определение коэффициента поглощения светового потока окисленным смазочным маслом и испаряемости взвешиванием до и после испытания, построение графических зависимостей, по которым определяют параметры процессов окисления, согласно изобретению пробы смазочного масла постоянной массы термостатируют минимум при трех температурах с перемешиванием, через установленное постоянное время пробу окисленного смазочного масла взвешивают, определяют массу испарившегося масла и коэффициент испаряемости как отношение массы испарившегося масла к массе пробы до испытания, отбирают часть окисленной пробы для фотометрирования и определения коэффициента поглощения светового потока, по полученным данным коэффициента поглощения светового потока и коэффициента испаряемости определяют показатель термоокислительной стабильности как их сумму, определяют приращение скорости изменения показателя термоокислительной стабильности как частное от деления приращения показателя термоокислительной стабильности за установленное постоянное время к этому времени окисления, строят графические зависимости показателя термоокислительной стабильности и приращения скорости его изменения от времени окисления и приращения скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют интенсивность процессов окисления от времени окисления, коэффициента поглощения светового потока и температуры окисления.

На фиг. 1а, б, в представлены зависимости показателя термоокислительной стабильности (а), приращения скорости его изменения (б), от времени и температуры окисления и приращения скорости изменения показателя термоокислительной стабильности (в) от коэффициента поглощения светового потока и температуры окисления минерального моторного масла М-10Г: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 2а, б, в приведены те же зависимости для частично синтетического моторного масла Роснефть maximum 10W-40 SL/CF при тех же температурах; на фиг. 3а, б, в приведены те же зависимости для синтетического моторного масла Engine Oil 5W-30 SN/CF при тех же температурах; на фиг. 4 приведены зависимости приращения скорости изменения коэффициента поглощения светового потока от пробега автомобиля, работавшего на синтетическом моторном масле Ravenol 5W-40 SM/CF (два пробега).

Способ определения интенсивности процессов окисления смазочных масел осуществляется следующим образом.

Пробы исследуемого смазочного масла постоянной массы термостатируют при температурах, например, для моторных масел 180, 170, 160°C с перемешиванием. Температура испытуемой пробы и частота вращения мешалки поддерживаются автоматически на заданном уровне. Испытания проводят в течение постоянного времени, а продолжительность определяется временем достижения коэффициента поглощения светового потока значений 0,7-0,8. После каждого установленного времени окисления проба окисленного смазочного масла взвешивается, определяется масса испарившегося смазочного масла, определяется коэффициент испаряемости KG как отношение массы испарившегося смазочного масла к его массе до испытания. Отбирается часть пробы для фотометрирования и определения коэффициента поглощения светового потока Кп

где ϕ - монохроматический световой поток, падающий на слой смазочного масла в кювете; ϕо - световой поток, прошедший через слой окисленного смазочного масла.

По результатам испаряемости и фотометрирования определяется показатель термоокислительной стабильности П

П=Kn+KG.

Этот показатель учитывает сопротивляемость испытуемого смазочного масла окислению и испарению. Затем определяется приращение скорости изменения показателя термоокислительной стабильности ΔVп от установленного постоянного времени испытания

П2 и П1 - значения показателя термоокислительной стабильности, полученные при времени окисления соответственно t1 и t2.

По полученным экспериментальным данным строят графические зависимости показателя термоокислительной стабильности от времени и температуры испытания, фиг. 1a, 2а и 3а, и его приращения скорости, фиг. 1б, 2б и 3б, от времени и температуры испытания, а также приращение скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока и температуры окисления, фиг. 1в, 2в и 3в.

Согласно полученным данным, фиг. 1a, 2а и 3а, более термостойким к температурным воздействиям является частично синтетическое моторное масло Роснефть maximum 10W-40 SL/CF.

Влияние базовой основы на механизм окисления показан на фиг. 1б, 2б и 3б. Установлена общая закономерность изменения приращения скорости изменения показателя термоокислительной стабильности независимо от базовой основы и температуры окисления. Начальное увеличение приращения скорости, затем ее уменьшение и повторное увеличение связаны с образованием в моторных маслах продуктов окисления различной оптической плотности, которые названы условно первичными и вторичными. Первичные продукты образуются в начале процесса окисления, а затем переходят во вторичные более энергоемкие, с большей оптической плотностью и требующие для их образования больше тепловой энергии, поэтому приращение скорости изменения показателя термоокислительной стабильности ΔVп в этот период уменьшается, повторное увеличение приращения скорости ΔVп вызвано доокислением вторичных продуктов и увеличением их оптической плотности. Такой механизм окисления протекает во всех исследованных моторных маслах независимо от базовой основы.

Приращение скорости ΔVп зависит от температуры окисления, и чем она ниже, тем меньше величина приращения.

Зависимости приращения скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока и температуры окисления (фиг. 1в, 2в и 3в) устанавливают значения коэффициента поглощения светового потока, при которых изменяется механизм окисления, вызывающий изменения приращения скорости ΔVп.

Апробация предлагаемого способа производилась при оценке механизма старения синтетического масла Ravenol 5W-40 SM/CF в двигателе в двух циклах испытания (пробегах) от залива в картер товарного масла до его замены (фиг. 4). Показано, что зависимости приращения скорости изменения коэффициента поглощения светового потока ΔVKn от пробега автомобиля характеризуют механизм старения моторного масла и имеют аналогичный характер изменения, что и в моторных маслах, исследованных в лабораторных условиях. Однако эти зависимости учитывают режимы и условия эксплуатации двигателя, его техническое состояние, систему долива и состояние системы фильтрации.

Предлагаемое техническое решение позволяет получить дополнительную информацию об интенсивности процессов окисления смазочных материалов, выраженную приращением скорости изменения показателя термоокислительной стабильности, характеризующим механизм окисления с учетом первичных продуктов окисления и их преобразованием во вторичные с большей оптической плотностью.

При этом в качестве параметра окисления смазочных материалов вместо коэффициента поглощения светового потока можно применять оптическую плотность.

Способ определения интенсивности процессов окисления смазочных масел, включающий нагревание пробы испытуемого смазочного масла постоянной массы, перемешивание, фотометрирование, определение коэффициента поглощения светового потока окисленным смазочным маслом и испаряемости взвешиванием до и после испытания, построение графических зависимостей, по которым определяют параметры процессов окисления, отличающийся тем, что пробы смазочного масла постоянной массы термостатируют минимум при трех температурах с перемешиванием, через установленное постоянное время пробу окисленного смазочного масла взвешивают, определяют массу испарившегося масла и коэффициент испаряемости как отношение массы испарившегося масла к массе пробы до испытания, отбирают часть окисленной пробы для фотометрирования и определения коэффициента поглощения светового потока, по полученным данным коэффициента поглощения светового потока и коэффициента испаряемости определяют показатель термоокислительной стабильности как их сумму, определяют приращение скорости изменения показателя термоокислительной стабильности как частное от деления приращения показателя термоокислительной стабильности за установленное постоянное время к этому времени окисления, строят графические зависимости показателя термоокислительной стабильности и приращения скорости его изменения от времени окисления и приращения скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют интенсивность процессов окисления от времени окисления, коэффициента поглощения светового потока и температуры окисления.
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ
Источник поступления информации: Роспатент

Showing 281-290 of 336 items.
05.06.2020
№220.018.244e

Способ виброгашения бурильной колонны (варианты), виброгаситель (варианты) и привод микроперемещений (варианты) для осуществления способа виброгашения

Группа изобретений относится к области бурения нефтяных и газовых скважин, а именно к устройствам для гашения колебаний бурового оборудования и инструмента. Способ виброгашения бурильной колонны включает установку виброгасителя в бурильную колонну, через которую прокачивается буровой раствор....
Тип: Изобретение
Номер охранного документа: 0002722678
Дата охранного документа: 03.06.2020
12.06.2020
№220.018.2681

Буровой раствор для бурения скважин в условиях ммп

Изобретение относится к бурению нефтяных и газовых скважин. Технический результат - сохранение устойчивости стенок скважины в сложных горно-геологических условиях многолетнемерзлых пород, в слабо консолидированных породах, сокращение объемов водопотребления, отходов бурения, расхода реагентов....
Тип: Изобретение
Номер охранного документа: 0002723256
Дата охранного документа: 09.06.2020
27.06.2020
№220.018.2b9d

Горелка для дожигания анодных газов алюминиевого электролизера

Изобретение относится к горелке для сжигания анодных газов, образующихся в процессе электролиза в электролизере для получения алюминия с самообжигающимся анодом. Горелка разделена на две части - нижнюю, включающую зону предварительного смешивания сжигаемых анодных газов с воздухом и первичную...
Тип: Изобретение
Номер охранного документа: 0002724755
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2bc0

Устройство для бесслитковой прокатки и прессования металла

Изобретение относится к непрерывному литью, прокатке и прессованию металла. Устройство содержит печь-миксер (1), валок (3) с ручьем и валок (4) с выступом, имеющие охлаждаемые полости (5) и образующие рабочий калибр ящичного типа. На выходе из калибра в матрицедержателе (12) установлена...
Тип: Изобретение
Номер охранного документа: 0002724758
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2bc2

Способ получения германата-силиката висмута

Изобретение относится к области химии и может быть использовано для получения метастабильного соединения с кристаллической структурой BiGeO с добавлением оксида кремния (SiO) без изменения кристаллической структуры материала. Способ получения германата-силиката висмута включает предварительное...
Тип: Изобретение
Номер охранного документа: 0002724760
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2c3d

Способ моделирования процессов при проходке восстающих горных выработок на эквивалентных материалах и стенд для его реализации

Изобретение относится к подземному строительству и испытательной технике. Способ моделирования процессов при проходке восстающих горных выработок на эквивалентных материалах, состоящий в том, что в процессе изготовления модели располагают дополнительную камеру для имитации полости, куда...
Тип: Изобретение
Номер охранного документа: 0002724664
Дата охранного документа: 25.06.2020
29.06.2020
№220.018.2c8b

Устройство для закладки подземных выработок

Изобретение относится к горному делу и предназначено для реализации технологии добычи ископаемых с применением твердеющей закладки подземных горных выработок. Техническим результатом изобретения является повышение качества смешивания компонентов закладочной смеси с водой, а также упрощение и...
Тип: Изобретение
Номер охранного документа: 0002724827
Дата охранного документа: 25.06.2020
29.06.2020
№220.018.2c8e

Способ трубопроводной доставки твердеющей смеси в подземные горные выработки

Изобретение относится к горному делу и предназначено для закладки горных выработок при разработке месторождений полезных ископаемых подземным способом. Техническим результатом предлагаемого решения является снижение массы трубопроводной магистрали и повышение производительности закладочных...
Тип: Изобретение
Номер охранного документа: 0002724830
Дата охранного документа: 25.06.2020
29.06.2020
№220.018.2c95

Драга

Изобретение относится к горной технике, а именно к устройству для разработки россыпных месторождений полезных ископаемых дражным способом. Драга содержит многочерпаковый рабочий орган, кормовые колоды и стакер, установленные на понтоне. На дне дражного разреза, по всей его ширине и...
Тип: Изобретение
Номер охранного документа: 0002724826
Дата охранного документа: 25.06.2020
03.07.2020
№220.018.2e0d

Способ управления приготовлением шихты при переработке нефелинового сырья с получением глинозема и содопродуктов

Изобретение относится к процессам цветной металлургии и может быть использовано при переработке щелочного алюмосиликатного сырья, в частности нефелиновых руд. Способ управления приготовлением шихты при переработке нефелинового сырья с получением глинозема и содопродуктов включает изменение...
Тип: Изобретение
Номер охранного документа: 0002725228
Дата охранного документа: 30.06.2020
Showing 131-137 of 137 items.
19.06.2019
№219.017.899b

Способ определения температурной стойкости смазочных масел

Изобретение относится к технологии испытания смазочных материалов. При осуществлении способа отбирают пробу масла, делят ее на равные части, каждую из которых нагревают, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину и каждую часть пробы...
Тип: Изобретение
Номер охранного документа: 0002471187
Дата охранного документа: 27.12.2012
27.07.2019
№219.017.b9c4

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Технический результат заключается в снижении трудоемкости за счет сокращения времени испытания при выбранной температуре в связи с возможностью использования результатов, полученных...
Тип: Изобретение
Номер охранного документа: 0002695704
Дата охранного документа: 25.07.2019
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.015f

Способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания

Изобретение относится к технологии оценки качества работающих моторных масел и технического состояния двигателей внутреннего сгорания. Предложен способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания путем фотометрирования проб работающих...
Тип: Изобретение
Номер охранного документа: 0002713810
Дата охранного документа: 07.02.2020
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД