×
25.08.2017
217.015.d360

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности для определения механизма процессов окисления товарных смазочных масел или механизма старения работающих. Способ определения интенсивности процессов окисления смазочных масел включает нагревание пробы испытуемого смазочного масла постоянной массы, перемешивание, фотометрирование, определение коэффициента поглощения светового потока окисленным смазочным маслом и испаряемости взвешиванием до и после испытания. Затем осуществляют построение графических зависимостей, по которым определяют параметры процессов окисления. При этом пробы смазочного масла постоянной массы термостатируют минимум при трех температурах с перемешиванием, через установленное постоянное время пробу окисленного смазочного масла взвешивают, определяют массу испарившегося масла и коэффициент испаряемости как отношение массы испарившегося масла к массе пробы до испытания. Далее отбирают часть окисленной пробы для фотометрирования и определения коэффициента поглощения светового потока. Затем по полученным данным коэффициента поглощения светового потока и коэффициента испаряемости определяют показатель термоокислительной стабильности как их сумму, определяют приращение скорости изменения показателя термоокислительной стабильности как частное от деления приращения показателя термоокислительной стабильности за установленное постоянное время к этому времени окисления. После чего строят графические зависимости показателя термоокислительной стабильности и приращения скорости его изменения от времени окисления и приращения скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют интенсивность процессов окисления от времени окисления, коэффициента поглощения светового потока и температуры окисления. Техническим результатом является повышение информативности способа за счет оценки влияния продуктов окисления на интенсивность процессов окисления. 4 ил.

Изобретение относится к измерительной технике, в частности для определения механизма процессов окисления товарных смазочных масел или механизма старения работающих.

Известен способ определения термоокислительной стабильности смазочных материалов, заключающийся в том, что смазочный материал постоянной массы нагревают в термостойком стакане, как минимум при трех температурах, превышающих температуру начала окисления, и перемешивают стеклянной мешалкой с постоянной скоростью вращения не более 12 часов, причем через равные промежутки времени отбирают пробы для фотометрирования, определяют коэффициент поглощения светового потока окисленного масла и испаряемость взвешиванием пробы до и после испытания, строят графические зависимости этих параметров от температуры испытания, а термоокислительную стабильность смазочного материала определяют по критической температуре работоспособности, температуре начала окисления и температуре начала испарения (Патент РФ №2274850 С1, дата приоритета 30.08.2004, дата публикации 20.04.2006, авторы: Ковальский Б.И. и др. RU).

Наиболее близким по технической сущности и достигаемому результату к заявленному является способ определения термоокислительной стабильности смазочных материалов, принятый в качестве прототипа, согласно которому пробу смазочного материала испытывают в течение постоянного времени от максимальной температуры, превышающей температуру начала окисления с последующим ступенчатым ее понижением до значения, при котором наступает стабилизация коэффициента поглощения светового потока, затем температуру испытания смазочного материала ступенчато повышают до максимальной и повторно ее снижают до стабилизации коэффициента поглощения светового потока, установленный цикл изменения температуры повторяют до принятого значения коэффициента поглощения светового потока, отбирают пробу окисленного смазочного материала после каждой температуры испытания, фотометрируют, определяют коэффициент поглощения светового потока, испаряемость, скорость окисления и ее приращение, строят графические зависимости приращения скорости окисления и испаряемости от температуры испытания и скорости окисления смазочного материала от коэффициента поглощения светового потока, а термоокислительную стабильность испытуемого смазочного материала определяют по количеству циклов колебаний приращения скорости окисления до установленного значения коэффициента поглощения светового потока и по предельной температуре работоспособности, определяемой температурой, при которой приращение скорости окисления и испаряемости равны нулю (Патент РФ №2318206 С1, дата приоритета 15.06.2006, дата публикации 27.02.2008, авторы: Ковальский Б.И. и др. RU, прототип).

Недостатком аналога и прототипа является то, что известные способы обладают недостаточной информативностью об интенсивности процессов окисления, так как не учитывают влияние состава продуктов окисления.

Задачей изобретения является повышение информативности способа за счет оценки влияния продуктов окисления на интенсивность процессов окисления.

Для решения поставленной задачи в способе определения интенсивности процессов окисления смазочных масел, включающем нагревание пробы испытуемого смазочного масла постоянной массы, перемешивание, фотометрирование, определение коэффициента поглощения светового потока окисленным смазочным маслом и испаряемости взвешиванием до и после испытания, построение графических зависимостей, по которым определяют параметры процессов окисления, согласно изобретению пробы смазочного масла постоянной массы термостатируют минимум при трех температурах с перемешиванием, через установленное постоянное время пробу окисленного смазочного масла взвешивают, определяют массу испарившегося масла и коэффициент испаряемости как отношение массы испарившегося масла к массе пробы до испытания, отбирают часть окисленной пробы для фотометрирования и определения коэффициента поглощения светового потока, по полученным данным коэффициента поглощения светового потока и коэффициента испаряемости определяют показатель термоокислительной стабильности как их сумму, определяют приращение скорости изменения показателя термоокислительной стабильности как частное от деления приращения показателя термоокислительной стабильности за установленное постоянное время к этому времени окисления, строят графические зависимости показателя термоокислительной стабильности и приращения скорости его изменения от времени окисления и приращения скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют интенсивность процессов окисления от времени окисления, коэффициента поглощения светового потока и температуры окисления.

На фиг. 1а, б, в представлены зависимости показателя термоокислительной стабильности (а), приращения скорости его изменения (б), от времени и температуры окисления и приращения скорости изменения показателя термоокислительной стабильности (в) от коэффициента поглощения светового потока и температуры окисления минерального моторного масла М-10Г: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 2а, б, в приведены те же зависимости для частично синтетического моторного масла Роснефть maximum 10W-40 SL/CF при тех же температурах; на фиг. 3а, б, в приведены те же зависимости для синтетического моторного масла Engine Oil 5W-30 SN/CF при тех же температурах; на фиг. 4 приведены зависимости приращения скорости изменения коэффициента поглощения светового потока от пробега автомобиля, работавшего на синтетическом моторном масле Ravenol 5W-40 SM/CF (два пробега).

Способ определения интенсивности процессов окисления смазочных масел осуществляется следующим образом.

Пробы исследуемого смазочного масла постоянной массы термостатируют при температурах, например, для моторных масел 180, 170, 160°C с перемешиванием. Температура испытуемой пробы и частота вращения мешалки поддерживаются автоматически на заданном уровне. Испытания проводят в течение постоянного времени, а продолжительность определяется временем достижения коэффициента поглощения светового потока значений 0,7-0,8. После каждого установленного времени окисления проба окисленного смазочного масла взвешивается, определяется масса испарившегося смазочного масла, определяется коэффициент испаряемости KG как отношение массы испарившегося смазочного масла к его массе до испытания. Отбирается часть пробы для фотометрирования и определения коэффициента поглощения светового потока Кп

где ϕ - монохроматический световой поток, падающий на слой смазочного масла в кювете; ϕо - световой поток, прошедший через слой окисленного смазочного масла.

По результатам испаряемости и фотометрирования определяется показатель термоокислительной стабильности П

П=Kn+KG.

Этот показатель учитывает сопротивляемость испытуемого смазочного масла окислению и испарению. Затем определяется приращение скорости изменения показателя термоокислительной стабильности ΔVп от установленного постоянного времени испытания

П2 и П1 - значения показателя термоокислительной стабильности, полученные при времени окисления соответственно t1 и t2.

По полученным экспериментальным данным строят графические зависимости показателя термоокислительной стабильности от времени и температуры испытания, фиг. 1a, 2а и 3а, и его приращения скорости, фиг. 1б, 2б и 3б, от времени и температуры испытания, а также приращение скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока и температуры окисления, фиг. 1в, 2в и 3в.

Согласно полученным данным, фиг. 1a, 2а и 3а, более термостойким к температурным воздействиям является частично синтетическое моторное масло Роснефть maximum 10W-40 SL/CF.

Влияние базовой основы на механизм окисления показан на фиг. 1б, 2б и 3б. Установлена общая закономерность изменения приращения скорости изменения показателя термоокислительной стабильности независимо от базовой основы и температуры окисления. Начальное увеличение приращения скорости, затем ее уменьшение и повторное увеличение связаны с образованием в моторных маслах продуктов окисления различной оптической плотности, которые названы условно первичными и вторичными. Первичные продукты образуются в начале процесса окисления, а затем переходят во вторичные более энергоемкие, с большей оптической плотностью и требующие для их образования больше тепловой энергии, поэтому приращение скорости изменения показателя термоокислительной стабильности ΔVп в этот период уменьшается, повторное увеличение приращения скорости ΔVп вызвано доокислением вторичных продуктов и увеличением их оптической плотности. Такой механизм окисления протекает во всех исследованных моторных маслах независимо от базовой основы.

Приращение скорости ΔVп зависит от температуры окисления, и чем она ниже, тем меньше величина приращения.

Зависимости приращения скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока и температуры окисления (фиг. 1в, 2в и 3в) устанавливают значения коэффициента поглощения светового потока, при которых изменяется механизм окисления, вызывающий изменения приращения скорости ΔVп.

Апробация предлагаемого способа производилась при оценке механизма старения синтетического масла Ravenol 5W-40 SM/CF в двигателе в двух циклах испытания (пробегах) от залива в картер товарного масла до его замены (фиг. 4). Показано, что зависимости приращения скорости изменения коэффициента поглощения светового потока ΔVKn от пробега автомобиля характеризуют механизм старения моторного масла и имеют аналогичный характер изменения, что и в моторных маслах, исследованных в лабораторных условиях. Однако эти зависимости учитывают режимы и условия эксплуатации двигателя, его техническое состояние, систему долива и состояние системы фильтрации.

Предлагаемое техническое решение позволяет получить дополнительную информацию об интенсивности процессов окисления смазочных материалов, выраженную приращением скорости изменения показателя термоокислительной стабильности, характеризующим механизм окисления с учетом первичных продуктов окисления и их преобразованием во вторичные с большей оптической плотностью.

При этом в качестве параметра окисления смазочных материалов вместо коэффициента поглощения светового потока можно применять оптическую плотность.

Способ определения интенсивности процессов окисления смазочных масел, включающий нагревание пробы испытуемого смазочного масла постоянной массы, перемешивание, фотометрирование, определение коэффициента поглощения светового потока окисленным смазочным маслом и испаряемости взвешиванием до и после испытания, построение графических зависимостей, по которым определяют параметры процессов окисления, отличающийся тем, что пробы смазочного масла постоянной массы термостатируют минимум при трех температурах с перемешиванием, через установленное постоянное время пробу окисленного смазочного масла взвешивают, определяют массу испарившегося масла и коэффициент испаряемости как отношение массы испарившегося масла к массе пробы до испытания, отбирают часть окисленной пробы для фотометрирования и определения коэффициента поглощения светового потока, по полученным данным коэффициента поглощения светового потока и коэффициента испаряемости определяют показатель термоокислительной стабильности как их сумму, определяют приращение скорости изменения показателя термоокислительной стабильности как частное от деления приращения показателя термоокислительной стабильности за установленное постоянное время к этому времени окисления, строят графические зависимости показателя термоокислительной стабильности и приращения скорости его изменения от времени окисления и приращения скорости изменения показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют интенсивность процессов окисления от времени окисления, коэффициента поглощения светового потока и температуры окисления.
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ
Источник поступления информации: Роспатент

Showing 191-200 of 336 items.
10.05.2019
№219.017.515e

Лабораторная установка

Изобретение относится к установкам для проведения учебных занятий по дисциплинам: «Техносферная безопасность», «Технологические процессы и загрязняющие выбросы», «Промышленная экология», «Охрана окружающей среды в теплотехнологиях», и позволяет выявить влияние расхода, температуры и влажности...
Тип: Изобретение
Номер охранного документа: 0002687226
Дата охранного документа: 07.05.2019
16.05.2019
№219.017.5275

Способ защиты угольной части анода от окисления

Изобретение относится к производству алюминия в электролизерах с обожженным анодом. Способ защиты угольной части анода от окисления включает нанесение глинозема на подошву и боковые стенки анода путем погружения анода в емкость с коллоидным раствором глинозема с размером частиц 3-5 мм с...
Тип: Изобретение
Номер охранного документа: 0002687526
Дата охранного документа: 14.05.2019
17.05.2019
№219.017.5342

Электролизер для получения алюминия

Изобретение относится к электролизеру с самоспекающимися анодами для получении алюминия. Электролизер содержит размещенный в анодном кожухе самоспекающийся анод, разделенный на границе между коксо-пековой композицией и зоной полукокса горизонтальной перегородкой, размещенной на высоте от нижней...
Тип: Изобретение
Номер охранного документа: 0002687617
Дата охранного документа: 15.05.2019
17.05.2019
№219.017.5348

Водоотводной лоток транспортных тоннелей

Изобретение относится к горному делу и может быть использовано для тепловой защиты транспортных тоннелей от образования льда. Водоотводной лоток транспортных тоннелей, выполненный в виде заключенного между гидроизоляционными пластинами блока с водоотводным руслом и бортиками и снабженного...
Тип: Изобретение
Номер охранного документа: 0002687693
Дата охранного документа: 15.05.2019
18.05.2019
№219.017.53c4

Устройство для галечного отвалообразования многочерпаковой драги

Изобретение относится к горной технике, а именно к устройствам для разработки россыпных месторождений полезных ископаемых дражным способом. Технический результат заключается в уменьшении потерь полезного ископаемого. Устройство для галечного отвалообразования многочерпаковой драги включает...
Тип: Изобретение
Номер охранного документа: 0002687728
Дата охранного документа: 15.05.2019
20.05.2019
№219.017.5c45

Способ получения германата висмута bigeo

Изобретение относится к области химии и может быть использовано при получении исходной шихты для выращивания монокристаллов для лазерной техники. Способ получения германата висмута BiGeO включает механическое смешивание исходных порошков оксида висмута BiO и оксида германия GeO при мольном...
Тип: Изобретение
Номер охранного документа: 0002687924
Дата охранного документа: 16.05.2019
24.05.2019
№219.017.5ed5

Способ получения кварцевых тиглей

Изобретение относится к огнеупорной промышленности, а именно к производству крупногабаритных керамических кварцевых тиглей для плавления и выращивания монокристаллов германия, применяемого в полупроводниковой промышленности. Способ получения кварцевых тиглей включает получение...
Тип: Изобретение
Номер охранного документа: 0002688705
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5f51

Микрополосковый полосно-пропускающий фильтр

Изобретение относится к радиотехнике, в частности к фильтрам. Микрополосковый полосно-пропускающий фильтр содержит микрополосковые резонаторы, разделенные металлическими экранами и расположенные с образованием не менее чем двух ярусов, взаимодействие которых осуществляется через поперечную...
Тип: Изобретение
Номер охранного документа: 0002688826
Дата охранного документа: 22.05.2019
26.05.2019
№219.017.6195

Лабораторная установка

Изобретение относится к установкам для проведения учебных занятий по дисциплинам: «Техносферная безопасность», «Технологические процессы и загрязняющие выбросы», «Промышленная экология», «Охрана окружающей среды в теплотехнологиях». Технический результат заключается в расширении арсенала...
Тип: Изобретение
Номер охранного документа: 0002688994
Дата охранного документа: 23.05.2019
30.05.2019
№219.017.6ba4

Устройство для производства алюминия высокой чистоты с безуглеродными анодами электролизом и способ его осуществления

Изобретение относится к цветной металлургии, а именно к устройству для производства алюминия высокой чистоты (АВЧ) электролизом расплавленных солей с применением безуглеродных анодов. Устройство содержит корпус с подиной, футерованной огнеупорными материалами, по меньшей мере, одну пористую...
Тип: Изобретение
Номер охранного документа: 0002689475
Дата охранного документа: 28.05.2019
Showing 131-137 of 137 items.
19.06.2019
№219.017.899b

Способ определения температурной стойкости смазочных масел

Изобретение относится к технологии испытания смазочных материалов. При осуществлении способа отбирают пробу масла, делят ее на равные части, каждую из которых нагревают, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину и каждую часть пробы...
Тип: Изобретение
Номер охранного документа: 0002471187
Дата охранного документа: 27.12.2012
27.07.2019
№219.017.b9c4

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Технический результат заключается в снижении трудоемкости за счет сокращения времени испытания при выбранной температуре в связи с возможностью использования результатов, полученных...
Тип: Изобретение
Номер охранного документа: 0002695704
Дата охранного документа: 25.07.2019
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.015f

Способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания

Изобретение относится к технологии оценки качества работающих моторных масел и технического состояния двигателей внутреннего сгорания. Предложен способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания путем фотометрирования проб работающих...
Тип: Изобретение
Номер охранного документа: 0002713810
Дата охранного документа: 07.02.2020
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД